
Scenario Analysis of Demand Response Using Artificial
Electric Power Market Simulations

Abstract

We created and analyzed various Demand Response (DR) scenarios in the electric power
market using multi-agent simulation. We first built a multi-agent simulation for the elec-
tric power market using actual data, including prices from the Japanese Electric Power
Exchange (JEPX) market, electricity consumption in Japan, and an actual factory. Using
this multi-agent simulation, we tested several possible DR scenarios for the factory. We
then compared these scenarios using two newly defined indices for assessing the reduction
efficiency of cost and CO2 emissions. The results showed that a work time shift in the sum-
mer and peak shift in factory demand in the winter were the best in terms of cost and CO2
emission reduction efficiencies. Thus, we demonstrated the usefulness of our multi-agent
simulation for examining the effectiveness of DR scenarios by simulating complex interac-
tions that consider the seasonal and time-of-day characteristics of power prices.

Keywords: decarbonization, demand response, electric power market, multi-agent simula-
tion

1 Introduction

Climate change risk is now a major global issue, with many countries, organizations, and
companies taking steps to prevent global warming. Individual companies are also increas-
ingly expected to reduce CO2 emissions, increasing the demand and requirement for CO2
emission neutralization.

In addition, with the expansion of Environmental, Social, and Governance (ESG) in-
vestments, companies are beginning to take steps toward carbon neutrality to enhance value
creation. Currently, achieving carbon neutrality is not easy and requires a combination
of various measures, such as energy conservation, introducing renewable energy, and pur-
chasing Renewable Energy Certificate (REC), Guarantee of Origin (GO), and International
Renewable Energy Certificate (I-REC).

Meanwhile, in some countries and regions, electric power markets have been deregu-
lated to decrease electricity prices and promote technological innovation. However, this
deregulation can cause instability in the power grid and significant price fluctuations in grid
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power. For example, after the gradual deregulation of the Japan Electric Power Exchange
(JEPX) market in 2005, significant price fluctuations caused social disruption.

Moreover, challenges to carbon neutrality can increase the instability of these electric
power markets much more. Renewable power sources, such as photovoltaics and wind
turbines, are unstable owing to various factors, including the weather.
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h
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Max Supply
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Figure 1: Concept of DR.

One possible solution to stabilize power prices is demand response (DR), which can
also reduce CO2 emissions and lower costs. DR is the change in the power consumption
volume of consumers to reduce the peak demand in the power grid, and stabilize the balance
between the power generation limit and consumption (See also Figure 1). It is primarily
intended to reduce the peak load demand such that it does not exceed the total generation
limit of the power grid. Thus, DR not only stabilizes the power grid, but also reduces CO2
emissions of each consumer. In general, because electricity for the peak load is supplied by
gas-fired power generation, which have a higher CO2 emission factor. Therefore, reducing
the peak load can help reduce CO2 emissions. DR can also contribute to reducing the cost
of electricity procurement because the peak load prices are relatively high.

In this study, we examined multiple DR scenarios for a factory using multi-agent simu-
lation. The effects of DR can be estimated without such simulations; however, an accurate
comparison of DR scenarios is difficult and the feasibility of each scenario is not guaranteed
without market interaction. For example, a large-scale DR can cause market impacts (i.e.,
the effect of the trading on markets). In addition, if the same strategy is always used for DR,
other market participants could plan the opposite strategy and exploit the DR effects. Thus,
multi-agent simulation is a promising way to investigate DR scenarios and understand the
indirect effects of complex interactions.

We focus on JEPX and one factory in a major Japanese electric industry company. This
factory was modeled based on its data to investigate the impact of multiple DR scenarios
on it.

2 Related Work

According to [1], electric power market have been gradually deregulated in many countries
since the 1990s. Deregulation is assumed to enhance the price competition principle of
markets [2] and is aimed at providing long-term benefits to consumers [1].
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Meanwhile, climate change has become an important problem in the electric power
market in terms of CO2 emissions. The Intergovernmental Panel on Climate Change (IPCC)
has noted that climate change is affecting the world, and limiting global warming to 2 ◦C
– 1.5 ◦C is achievable and beneficial [3]. Therefore, reducing CO2 emissions has become
essential.

Under this situation, the stability of the electric power is a crucial problem for two
reasons: First, a deregulated power market causes imbalances between demand and supply.
Second, the output of decarbonized power sources, such as photovoltaic power generation,
are unstable. DR is considered a promising approach to avoid these imbalances [4]. Thus,
we focused on DR in this study.

To analyze the effect of DR on the electric power market, we need to consider the com-
plex mutual effects because the prices are decided by the supply-demand balance, which is
affected by all participants in the market. Therefore, a multi-agent simulation is a promising
approach [5, 6]. Multi-agent simulations are used to simulate the interaction of all individ-
uals (agents) and investigate the micro-macroscopic results of their interactions. These
simulations have been also applied to the electric power market [7].

Sensfuss [8] proposed a multi-agent simulation-based platform for Germany called
PowerACE, which includes a power supply, power demand, renewable energy generation,
power market, and battery. Sensfuss et al. [9] analyzed the impact of the emergence of
renewable energy on the German electric power market using PowerACE. Weiss et al. [10]
used a multi-agent model to discuss the investment incentives for power generation plants in
an electric power grid where all power sources are renewable. Ken et al. [11] analyzed the
effect and design of feed-in premiums in Japan using an electric power market simulation.

Similarly, Chuang et al. [12] applied the Cournot model to a competitive electric power
market to analyze the expansion of power generation and showed the advantages of a com-
petitive market over a centralized one for the expansion. Day et al. [13] used the supply
function equilibrium model where all players submit prices and the corresponding volumes
to analyze the impact of the policy introduced in England and Wales to improve market effi-
ciency. The authors argued for the need for continuous strict price monitoring and controls.
Jiang et al. [14] proposed a game-theoretic pricing model for peer-to-peer (P2P) electricity
trading in a blockchain for energy, showing that P2P electricity trading can be beneficial
and contribute to the development of electric power markets. Ghaffari et al. [15] discussed
models for tradeable green certificates based on game theory and concluded that the Stack-
elberg game model was the most appropriate. However, because these game theory-based
analyses typically employ strong assumptions, it is difficult to consider the complex real-
world situation of an electric power market [8].

Regarding DR studies, Kok et al. [16] proposed Power Matcher, a multi-agent frame-
work, and showed that the flexibility of generation and consumption is important. In this
framework, agents control electricity consumption and generating devices, and strategically
publish their orders in the market. Oh et al. [17] utilized a multi-agent simulation to inves-
tigate the best bidding strategy and showed that DR could contribute to market efficiency.
Zhou et al. [18] conducted simulation experiments on the DR of commercial buildings us-
ing a multi-agent model and investigated the effect of DR. However, these studies did not
analyze DR for factories in terms of cost or CO2 emissions, which we address in this study.
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3 Simulation Model

The JEPX spot market (previous day trading) was used as the basis for the simulation model
because it is the main market of JEPX. In the simulation, there are 48 markets for every 30
minutes of electricity usage with a blinded single-price batch auction mechanism, which
is the same as the spot market. Some agents participate in these markets and place orders
based on their power usage or generation plan. Such a simulation is commonly referred
to as a “multi-agent simulation.” We regarded one step as one day and all experiments
completed 365 steps.

Electric Power Market

Sell Orders
Buy Orders

Generator Agents
(300 Agents) Stylized Consumer

Agents
(300 Agents)

Factory Agents
(1 Agents)

Consumer Agents

Figure 2: Simulation Model Outline

An overview of this simulation is shown in Figure 2. As described below, one type of
generator agent and two types of consumer agents constitute the simulation. Each agent has
a plan regarding the use or generation of electricity, and a strategy regarding the procure-
ment or supply of electricity. The simulation behaves like a real electric power market by
aggregating the actions of these agents.

3.1 Generator Agent

We employed 300 generator agents that supply power to the electric grid. Each agent has a
hydroelectric, nuclear, petroleum thermal, gas-fired thermal, and coal-fired thermal power
plant. The agents then determined their limit sell orders based on the unit power prices of
those power sources, as described below.

3.1.1 Power Supply Configuration and Unit Cost

First, a total supply configuration of 300 agents was set based on the actual power supply
configuration in Japan 1. The configuration is listed in Table 1. Based on the power supply
configuration, each type of power generation volume is randomly allocated to 300 agents
(by scaling 300 random variables generated from a uniform distribution). Based on each
power supply configuration, agents’ configurations and unit costs of power generation are
determined using the unit cost of each power generation method for the agents. The unit
power generation costs are calculated using actual data from Japan 2.

1https://www.enecho.meti.go.jp/statistics/total_energy/results.html
2https://www.enecho.meti.go.jp/committee/council/basic_policy_subcommittee/index.

html
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Table 1: Power supply configuration in the entire power market

Hydroelectric Nuclear
Thermal

Petroleum Gas-fired Coal-fired
8.8% 6.6% 7.7% 41.8% 35.2%

3.1.2 Offering (Selling) Price

At the kth (k ∈ {0, · · · ,47}) market on day t(∈ {0, · · · ,364}), agent i’s offering price p̂k,i,s
t

for the power supply method s is determined as follows:

p̂k,i,s
t = pk

t−1 exp
(

r̂k,i,s
t

)
, (1)

r̂k,i,s
t =

wi
BBk,i,s

t +wi
CCk,i,s

t +wi
NNk,i,s

t

wi
B +wi

C +wi
N

, (2)

where pk
t−1 is the previous day’s market price in the kth market, and wi

B,w
i
C, and wi

N are
the random weights for the base Bk,i,s

t , technical (chart) Ck,i,s
t , and noise terms Nk,i,s

t , respec-
tively. wi

B,w
i
C, and wi

N are generated from the uniform distributions [0,W g
B ], [0,W

g
C ], and

[0,W g
N ], respectively. W g

B is set to 1.0 and W g
C ,W

g
N are set via a parameter grid search to

obtain realistic results (see Section 5). Each term is calculated as follows:

Bk,i,s
t =

gs
t

ε i,s (1+ ri,s), (3)

Ck,i,s
t =

1
τ

τ

∑
l=1

ln
pk

t−l

pk
t−l−1

, (4)

Nk,i,s
t ∼ N (0,1), (5)

where gs
t is the previously mentioned unit cost for power generation method s on day t,

ε i,s is the power generation efficiency variable from a uniform distribution [0.8,1.2], ri,s is
agent i’s additional profit ratio for the generation method s from the uniform distribution
[0.0,0.2], τ is a technical analysis window set to seven, and N (0,1) represents a standard
normal distribution. These refer to [19]. Through these calculations that imitate actual
decision-making scenarios, agents have heterogeneity and make the market more realistic
with merit orders (the lower order of the marginal cost of each power generation).

3.1.3 Offering (Selling) Volume

Agent i’s electric power offering volume for the power generation method s in the k th
market on day t is calculated as follows:

qk,i,s
t = qk,i,s

t +∆qk,i,s
t , (6)

where qk,i,s
t and ∆qk,i,s

t are the reference and controlled power generation volumes, respec-
tively. Because base-load power plants cannot control their power output instantaneously,
∆qk,i,s

t is set to 0 for hydroelectric and nuclear power plants. By contrast, thermal plants can
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easily control their supply. Thus, we assume that thermal plants control their power gener-
ation volume according to the predicted demand based on the previous week’s demand, as
given below.

∆qk,i,s
t = ηi

(Dk
t−7−Sk

t−7)q
k,i
t−7

Sk
t−7

λ
k,i,s
t , (7)

where Dk
t−7 and Sk

t−7 represent the total demand and supply in the kth market on the same
day in the previous week, respectively. qk,i

t−7 is agent i’s total supply in the market, ηi is
agent i’s responsiveness to the supply-demand imbalance obtained from a uniform distribu-
tion [0.5,2.0], and λ

k,i,s
t represents the share of the power generation method s in the total

controllable power generation volume of agent i.

3.2 Stylized Consumer Agent

The stylized consumer agent is the only type of consumer agent, except for one factory
agent. The demands of this type of agent are predefined and only their bidding prices
change.

Agent j’s bidding price in the kth market on day t is calculated as follows:

p̂k, j
t = pk

t−1 exp(r̂k, j
t ), (8)

r̂k, j
t =

w j
FFk, j

t +w j
CCk, j

t +w j
NNk, j

t

w j
F +w j

C +w j
N

, (9)

where w j
F ,w

j
C, and w j

N are the random weights for the fundamental Fk, j
t , technical (chart)

Ck, j
t , and noise terms Nk, j

t , respectively. w j
F ,w

j
C, and w j

N are generated from the uniform
distributions [0,W d

F ], [0,W
d

C ],and[0,W d
N ], respectively. W d

F is set to 1.0, and W d
C and W d

N
are set via a parameter grid search to obtain realistic results (see Section 5). Each term is
calculated as follows:

Fk, j
t = ln

p∗F
pk

t−1
(10)

Ck, j
t =

1
τ

τ

∑
l=1

ln
pk

t−l

pk
t−l−1

, (11)

Nk, j
t ∼ N (0,1), (12)

where p∗F is the theoretical fundamental price and is set to 10; the other notations are the
same as those of the generator agents. These are also based on [19].

The bidding volume is set externally based on actual Japanese demand data3. We dis-
tribute the actual consumption volume among the 300 agents in the market for each period.

3.3 Factory Agent

The agent’s behavior is modeled to mimic actual factory demand patterns. To replicate the
actual demand pattern, demand was modeled based on the principal component analysis
(PCA) of the actual data. Then, according to the modeled demand, this agent issues orders
whose prices are assumed to be sufficiently high for execution. The details are as follows.

3https://www.tepco.co.jp/forecast/html/area_data-j.html;
https://powergrid.chuden.co.jp/denkiyoho/;
https://www.kansai-td.co.jp/denkiyoho/area-performance.html
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3.3.1 PCA and Demand Modeling

We found two major components for actual factory power usage according to our PCA
analysis:

• First principal component (68.7%): This component contributes 68.7% and is signif-
icant only in the daytime on a weekday. Thus, we regarded it as the base demand of
production activities.

• Second principal component (9.1%): This component contributes 9.1%, and is more
significant in summer and winter than in spring and autumn. Thus, we regarded it as
a seasonal factor, including air conditioners (AC).

• Other components (22.2%): The remaining 22.2%, which cannot be explained by the
first and second components, was regarded as noise factors.

Based on these components, we modeled the demand for this factory as follows:

dk,?
t = w?

BBk,?
t +w?

AAk,?
t +w?

NNk,?
t , (13)

where Bk,?
t , Ak,?

t , and Nk,?
t are the base, AC, and noise factors, respectively, which are mod-

eled based on the aforementioned components, and w?
B,w

?
A, and w?

N are their respective
weights. w?

B and w?
A are determined according to the actual demand, and w?

N is set to 10%
of the total demand. This is because the contribution of each component of the PCA does
not mean the scale of each component. Finally, the factory’s total demand share in the
market is set to 2.26×10−6 based on the actual share.

3.3.2 DR

The demand for this factory agent is determined using Eq. 13; however, this demand can
be modified by the DR scenarios. Each scenario is described in detail in section 4.

3.3.3 Bidding

After considering DR, the factory agent places buy orders at a sufficiently high price be-
cause the market employs a blind single-price batch auction with only one execution price.
Therefore, to obtain sufficient power, the agent needs to place an order at a sufficiently high
price; the high bid price has no effect on the execution price.

4 DR Scenarios

We created two types of DR scenarios for factory agents: peak-cut (or peak shaving), and
peak shift. Table 2 presents the summary of each scenario.
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Price and CO2 emissions per kWh are important for DR planning. We show them
in the simulations, as illustrated in Figures 3 and 4. We only consider the summer and
winter periods because the electric power supply is tight. In the simulation, steps 60–152
and 244–334 correspond to the summer (June – August) and winter seasons (December –
February), respectively. From Figures 3 and 4, we can observe one peak in the summer and
two peaks in the winter. Although these graphs are generated based on simulated data, the
characteristics of these movements correspond to the actual movements. Based on these
figures, the DR scenarios were set up as follows.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

9.5

10.0

10.5

11.0

11.5

12.0

Pr
ice

 [Y
en

/k
W

h]

summer
winter

Figure 3: Price movement in the summer and winter (averaged of 100 simulations)

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
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0.00050

0.00051

0.00052

0.00053

0.00054

0.00055

CO
2 

[t-
CO

2]

summer
winter

Figure 4: CO2 emission coefficient movement in the summer and winter (averaged of 100
simulations)

4.1 Peak-Cut

4.1.1 Fixed Cut Scenario

This scenario employs peak-cut DR at fixed time periods for the entire factory. The factory
cuts the demand in the ratio r during the daytime (12:00 – 15:00) in the summer and evening
(17:00 – 20:00) in the winter; these are periods during which the market power price is
comparatively high. This demand-cut ratio r is crucial for industrial production. Thus, we
limit it to 0.2. Accordingly, we test four patterns of r: [0.05,0.1,0.15,0.2].
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4.1.2 Flexible Cut Scenario

This scenario differs slightly from the fixed cut scenario in terms of the selection of time
periods. In the flexible cut scenario, the time periods for DR actions are selected based on
the indices, such as price, CO2 emission, and demand of the same market in the previous
week. Based on these criteria, six markets (30-minute periods ×6 = 3.0 h) are selected in
the working hours 9:00 – 17:00.

4.2 Peak Shift

4.2.1 AC Shift Scenario (Summer Only)

This scenario only controls the AC, and aims to reduce the peak demand and increase usage
at other times instead. By employing a peak shift instead of a peak cut, we can avoid a
significant decrease in the level of room comfort. In this scenario, the periods of demand
reduction are determined based on the top three hours with the highest air conditioning
usage in the actual summer data and set to 14:00 – 17:00. Meanwhile, the demand is
increased between 9:00 – 14:00. We also set the DR ratio, r, to [0.25,0.5,0.75,1.0]. For
example, if r = 1, the AC is stopped completely during 14:00 – 17:00. Meanwhile, during
9:00 – 14:00, the power shaved off during the demand is allocated uniformly and used. This
scenario can only be used in summer.

4.2.2 Work Time Shift Scenario

The work time shift scenario aims to shift the factory’s working hours ahead to reduce the
peak load as the morning demand is smaller than evening demand. We change the ratio
of the target DR, r ∈ [0.25,0.5,0.75,1.0], and the number of hours by which the factory’s
usual working hours are shifted, m∈ [0.5,1.0,1.5,2.0,2.5,3.0]. For example, if r = 1.0 and
m = 3.0, the working hours of the factory are set to 6:00 – 14:00. Similarly, if r = 0.5 and
m = 0.5, only half of the factory is working from 8:30 am, whereas the others remain the
same as the usual working hours (9:00 – 17:00).

4.2.3 Fixed Shift Scenario

This scenario controls the total demand of the factory to reduce peak demand and increase
its usage at other times instead. The downward DR (demand reduction) and upward DR
(demand increase) periods are predefined in the fixed shift scenario. In the summer, down-
ward DR is active during 12:00 – 15:00, while upward DR is active during 9:00 – 12:00
and 15:00 – 17:00. However, in the winter, downward DR is active during 9:00 – 10:30
and 15:30 – 17:00, while upward DR is active during 10:30 – 15:30. In the downward DR
periods, the demand ratio r is reduced and the demand is distributed equally in the upward
DR periods.

4.2.4 Flexible Shift Scenario

This scenario differs slightly from the fixed shift scenario in terms of the selection of time
periods. In the flexible shift scenario, the time periods for upward and downward DR
activation are selected based on the indices for price, CO2 emission, and demand of the same
market in the previous week. Based on these criteria, each of the six markets (30-minute

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, R. Wakasugi, K. Izumi10



periods ×6 = 3.0 h) during the working hours (9:00 – 17:00) for upward and downward
DR are selected.

5 Experiments

First, we tuned the undetermined hyperparameters based on the criterion that the mean
and standard deviation of the prices as close to the real data of the JEPX. Consequently,
W g

C = 10.0,W g
N = 12.5,W d

C = 1.0, and W d
N = 12.5.

The tuned hyperparameters were used to analyze each DR scenario. For each scenario,
100 simulations were performed (one simulation = one year). Next, the effectiveness of
each DR scenario was analyzed and compared to the baseline scenario with no DR.

Finally, two evaluation indicators were employed to check the effectiveness of each DR.
First, a cost reduction efficiency indicator that indicates how efficiently the DR scenario
reduced costs. Second, a CO2 emission reduction efficiency indicator, which represents
how efficiently the DR scenario reduced CO2 emissions. These indicators are respectively
defined as follows:

Ecost =
Rcost

Rdemand
+ ε, (14)

ECO2 =
RCO2

Rdemand
+ ε, (15)

ε =

{
0 (Peak Cut)
1 (Peak Shift)

(16)

Rdemand =
∑t ∑k max(d

k
t −dk

t ,0)

∑t ∑k d
k
t

, (17)

Rcost =
∑t ∑k(pk

t d
k
t − pk

t dk
t )

∑t ∑k pk
t d

k
t

, (18)

RCO2 =
∑t ∑k(ek

t d
k
t − ek

t dk
t )

∑t ∑k ek
t d

k
t

, (19)

where pk
t ,d

k
t , and ek

t are the price, demand, and CO2 emission coefficient in the kth market
on day t (t ∈ [60,61, · · · ,152] in the summer and t ∈ [244,245, · · · ,334] in the winter),
respectively, whereas pk

t ,d
k
t , and ek

t are those in the baseline scenario. Ecost and ECO2 are
the cost reduction efficiency and CO2 emission reduction efficiency metrics, respectively.
Rdemand,Rcost, and RCO2 are the ratios of demand control, cost reduction, and CO2 emissions
reduction, respectively. Notably, the demand control ratio is calculated only by downward
DR. Thus, Ecost and ECO2 imply the cost reduction ratio per demand control ratio and CO2
emission reduction ratio per demand control ratio, respectively. However, these metrics
differ between the peak shifts and peak-cut scenarios. In the case of peak-cut, the ratios
of demand reduction and that of cost reduction are almost the same if we assume that
factory production is scaled in a homothetic manner. In contrast, in the case of peak shift,
the total factory production is assumed to be almost the same. These relationships can
also be applied to CO2 emissions. Thus, we employ the coefficient adjustment term ε

as mentioned above. Note that Ecost and ECO2 are nondimensional numbers. Thus, these
evaluation indicators do not depend on DR scales, such as r for each DR scenario. This
enables us to evaluate all DR scenarios at the same scale.
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6 Results

6.1 Each DR Scenario

6.1.1 Fixed Cut Scenario

Figures 5 and 6 show the results for the fixed cut scenario. As mentioned above, in the
summer, DR is activated only during the daytime, while in the winter, it is activated only in
the evening. Figure 5 shows the demand reduction ratio and CO2 emission reduction ratio.
Depending on the season, both are linearly scaled based on the DR ratio r. According to
this graph, a larger DR is achieved in the summer. However, the ratio of demand reduction
and CO2 emission reduction is almost the same for all data points. If it is the same or
below, CO2 emission reduction can only be achieved by demand reduction. To investigate
whether the reductions in CO2 emissions and costs are beyond the direct effects of demand
reduction, the two aforementioned evaluation indicators are plotted in Figure 6. Because
the horizontal axis is the demand reduction ratio, the points in each series are arranged from
left to right in the ascending order of the DR scale r. The results reveal that the daytime
DR in the summer is slightly better than the evening DR in winter in terms of reduction
efficiency. Nevertheless, the efficiency factor is statistically greater than 1 in both summer
and winter, suggesting that this DR scenario is still working correctly.
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Figure 5: Cost (left) and CO2 emission (right) reduction ratios for each demand reduction
ratio in the fixed cut scenario. The filled areas are the 95% confidential intervals (CI). The
filled areas in the right figure are too small to be seen in the figure.

6.1.2 Flexible Cut Scenario

Figures 7 and 8 show the results for the flexible cut scenario. Figure 7 indicates that the flex-
ible cut scenario shows the linear response of CO2 emission and cost reductions to demand
reduction. Figure 8 enables us to conduct a more precise analysis of the efficiencies. The
efficiencies of all scenarios with the three market selection criteria are statistically above
1 in both summer and winter, suggesting that this DR scenario is also working correctly.
Although not statistically significant, price-based market selection DR shows the best cost
reduction efficiency. In contrast, CO2- and demand-based market selection DRs show al-
most similarly high CO2 emissions reduction efficiency.
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Figure 6: Cost (left) and CO2 emission (right) reduction efficiencies in the fixed cut sce-
nario. The filled areas are 95% CI.
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Figure 7: Cost (left) and CO2 emissions (right) reduction ratios for each demand reduction
ratio in the flexible cut scenario. The filled areas are the 95% CI.
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Figure 8: Cost (left) and CO2 emissions (right) reduction efficiencies in the flexible cut
scenario. The filled areas are the 95% CI.
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6.1.3 AC Shift Scenario (Summer Only)

Figures 9 and 10 show the results of the AC shift scenario. First, Figure 9 shows the re-
lationship between the cost or CO2 emissions reductions, and the demand shift. These
reductions show a linear response on average to the demand shift with positive coefficients.
However, the variance compared with the mean is significant. Figure 10 provides a more
detailed analysis of the efficiencies. Note that in Figure 10, in contrast to the peak-cut sce-
narios, the vertical axis is (Ecost−1) and (ECO2−1) instead of Ecost and ECO2 , respectively.
This is common among all results of the peak shift scenarios. We find that although the
cost reduction efficiency is not statistically significant, this DR scenario may barely work
in terms of both the cost and CO2 emissions reduction.
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Figure 9: Cost (left) and CO2 emissions (right) reduction ratios for each demand reduction
ratio in the AC shift scenario. The filled areas are the 95% CI.
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Figure 10: Cost (left) and CO2 emissions (right) reduction efficiencies in the AC shift
scenario. The filled areas are the 95% CI. We use (Ecost−1) and (ECO2−1) instead of Ecost
and ECO2 , respectively.

6.1.4 Work Time Shift Scenario

Figures 11 and 12 show the results of the work time shift scenario. Interestingly, the per-
formance in winter is mostly negative. This implies that in the winter, the morning price
and CO2 emission coefficients are higher than those in the evening, and the DR is coun-
terproductive. However, the summer performance is large, with longer work time shifts
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producing larger DR effects. According to Figure 11, cost and CO2 emissions reductions
almost always have linear responses to the demand shift. However, the coefficients differ
depending on the setting and are shown in Figure 12.
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Figure 11: Cost (left) and CO2 emissions (right) reduction ratios for each demand reduction
ratio in the work time shift scenario. The filled areas are the 95% CI.
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Figure 12: Cost (left) and CO2 emissions (right) reduction efficiencies in the work time
shift scenario. The filled areas are the 95% CI. We use (Ecost−1) and (ECO2−1) instead of
Ecost and ECO2 , respectively.

6.1.5 Fixed Shift Scenario

Figures 13 and 14 show the results for the fixed shift scenario. Figure 13 shows that the cost
reduction performance is almost same between summer and winter. By contrast , the CO2
emissions reductions are completely different. This tendency is also observed in Figure
14. Although the cost reduction efficiency is not statistically significant, the CO2 emissions
reduction efficiency in the winter is significant. In contrast, the CO2 emissions reduction
efficiency in the summer is almost 0. These results suggest that the fixed DR periods need
to be correctly selected to maximize the DR effect because this difference comes from the
price and CO2 emission coefficient of electricity during the peak shift periods.

6.1.6 Flexible Shift Scenario

Figures 15 and 16 show the results for the flexible-shift scenario. Figure 15 shows that
the fluctuation in the results is significantly high. Moreover, in some settings, the cost and
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Figure 13: Cost (left) and CO2 emissions (right) reduction ratios for each demand reduction
ratio in the fixed shift scenario. The filled areas are the 95% CI.
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Figure 14: Cost (left) and CO2 emissions (right) reduction efficiencies in the fixed shift
scenario. The filled areas are the 95% CI. We use (Ecost−1) and (ECO2−1) instead of Ecost
and ECO2 , respectively.
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CO2 emissions reduction ratios are not statistically significant, even when the demand shift
ratio is high. Figure 16 shows that the price-based market selection DR exhibits the best
cost reduction efficiency in summer and winter. However, the CO2- and demand-based
DRs show almost similarly high CO2 emissions reduction efficiency. Moreover, although
the cost reduction efficiencies in summer and winter are almost similar, the CO2 emissions
reduction efficiency in winter is significantly higher than that in summer.
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Figure 15: Cost (left) and CO2 emissions (right) reduction ratios for each demand reduction
ratio in the flexible shift scenario. The filled areas are the 95% CI.
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Figure 16: Cost (left) and CO2 emissions(right) reduction efficiencies in the flexible shift 
scenario. The filled areas are the 95% CI. We use (Ecost −1) and (ECO2 −1) instead of Ecost 
and ECO2 , respectively.

6.2 Comparison between DR Scenarios

Figures 17 and 18 show the comparisons of all scenarios in both summer and winter in terms 
of cost and CO2 emissions reduction efficiencies, r espectively. As explained in Section 5, 
between the peak-cut and peak shift scenarios, the efficiency indicators are converted using 
ε defined in E q. 1 6. In these figures, the parts of the bars corresponding to ε are indicated
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by dotted lines. Moreover, only the results from the largest DR scale for each scenario are
used in the figures. This is because according to the Figures 5, 7, 9, 11, 13, and 15, the
responses of cost and CO2 emissions to the demand cut/shift ratio are almost always linear.
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Figure 17: Cost reduction efficiency comparison of all scenarios. The error bars are stan-
dard deviation.

The red lines in the figures represent the borderline where the reduction in production
activities due to DR exceeds the effects of DR. This shows that only the work time shift
scenario in winter falls below the borderline for cost reduction efficiency. In terms of CO2
emissions reduction efficiency, all scenarios exceed the borderline. Although not statisti-
cally significant, the work time shift in winter and price-based flexible shift in both summer
and winter show relatively high cost reduction efficiencies despite their high variability.
Conversely, in terms of CO2 emissions reduction efficiency, only the work time shift sce-
nario in summer shows statistically highest results.

7 Discussion

First, we discuss the peak-cut scenarios. In the fixed cut scenario, the effect of DR during
winter was relatively small. This was probably because the period when DR was activated
under this scenario was outside the factory’s working hours and the absolute scale of DR
was small. However, the indices-based flexible peak-cuts appeared to be effective. Inter-
estingly, the demand-based flexible peak-cut performed well in terms of CO2 emissions
reduction efficiency. This may be because the CO2 emission factor is relatively high when
demand is high owing to the high utilization of thermal power plants. In the peak-cut sce-
nario, the effect of the DR scenarios is larger because the plants need to stop. Therefore, if
peak-cut DR is adopted, it is necessary to achieve sufficient benefits, such as sufficient CO2
emissions reduction. It is also practically difficult to repeatedly trigger a 30-minute DR at
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Figure 18: CO2 emissions reduction efficiency comparison of all scenarios. The error bars
are standard deviation.

different times. Therefore, adopting a fixed peak-cut scenario with consecutive DR periods
may be more practically beneficial than adopting a flexible peak-cut scenario.

Second, we obtained interesting results regarding the peak shift scenarios. The AC shift
scenario showed no CO2 emissions reduction effect and a limited cost reduction effect. This
suggests that the AC shift scenario may be inappropriate due to the tradeoff for room com-
fort. However, the work time shift scenario had significant cost and CO2 emission reduc-
tions in the summer. This is perhaps because the price and CO2 emission coefficient were
lower in the early morning than in the evening. In winter, this tendency does not appear;
thus, the performance in winter is not similar. For the fixed and flexible shift scenarios, as in
the peak-cut scenarios, the performance of the winter fixed shift scenario was low, whereas
the CO2 emissions reduction performance was high in the CO2- and demand-based flexible
shift scenarios.

Comparing all scenarios, the work time shift scenario showed the best results for both
the cost and CO2 emission reduction efficiencies. The peak shift scenario is the preferred
scenario because it reduces both costs and CO2 emissions efficiently with no change in
overall factory production. Moreover, the work time shift scenario is more efficient because
it can be achieved by changing the factory’s operating hours. Thus, the work time shift sce-
nario does not require shutting down the factory during the working hours. Conversely, the
work time shift scenario in winter does not work well because a good match between fac-
tory working hours, and the winter price and CO2 emission factor curves does not emerge.
The work time shift does not work well in the winter, whereas the flexible shift scenario
is moderately efficient in winter. Meanwhile, the flexible shift scenario can achieve better
efficiency by selecting the appropriate indicators for the DR period.

Our work can also be advanced in some areas. Currently, carbon-neutral power sources
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and their availability are limited. Hence, achieving even small CO2 emissions reductions,
such as those by DR, is important. Although multi-agent simulations can provide insightful
results, our current multi-agent simulation needs to be updated. For example, on-site gener-
ation (solar photovoltaic or wind power generation), batteries, and fuel cells have recently
shown promise as decarbonization solutions. Thus, by adding these features along with
factory agents, we can create simulations that can better evaluate the various DR scenarios.
Another strength of multi-agent simulation is its ability to analyze fictional scenarios in
fictional factories, even where actual data may not exist. It can analyze the impact of oil
price increases and other changes in the external environment on DR strategies, which can
helpful in dealing with the unstable social conditions of recent years.

Multi-agent simulation is a powerful tool for analyzing the details of social phenomena
such as decarbonization. In this study, the factory size was limited. However, we can
realize the market impacts in our simulation even if the factory has a significant effect on
the market. In addition, although only the previous-day spot market is used here because of
its large market share, more realistic procurement strategies can be considered by modeling
other markets. Finally, one can investigate various decarbonization strategies by modeling
the CO2 emissions trading market.

8 Conclusion

We constructed a multi-agent simulation of the electric power market and analyzed sev-
eral DR scenarios. The simulation model was constructed based on actual data from the
Japanese market and a factory. We simulated changes in the factory’s electricity consump-
tion behavior under various DR scenarios, and evaluated the cost and CO2 emission reduc-
tion efficiencies, which were newly defined in this study. The results showed that shift-
ing the working hours of the factory ahead during the summer was effective. Conversely,
peak shift during the winter was effective. Thus, we demonstrated the usefulness of our
multi-agent simulation for examining the effects of complex DR scenarios by considering
seasonal and time-of-day electric power characteristics. Future work should address the va-
lidity of our analysis by applying each DR scenario in the actual market. In addition, more
complex and realistic decarbonization strategies can be simulated by adding decarboniza-
tion methods such as on-site power generation, batteries, and fuel cells.
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