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Abstract

This study presents an optimization model that uses stochastic programming to optimally
allocate seats and maximize the profit of the airline, considering of overbooking. Airline
seat inventory control involves selling the right seats to the right people at the right time. If
an airline sells tickets on a first-come, first-serve basis, it is likely to be occupied by leisure
travelers and late bookers. Therefore, business travelers willing to pay a higher fare will
subsequently find no seats left, and revenue from such sales will be lost. While there are
various needs that depend on the type of passenger, this study proposes an optimization
model that uses stochastic programming as a method of maximizing the profit of the airline
company by allocating seats appropriately and employing the concept of overbooking.

Keywords: revenue management, stochastic programming, overbooking

1 Introduction

Since the late 1970s, following the deregulation in the United States, revenue management
of airlines began, and each company was permitted to set its own fares. Tickets for the
same destination are classified into various classes and subsequently sold. Airlines adjust
the price and number of seats in each class to reduce the number of vacant seats at takeoff.
When selling tickets on a first-come, first-serve basis, there is a tendency to sell tickets
from the low-priced class to ensure that all seats are booked; such tickets are predominantly
bought by discount-seeking passengers (mostly leisure travelers) who prefer to reserve low-
priced seats at early stages. The companies thus struggle to sell higher-priced tickets that
they could have sold to business passengers. To prevent such losses, it is necessary to
allocate seats appropriately by employing the concept of overbooking, which refers to the
acceptance of reservation numbers that are greater than the number of available seats on the
airplane. (Takagi[1], Sato, Sawaki[2], Cooper, Homem-de-Mello[13], Hayes, Miller[14],
Talluri, Ryzin[15])

Boer et al.[5] stated that airline seat inventory control involves selling the right seats
to the right people at the right time, and they categorized revenue management models as
leg-based or network-based models. In addition, they analyzed network-based mathemat-
ical programming models and identified the need to include reservation limits and price-
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resetting methods in the stochastic programming model as the best approach to deal with 
uncertainties within the framework of revenue management.

Walczak et al.[6] demonstrated that overbooking can balance losses resulting from va-
cancy and boarding refusals; overbooking is determined by the expected income, probabil-
ity that demand will exceed capacity, and the expected number of boarding refusals. More-
over, overbooking gives airlines the benefit of not only reducing overall costs by improving 
operational efficiency but also providing additional seats for passengers.

In Japan, the“flex traveler system”has been introduced as a response to situations when 
passengers are denied boarding due to overbooking. In the unlikely event of a shortage of 
seats, the airline will invite passengers who can accommodate changes in flights at the 
airport on the day of the flight. The system requires the airline to reimburse passengers who 
accept to such changes.

In this study, we propose an optimization model that uses stochastic programming to 
maximize the profit of an airline company by securing seats appropriately and employing 
the concept of overbooking.

2 Problem Description

2.1 Itinerary and Fight Leg

Airlines classify tickets that have identical departures and destinations into multiple classes 
and sell them at different rates. In this study, a combination of take off and landing (flight 
section) is referred to as a flight leg. In addition, a combination of the departure and the 
destination that does not include the transit airport is referred to as the itinerary, and a 
combination of the itinerary and the fare class is referred to as the origin, destination, fare 
class (ODF).

A

HD

Flight leg A-H ¥20,000
H-D ¥18,000
A-D ¥35,000

Itinerary

ODF

Figure 1: Example of itinerary and flight leg
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2.2 Reservation

During the sale of tickets for various classes with identical departures and destinations,
airlines adjust the number of reserved seats for each class. The number of reserved seats is
the number of reservations accepted for each itinerary. If the actual demand is greater than
the number of reserved seats, lost opportunities will occur, and if demand is less than the
number of seats, losses due to vacancy will occur. Reservations tend to fill up beginning
from the low-priced class; therefore, if the airline sells all the seats at the same price and
the seats are sold out early, they will be unable to sell airline tickets to passengers willing
to pay higher prices, which is a lost opportunity to boost revenue. In addition, because the
fuel and maintenance costs required to operate the airplane do not change depending on the
number of passengers, vacant seats at takeoff will result in losses; therefore, it is necessary
to consider these losses as shown in Example 1.

Example 1� �
Fare Y30,000 , Number of reserved seats 30 seats
・Demand 40 seats
→ Y30,000

(Fare)
× 10seats

(Insu f f icient)
＝ Y300,000

Opportunity losses
・Demand 25 seats
→ Y30,000

(Fare)
× 5seats

(Vacant)
＝ Y150,000

Vacant losses� �

2.3 Overbooking

Overbooking is permitted as a measure to minimize the number of vacant seats during
takeoff caused by cancellations before boarding or no-shows. Overbooking is indicated
by ensuring that the sum of the number of reserved seats in each class is greater than or
equal to the number of airplane seats. Cancellation is allowed before boarding. Conversely,
a no-show is a cancellation without permission, which refers to an instance wherein the
passenger does not appear at the boarding gate by the scheduled time.
　Airlines typically refund passengers who cancel their reservations with an amount equal
to a part of the fare paid. In addition, if the airline company overbooks at the time of
reservation and the actual number of cancellations is less than expected, boarding for a few
passengers is refused. The company refunds the fare and reimburses passengers who have
no alternative but to refuse boarding as shown in Example 2.
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Example 2� �
Fare Y10,000，Cancellation charge Y8,000，Compensation Y20,000
・for canceled passengers

→ Y10,000
(Fare)

－ Y8,000
(Cancellationcharge)

＝ Y2,000
(Re f und)

・for customers who have been denied boading
→ Y10,000

(Fare)
＋ Y20,000

(Compensation)
＝ Y30,000

(Re f undandCompensation)

Allow 10 seats overbooking
・5 seats canceled

→ Y2,000
(Lossoncancellationperperson)

× 5seats
(Numbero f cancellations)

＝ Y10,000
(Lossoncancellation)

Y30,000
(Compensation f orboadingdenialsperperson)

× 5seats
(Numbero f boadingre f usals)

＝ Y150,000
(Lossoncancellation)

Total Y160,000．� �
3 Previous Study

3.1 Littlewood Model

In the Littlewood[3] model, the company sells tickets in two phases. In the first half of the 
sales, the tickets are sold at a discounted fare to price-sensitive, discount-seeking passen-
gers (leisure travelers). Since the purpose of such passengers is to travel for leisure, there 
is a possibility of relatively early planning. However, passengers who buy tickets at a dis-
counted price cannot change the reservation details; additionally, restrictions such as a high 
cancellation fare are levied. In the latter half of the sales, the reservation timing is often 
set prior to boarding, and the tickets are sold at regular fares for business passengers who 
dislike restrictions such as inability to change reservation details.

We assume that the demand of business passengers D is uncertain and that the flight can 
be fully booked by providing discounted fares. In addition, we assume that discount-seeking 
passengers make reservations before business passengers. If the airline accepts reservations 
on a first-come, first-serve basis until all seats are sold out, the discount-seeking passengers 
will occupy all the seats, and the airline’s income will be low. To prevent this, Littlewood 
adopted the idea of a protection level y, which represents the number of seats reserved for 
high-paying customers. Seats apart from those reserved for the protection level y will be 
sold at a discounted fare. The remaining number of seats is referred to as the booking limit. 
Littlewood’s formula is given in equation (1), where F(·), r1, and r2 denote the distribution 
function of D, fare for leisure traveler, and fare for business traveler, respectively.

F(y) = 1− r2

r1
(1)

However, the Littlewood model is limited to two classes; additionally, even if the demand
for high-priced classes is below the protection level, airlines do not sell tickets at discounted
fares. Therefore, there is a possibility of take off with vacant seats.
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Figure 2: Optimal protection level and booking limit

3.2 Williamson Model

Williamson[4] used network-based models to optimize reservation management for the en-
tire network using either a probabilistic mathematical programming problem (PMP) or a 
deterministic mathematical programming problem (DMP), both of which offer significant 
benefits. Since PMP uses stochastic demand, it needs to be solved using stochastic pro-
gramming. Conversely, DMP simplifies the problem by replacing the uncertain demand 
with its expected value.

Parameter
ODF subscript for itinerary
l subscript for flight leg
N set of flight legs on the network
Sl set of ODF available in the flight leg l
xODF number of reserved seats in the ODF
Cl number of seats of the flight leg l
DODF probabilistic aggregated demand for ODF
fODF fare of the ODF

The stochastic programming problem is formulated below. The term min{xODF ,DODF} in
equation (2) indicates that the objective function represents the number of reservations at
takeoff. In PMP, the product of the fare and the actual number of reservations is assumed
as the total revenue, and the expected value is maximized. In addition, inequality (3) is a
capacity constraint to ensure that the total number of reserved seats is less than or equal to
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the number of airplane seats. The problem (PMP) can be expressed as

(PMP)

max

E ∑
ODF

fODFmin{xODF ,DODF} (2)

s.t.

∑
ODF∈Sl

xODF ≤Cl,∀l ∈ N (3)

xODF ≥ 0,xODF ∈ Z,∀ODF ∈ Sl (4)

Let DODF assume to take only the value of dODF,1<dODF,2<…<dODF,KODF . The LP re-
laxation model, the stochastic linear programming (SLP) of the PMP, is given below. In
equation (5), which represents the objective function of SLP, the product of the fare and the
number of reserved seats is assumed as the profit obtained when all the seats are booked.
Furthermore, the difference between the first term and the product of the fare and the proba-
bility that the demand is less than dODF, j is assumed as the total revenue, and this difference
is maximized. Inequality (6) is a capacity constraint to ensure that the total number of
reserved seats is less than or equal to the number of airplane seats.

(SLP)

max

∑
ODF

fODFxODF − ∑
ODF

fODF

KODF

∑
j=1

P(DODF < dODF, j) (5)

s.t.

∑
ODF∈Sl

xODF ≤Cl,∀l ∈ N (6)

xODF =
KODF

∑
j=1

xODF, j (7)

xODF,1 ≤ dODF, j (8)

xODF, j ≤ dODF, j −dODF, j−1, j = 2, ..,KODF (9)

xODF, j ≥ 0, j = 1, ...,KODF (10)

We can formulate a deterministic mathematical programming problem in a simplified man-
ner. Equation (11), which shows the objective function of the DMP, considers the product
of the fare and the number of reserved seats as the total profit and maximizes it. In addition,
inequality (12) is a capacity constraint to ensure that the total number of reserved seats is
less than or equal to the number of airplane seats. Inequality (13) indicates that the demand
is constrained and that the number of reserved seats is less than or equal to the expected
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value of demand.

(DMP)

max

∑
ODF

fODFxODF (11)

s.t.

∑
ODF∈Sl

xODF ≤Cl,∀l ∈ N, , (12)

xODF ≤ EDODF ,∀ODF ∈ Sl (13)

xODF ≥ 0,xODF ∈ Z,∀ODF ∈ Sl (14)

However, these two models maximize profits at the time of booking and overlook cancel-
lations subsequent to booking. Therefore, the disadvantage of these models is that they are 
ineffective in conditions of uncertainty in the number of future reservations.

4 Stochastic Programming Problem
Mathematical programming has been applied to many problems in various fields. However, 
for many actual problems, the data contain uncertainty and are thus represented as ran-
dom variables because they represent information about the future. Decision-making under 
conditions of uncertainty involves potential risk. Stochastic programming deals with opti-
mization under uncertainty. A stochastic programming problem with recourse is referred 
to as a twostage stochastic problem. In the first stage, a decision has to be made without 
complete information on random factors. After the value of random variables are known, 
recourse action can be taken in the second stage. We form the basic two-stage stochastic 
linear programming problem with recourse (SPR) as follows.

(SPR)

min

c⊤x+Q(x)

s.t.

Ax = b,x ≥ 0

Q(x) = Eξ̃ [Q(x, ξ̃ )]

Q(x,ξ ) = min{q(ξ )⊤y(ξ ) |Wy(ξ ) = h(ξ )−T (ξ )x,y(ξ )≥ 0},ξ ∈ Ξ

In the formulation of (SPR), c is a known n1-vector, b a known m1-vector, q(> 0) a known
n2-vector, and A and W are known matrices of size m1 × n1 and m2 × n2, respectively.
The first stage decisions are represented by the n1-vector x. We assume the m2-random
vector ξ̃ is defined on a known probablity space. Let Ξ be the support of ξ̃ . Given a first
stage decisions x, the realization of random vectors ξ of ξ̃ is observed. The second stage
data ξ become known. Then, the second stage decision y(ξ ) must be taken to satisfy the
constraints Wy(ξ ) ≥ ξ − T x and y(ξ ) ≥ 0. The second stage decision y(ξ ) is assumed
to cause a penalty of q. The objective function contains a deterministic term c⊤x and the
expectation of the second stage objective. The symbol Eξ̃ represents the mathematical

expectation with respect to ξ̃ , and the function Q(x,ξ ) is referred to as the recourse function
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in stage ξ . The value of the recourse function is given by solving a second stage linear 
programming problem. (Shiina[8])

5 Formulation of the New Model

Based on a study of the aforementioned models, we introduce factors such as lost oppor-
tunities and vacant seat loss at the time of reservation, cancellation loss before boarding, 
and boarding refusal loss, and we propose a stochastic programming model (Madansky[7], 
Möller, Römisch, Weber[9], Heitsch, Römisch[10], Higle, Sen[11], Chen, Homem-de-
Mello[12]) that considers these. The objective function of this model can be calculated 
by minimizing losses from the product of the fares and the number of reserved seats, as 
well as optimizing the number of reserved seats to maximize the expected value of the total 
revenue of the airline, including overbooking in anticipation of cancellation.

Sets
OD set of itineraries (departure point arrival points)
F set of classes (fares)
L set of flight legs
Parameter
Cl j number of airplane seats on flight leg l, class j
fi j fares in itinerary i, class j
pi j loss on cancellation in itinerary i, class j(fare-cancellation fee)
qi j compensation for boarding denials in itinerary i, class j
Random variable
ξ̃i j demand at the time of booking accordingto a normal distribution

in the itinerary i, class j. Let Ξi j be the set of realization of values ξi j

ζ̃i j Number of cancellations after booking according to Poisson distribution
in itinerary i, class j. Let Zi j be the set of realization of values ζi j

Variable
xi j number of reserved seats in itinerary i, class j
y+i j(ξi j) number of insufficient seats at the time of booking in itinerary i, class j
y−i j(ξi j) number of surplus seats at the time of booking in itinerary i, class j
wi j(ξi j,ζi j) number of boarding refusals in itinerary i, class j
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Formulation

max

∑
i∈OD(l)

∑
j∈F

fi jxi j −Eξ̃ [ ∑
i∈OD(l)

∑
j∈F

fi jy+i j(ξ̃i j)]−Eξ̃ [ ∑
i∈OD(l)

∑
j∈F

fi jy−i j(ξ̃i j)]

−Eζ̃ [ ∑
i∈OD(l)

∑
j∈F

pi jζ̃i j]−Eξ̃ Eζ̃ [ ∑
i∈OD(l)

∑
j∈F

qi jwi j(ξ̃i j, ζ̃i j)] (15)

s.t.

xi j + y+i j(ξi j)− y−i j(ξi j) = ξi j,∀i ∈ OD,∀ j ∈ F,ξi j ∈ Ξi j (16)

∑
i∈OD(l)

(xi j − y−i j(ξi j)−ζi j)≤Cl j + ∑
i∈OD(l)

wi j(ξi j,ζi j)

∀l ∈ L,ξi j ∈ Ξi j,ζi j ∈ Zi j (17)

xi j ≥ 0,xi j ∈ Z,∀i ∈ OD,∀ j ∈ F (18)

y+i j(ξi j),y−i j(ξi j)≥ 0,y+i j(ξi j),y−i j(ξi j) ∈ Z,∀i ∈ OD,∀ j ∈ F,ξi j ∈ Ξi j (19)

wi j(ξi j,ζi j)≥ 0,wi, j(ξi j,ζi j) ∈ Z,∀i ∈ OD,∀ j ∈ F,ξi j ∈ Ξi j,ζi j ∈ Zi j (20)

Equation (15) is the objective function of the proposed model. We consider the revenue
from the number of reserved seats minus the opportunity, vacant seat, cancellation, and
boarding refusal losses presented in equation (15) as the total revenue and maximize it.
Equation (16) is the constraint of the demand in each itinerary and indicates that the sum
of the number of reserved seats and the number of insufficient seats minus the number of
surplus seats is equal to the demand. In addition, the number of surplus seats and the number
of cancellations subtracted from the number of reserved seats in inequality (17) represents
the number of passengers at the time of boarding. Inequality (17) is a capacity constraint
in each flight leg and indicates that the number of passengers at the time of boarding is less
than the combined sum of the airplane capacity and number of boarding refusals.
Setting random variables

We assume that the demand ξ̃i j follows a normal distribution N(µi j,σ2
j ) and is repre-

sented by the following probability density function:

f (ξi j) =
1√

2πσ 2
j

exp[−
(ξi j −µi j)

2

2σ2
j

]

The expected value of this probability density function is given by E(ξi j) = µi j. The
number of cancellations ζ̃i j follows the Poisson distribution Po(λi j) and is represented by
the following probability:

P(ζi j) =
eλi j λ ζi j

i j

ζi j!

λi j = c jxi j

The symbol c j represents the probability of cancellation per customer. The expected
value of the distribution function is given by E(ζi j) = λi j. For the probability distribution
used in this study, the upper and lower limits (a ≤ x ≤ b) were set, and the truncated dis-
tribution expressed by the equations below were applied. Function g(x) and function F(x)
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indicate the density and cumulative distribution functions of the random variables, respec-
tively.
Density function:

g(x)
F(b)−F(a)

Cumulative distribution function:∫ x
a g(t)dt

F(b)−F(a)
=

F(x)−F(a)
F(b)−F(a)

Expected value: ∫ b
a xg(x)dx

Variable
x′i j number of reserved seats in itinerary i, class j.
y
′+
i j (ξi j) number of insufficient seats at the time of booking in itinerary i, class j.

y
′−
i j (ξi j) number of surplus seats at the time of booking in itinerary i, class j.

Considering the formulas based on Littlewood’s formula (1),

F(x′i1) = 1− fi2

fi1
(21)

and

F(x′i1) = Φ(
x′i1 −µi1

σ
), (22)

we obtain

1− fi2

fi1
= F(x′i1) = Φ(

x′i1 −µi1

σ
).

Furthermore, using zi (which is defined as a value such that
Φ(zi) = (1− fi2

fi1
)), we determine the decision variables as follows:

x′i1 = µi1 + ziσ

x′i2 = µi1 +µi2 − x′i1

y
′+
i j (ξi j) = max(0,µi j − x′i j)

y
′−
i j (ξi j) = max(0,x′i j −µi j)
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6 Numerical Experiments
The following two models were compared with the proposed model that uses the stochastic 
programming problem:

6.1 Littlewood Model Considering Cancellation

The optimal number of reserved seats was calculated using the Littlewood’s concept[3] of 
optimal protection level. The original Littlewood model can be extended by introducing 
cancellations.
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We substitute these into the formula for the objective function to obtain the maximum
profit.

∑
i∈OD(l)

∑
j∈F

fi jx′i j − ∑
i∈OD(l)

∑
j∈F

fi jy
′+
i j (ξ̄i j)− ∑

i∈OD(l)
∑
j∈F

fi jy
′−
i j (ξ̄i j)− ∑

i∈OD(l)
∑
j∈F

pi jζi j (23)

6.2 Deterministic Model

In the deterministic model, the profit is maximized by the optimum number of reserved 
seats xd obtained using the expected value of the normal distribution for the demand and 
the expected value of the Poisson distribution for the number of cancellations without con-
sidering the fluctuation.

Equation (15) is an objective function of the original problem. We consider the revenue 
from the number of reserved seats minus the opportunity, vacant seat, cancellation, and 
boarding refusal losses presented in equation (24) as the total revenue and maximize it. 
Equality (25) is the constraint of the demand in each itinerary and indicates that the sum 
of the number of reserved seats and the number of insufficient seats minus the number of 
surplus seats is equal to the demand. In addition, the number of surplus seats and the number 
of cancellations subtracted from the number of reserved seats in inequality (26) represents 
the number of customers at the time of boarding. Inequality (26) is a capacity constraint 
in each flight leg and indicates that the number of customers at the time of boarding is less 
than the sum of the airplane capacity and the number of boarding refusals.

Parameters
xd

i j number of reserved seats at the time of booking in itinerary i, class j
yd+

i j (ξi j) number of insufficient seats at the time of booking in itinerary i, class j
yd−

i j (ξi j) number of surplus seats at the time ofbooking in itinerary i, class j

Formulation

max ∑
i∈OD(l)

∑
j∈F

fi jxd
i j − ∑

i∈OD(l)
∑
j∈F

fi jyd+
i j − ∑

i∈OD(l)
∑
j∈F

fi jyd−
i j

− ∑
i∈OD(l)

∑
j∈F

pi jE(ζi j)− ∑
i∈OD(l)

∑
j∈F

qi jwd
i j (24)

s.t.

xd
i j + yd+

i j − yd−
i j = E(ξi j), ∀i ∈ OD,∀ j ∈ F,ξi j ∈ Ξi j (25)

∑
i∈OD(l)

(xd
i j − yd−

i j −E(ζi j))≤Cl j + ∑
i∈OD(l)

wd
i j,∀l ∈ L,ξi j ∈ Ξi j,ζi j ∈ Zi j (26)

xd
i j ≥ 0,xd

i j ∈ Z,∀i ∈ OD,∀ j ∈ F (27)

yd+
i j ,yd−

i j ≥ 0,yd+
i j ,yd−

i j ∈ Z,∀i ∈ OD,∀ j ∈ F,ξi j ∈ Ξi j (28)

wd
i j ≥ 0,wd

i j ∈ Z,∀i ∈ OD,∀ j ∈ F,ξi j ∈ Ξi j,ζi j ∈ Zi j. (29)

6.3 Data Setting

In this study, the network shown in figure (3) was used. We set seven itineraries by connect-
ing four flight legs and connecting five airports, A, B, C, D, and H. Each itinerary includes
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A

CH

B

D

Figure 3: Exampl of network

one or two flight legs. To travel from airports A, B, and C to airport D, there is no direct
flight; therefore, it is necessary to go through airport H. We limited our study to two classes
of flights. The number of seats in each flight leg is listed in table 1. In addition, the expected
value of the fare and demand for each itinerary are listed in table 2. The cancellation loss

Table 1: Number of seats on each flight leg
Leg Leg Number of seats

number Class1 Class2
1 A-H 20 145
2 B-H 15 80
3 C-H 20 145
4 H-D 94 263

Table 2: Fare and expected value of the demand on each flight leg
OD OD Fare (yen) Expected value

Number Class1 Class2 Class1 Class2
1 A-H 18590 12790 18 131
2 B-H 16590 12490 14 72
3 C-H 20190 14690 18 131
4 H-D 38310 9510 72 385
5 A-H-D 50200 19900 2 15
6 B-H-D 31360 19600 2 8
7 C-H-D 49900 20000 2 15

and boarding refusal fee can be set as shown below. In addition, the fluctuation of demand
the cancellation probability of each class are shown in the table 3. Loss of cancellation fee
・Class 1： (fare - 440yen)× 0.6
・Class 2： (fare50%)× 0.8
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Loss of boarding refusal fee
・fare＋ 10,000yen

Table 3: Fluctuations in demand and cancellation probability for each class
class σ2

j c j(%)

1 5 15
2 30 5

7 Result and Discussion

Table 4 lists the total profits of the three models; apparently the total profits obtained by the 
stochastic programming model are the maximum. Table 5 shows the number of seats of each 
ODF, as determined by each model. In the Littlewood model, the number of reserved seats 
is determined only by the difference in the fare between Class 1 and Class 2; therefore, it 
presents the disadvantage of securing an excessive number of Class 1 seats with high fares, 
resulting in a large loss of opportunities, vacant seat losses, and losses on cancellation.

Table 6 shows the revenue for each itinerary for each model. In OD four of Littlewood’s 
model resulted in a loss of 959 × 103yen. If the fare difference between the two classes is 
large and the demand for itineraries is high, the profit may be negative.A negative profit on 
just one itinerary is considered to be very ineffective when the network is further expanded.

The stochastic model reserves seats effectively using the demands shown in table 7, 
which are determined considering fluctuations. Depending on the itinerary, more seats than 
what is available on the airplane are sold; however, it is possible to minimize total loss.

In addition, the number of cancellations differs depending on whether fluctuations are 
considered; therefore, it is apparent that the stochastic programming model is considerably 
more realistic compared with the deterministic model.

Finally, boarding refusals did not occur on any of the three models. The reason is that 
the loss to the total profit is large. Boarding refusals the realiability reliability of the airline 
and tends to be avoided as much as possible. Furthremore, the amount of compensation for 
boarding refusals varies, depending on the circumstance. Consequently, if the compensation 
is relatively low and it is possible to guide to the next flight, boarding refusal may occur.

Table 4: Total revenue for each model
Model Total revenue(yen)

Littlewood 423,270
Deterministic 11,391,600

Stochastic 11,758,300

8 Summary and Future Plans

In this study, we proved that it is possible to maximize the expected value of total rev-
enue by securing seats and using an optimization model based on a stochastic programming 
model. Furthermore, we compared the results obtained using the Littlewood model (which
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Table 5: Number of reserved seats for each model
OD Littlewood Deterministic Stochastic
No. Class1 Class2 Class1 Class2 Class1 Class2
1 65 84 18 131 17 145
2 48 38 14 72 12 59
3 68 81 18 131 17 145
4 398 0 89 227 114 289
5 8 8 2 14 1 6
6 1 8 1 8 1 3
7 8 8 2 14 1 6

Table 6: Profit for each model(103 yen)
OD Littlewood Deterministic Stochastic
No. Class1 Class2 Class1 Class2 Class1 Class2
1 248 405 305 1,642 3,302 1,809
2 115 2 212 881 185 679
3 22 241 331 1,886 282 2,005
4 1,200 -2,159 2,106 2,116 3,542 2,548
5 74 31 91 273 50 119
6 31 145 29 154 0 59
7 46 24 91 274 50 120

Table 7: Demand for stochastic programming model
OD Demand

number class1 class2
1 17 145
2 12 59
3 17 145
4 114 289
5 1 6
6 0 3
7 1 6

allocates seats based on the Littlewood formula) and the deterministic model (which does
not consider fluctuations). The Littlewood model presents the disadvantage that the fare
difference between the two classes strongly affects the number of seats reserved. There-
fore, airlines will reserve an excessive number of high-priced class seats and increase lost
opportunities and vacant seat losses. The stochastic programming model proposed in this
study is a practical model that enables realistic predictions by examining multiple scenar-
ios, unlike the deterministic model that does not consider fluctuations and examines only
one scenario.

In the future, sales methods are expected to increase various aspects; moreover, it is
expected that additional classes of airline tickets will be intoruduced. In addition, it is now
possible to easily book airline tickets using the internet; hence, it is necessary to design a
revenue management method capable of responding flexibly.

Future research areas include application to networks that consider larger itineraries,
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examination of scenarios other than the those considered in this study, namely cancella-
tion and boarding refusal losses, and the application of considerably realistic introduction
methods.
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