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Abstract

The vehicle routing problem (VRP) determines a delivery route that minimizes the delivery
cost. In this study, we consider the stochastic VRP with uncertainty and consider the vari-
ation in customer demand, which may cause a shortage of products during delivery. In this
case, delivery vehicles have to return to the depot and replenish the products. We consider a
model that minimizes the sum of the additional cost caused by the shortage and the normal
delivery cost. In previous studies, the decomposition method using the L-shaped method
was used. In this study, we improve the decomposition method to make it more efficient.
In addition, we have improved the direct method of calculating the additional cost without
the decomposition method by considering subtour elimination constraints. We have shown
that the direct method is superior in terms of time-saving.

Keywords: vehicle routing problem, VRP, subtour elimination constraint, stochastic pro-
gramming, stochastic demand

1 Introduction

In recent years, the demand for logistics and home delivery has been increasing, and solving
the vehicle routing problem (VRP) (Toth and Vigo [1]) has become important. The VRP
determines a delivery route that minimizes the delivery cost. In this study, we investigate
the stochastic VRP with uncertainty and consider the variation in customer demand, which
may cause a shortage of products during delivery. In this case, the delivery vehicles have
to return to the depot and replenish the products. We consider a model that minimizes the
sum of the additional cost caused by the shortage and the normal delivery cost.

In previous studies, the decomposition method using the L-shaped method was used.
In this study, we improve the decomposition method to make it more efficient. Moreover,
we improved the direct method of calculating the additional cost without using the decom-
position method (Omori et al. [2]) based on subtour elimination constraints. We show that
the direct method is superior in terms of time-saving. It is also shown new and previously
unobtainable insights pertaining to subtour elimination constraints.
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2 Previous Studies

Laporte et al. [3] deal with a model that considers fluctuations in demand in a VRP with
limited vehicle capacity. The additional cost is calculated by adding up the cost incurred
whenever the cumulative delivery demand exceeds the vehicle capacity. Therefore, this
model approximates the additional cost and does not minimize it. The optimality cut used
in thier L-shaped algorithm was to eliminate a current non-optimal solution.

Omori et al. [2] formulated the model that customer demand fluctuates and a shortage
occurs during delivery as a problem of minimizing the sum of the cost of delivery and
the additional delivery cost caused by returning to the depot, based on the train operation
planning of Giacco et al. [4]. Moreover, they showed that directly calculating the additional
cost without the integer L-shaped decomposition method is superior in terms of time-saving.

Laporte et al. [5] formulated the algorithm for three time-varying VRP models and in-
troduced a optimality cut in the L-shaped algorithm that includes the expected value of the
objective function of the subproblem obtained at each iteration. In this paper, the optimal-
ity cut calculating the expectation of the two-stage problem is used and the cost can be
accurately approximated.

Roberti and Toth [6] focused on the subtour elimination constraints in the asymmetric
traveling salesman problem (ATSP) and introduced the flow formulation (ff) constraint and
the Miller-Tucker-Zemlin (MTZ) constraint, which are polynomial-order subtour elimina-
tion constraints.

3 Stochastic Programming

3.1 Stochastic Programming

Stochastic programming deals with optimization under uncertainty. A stochastic program-
ming with recorse is referred to as a two-stage stochastic programming. The basic two-stage
stochastic linear programming with recourse (SPR) is formulated as follows.

(SPR):min Eξ̃ [c
T x+Q(x, ξ̃ )], (1)

s.t. Ax = b, (2)

x ≥ 0, (3)

Q(x,ξ ) = min{qT y(ξ )|Wy(ξ ) = h(ξ )−T (ξ )x,
y(ξ )≥ 0}, ξ ∈ Ξ, (4)

The first stage decisions are represented by x. We asuume the random vector ξ̃ is defined
on a probability space. Let Ξ be the support of ξ̃ . ξ is defined as the realization of random
vector ξ̃ .

Given a first stage decision x, the realization of random vector ξ of ξ̃ is observed. The
second stage data ξ become known. Then, the second stage decision y(ξ ) must be taken
so as to satisfy the constraints Wy(ξ ) ≥ ξ −T x and y(ξ ) ≥ 0. The second stage decision
y(ξ ) is assumed to cause a penalty of q. The objective function contains a deterministic
term c⊤x and the expectation of the second stage objective. The symbol Eξ̃ represents the

mathematical expectation with respect to ξ̃ , and the function Q(x,ξ ) is called the recourse
function in state ξ . The value of the recourse function is given by solving a second stage
linear programming problem.
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3.2 L-shaped Method

It is assumed the random vector ξ̃ has a discrete distribution with finite support Ξ =
{ξ 1, ...,ξ K} with Prob(ξ̃ = ξ k) = pk(k = 1, ...,K). A paticular realization ξ of the ran-
dom vector ξ̃ is called a scenario. The deterministic equivalent problem (DEP) for (SRP)
is formulated as follows.

(DEP):min cT x+Q(x), (5)

s.t. Ax = b, (6)

x ≥ 0, (7)

Q(x) =
K

∑
k=1

pkQ(x,ξ k), (8)

Q(x,ξ k) = min{qT y(ξ k)|Wy(ξ k) = h(ξ k)−T (ξ k)x,

y(ξ k)≥ 0}, k = 1, ...,K, (9)

To solve (DEP), an L-shaped method based on Benders decomposition has been used. In
the L-shaped method, we solve the following (Master) problem. θ is defined as the upper
bound for the expected recorse function such that θ ≥ ∑K

k=1 pkQ(x,ξ k). Let (x∗,θ ∗) be the
optimal solution of the (Master) problem. If the second stage problem is infeasible, the
feasible cut is added to the (Master) problem. If the second stage problem is feasible and
θ ∗ < pkQ(x∗,ξ k), the optimality cut is added to the (Master) problem.

(Master):min cT x+θ , (10)

s.t. Ax = b, (11)

x ≥ 0, (12)

θ ≥ 0, (13)

4 Model

4.1 Problem Description

A depot, customers, and delivery routes are represented in a directed graph, G = (V,A). We
denote multiple arcs from node i to j, which represent customers or depots, as (i, j,z),z ∈ Z.
After a delivery vehicle leaves the depot, it visits each customer once and returns to the
depot, satisfying the demand of customers. However, as the customer demand stochastically
fluctuates, a shortage may occur during delivery. When this shortage happens, the vehicle
has to return to the depot and replenish the products. We minimize the sum of the additional
cost for this shortage and the normal delivery cost. To calculate the additional cost, we
define multiple arcs connecting the depot to customers and customers to other customers.
There are two types of multiple arcs: those that go through the depot and those that do not
go through the depot. The former arcs denote delivery vehicles that return to the depot and
replenish products.
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4.2 Notations

Variable
xi j 0-1 variable indicating whether the vehicle moves from customer i to

customer j
ws

i jz 0-1 variable indicating whether the vehicle moves from customer i to
customer j through arc z in scenario s. (When z = 1, the vehicle does
not go through the depot. When z = 2, it goes through the depot, as
shown in Figure 1.)

gs
i jz In scenario s, when the vehicle passes through edge (i, j,z), the total

volume of deliveries made to customer i after the last departure of the
depot.

Set
V The set of depot and all customers {0,1, ...,n}, where 0 represents a

depot
V0 The set of all customers{1, ...,n}
A The set of all arcs connecting the depot to the customer and the customer

to the depot
Az The set of arcs z connecting the depot to the customer and the customer

to the depot (When z = 1, the vehicle goes through the depo. When
z = 2, it goes through the depot, A = A1 ∪A2).

Parameter
ci jz The travel cost (ci jz = c jiz) when passing through the arc z from cus-

tomer i to customer j.
ds

j The stochastic demand for customer j in scenario s
ps The probability of scenario s (∑s∈Ξ ps = 1)
Q The capacity of the vehicle
C The lower bound of vehicle’s inventory

Figure 1: variable ws
i jz
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4.3 Formulation

min ∑
(i, j)∈A1

ci j1xi j + ∑
s∈Ξ

ps ∑
(i, j,z)∈A

(ci j2 − ci j1)ws
i j2, (14)

s.t. ∑
i∈V\{ j}

xi j = 1, ∀ j ∈V , (15)

∑
k∈V\{ j}

x jk = 1, ∀ j ∈V , (16)

xi j + x ji ≤ 1, ∀i ∈V ,∀ j ∈V\{i}, (17)

∑
i∈S

∑
j/∈S

(xi j + x ji)≥ 2, ∀S ⊂V, |S| ≥ 3, (18)

xi j ∈ {0,1}, ∀(i, j) ∈ A1, (19)

∑
k∈V\{ j}

∑
z:( j,k,z)∈A

gs
jkz = ds

j + ∑
i∈V0\{ j}

gs
i j1,

∀s ∈ Ξ,∀ j ∈V0, (20)

gs
i j1 ≤ (Q−C)ws

i j1, ∀s ∈ Ξ,∀(i, j) ∈ A1, (21)

gs
i j2 ≤ Qws

i j2, ∀s ∈ Ξ,∀(i, j) ∈ A2, (22)

ws
i j1 +ws

i j2 = xi j, ∀s ∈ Ξ,∀(i, j,z) ∈ A, (23)

ws
i jz ∈ {0,1}, ∀s ∈ Ξ,∀(i, j,z) ∈ A. (24)

The first term in objective function (14) defines the normal delivery cost, the second term
is the expected value of the additional cost owing to the shortage of products, and the sum
of these two terms is minimized. Equations (15) and (16) are constraints that visit each
customer once, (17) is a constraint that eliminates subtour between two points, (18) is a
constraint that eliminates subtour among three or more points, (20)-(23) are constraints
in the total delivery volume, and (19) and (24) are binary conditions with respect to the
variables.

4.4 Total Delivery Volume Constraints

As shown in Figure2, Left side of equation (20) indicates the total delivery volume up to
customer j after the vehicle leaves the depot. The first term of right side indicates the
demand for customer j. The second term of right side indicates the total delivery volume
up to customer i when the vehicle does not go through the depot.

When the vehicle does not go through the depot, if the total delivery volume up to
customer i is G (as shown in Figure3), then gs

i j1 = G and gs
i j2 = 0. Therefore, the total

delivery volume up to customer j is ds
j +G. When the vehicle goes through the depot,

gs
i j1 = 0 and gs

i j2 = G. Therefore, the total delivery volume up to customer j is ds
j.

Inequalities (21) and (22) are constraints on the upper bound of gs
i j1 and gs

i j2. Inequality
(21) indicates that when the vehicle moves from i to j, the total delivery volume up to i must
be less than or equal to (Q−C). Inequality (22) indicates that the total delivery volume up
to i must be less than or equal to Q.
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Figure 2: Clarification of Equation (20)

Figure 3: Calculation of Total Delivery Volume

5 Decomposition Method

5.1 Problem Description

In this section, the model formulated by Omori et al. [2] is solved as two-stage stochas-
tic programming using the integer L-shape method. First, the master problem is solved,
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and then, the feasible solution is obtained by solving subproblems based on the obtained
solution. Compared with the conventional decomposition method, the optimality cut is
modified to include qr (as described below) based on the method proposed by Laporte et
al. [5]. Moreover, we improved the algorithms of Omori et al. [2] and Laporte et al. [5].

5.2 Notations

Variable
θ The upper bound of the additional cost caused by the shortage
θ s The upper bound of the additional cost caused by the shortage in sce-

nario s
Set

Sr The set of (i, j) such that xi j = 1 in the r-th feasible solution.
Parameter

qr The expectation of the r-th two-stage problem
N The number of feasibility cuts

5.3 Formulation

Master Problem

min ∑
(i, j)∈A1

ci j1xi j +θ , (25)

s.t. ∑
i∈V\{ j}

xi j = 1, ∀ j ∈V , (26)

∑
k∈V\{ j}

x jk = 1, ∀ j ∈V , (27)

xi j + x ji ≤ 1, ∀i ∈V ,∀ j ∈V\{i}, (28)

∑
i∈S

∑
j/∈S

(xi j + x ji)≥ 2, ∀S ⊂V, |S| ≥ 3, (29)

θ ≥ qr

(
∑

(i, j)∈Sr

xi j −n

)
, ∀r = 1,2, ...,N (30)

xi j ∈ {0,1}, ∀(i, j) ∈ A1. (31)

Subproblem

min θ s = ∑
(i, j,z)∈A

(ci j2 − ci j1)ws
i j2, (32)

∑
k∈V\{ j}

∑
z:(i, j,z)∈A

gs
jkz = ds

j + ∑
i∈V0\{ j}

gs
i j1,

∀s ∈ Ξ,∀ j ∈V0, (33)

gs
i j1 ≤ (Q−C)ws

i j1, ∀s ∈ Ξ,∀(i, j) ∈ A1, (34)

gs
i j2 ≤ Qws

i j2, ∀s ∈ Ξ,∀(i, j) ∈ A2, (35)

ws
i j1 +ws

i j2 = xi j, ∀s ∈ Ξ,∀(i, j,z) ∈ A, (36)

ws
i jz ∈ {0,1}, ∀s ∈ Ξ,∀(i, j,z) ∈ A. (37)
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(30) defines the newly introduced optimality cut. When xi j is the same as the rth feasible
solution, the value of ∑(i, j)∈Sr xi j is n+ 1, and the right-hand side is qr. Thus, for the r-
th feasible solution, (30) provides a lower bound, qr, for θ of the additional cost. The
algorithm of the L-shaped method considering the integer constraint is shown below. The
algorithm is based on Omori et al. [2], Laporte et al. [3], Laporte et al. [5], and Laporte et
al. [7].
.

Step 0 Set the number of iterations ν := 0 and the cost of the best-known
solution z̄ := ∞.
Step 1 Set ν := ν +1 and solve the relaxation problem except for (18). Let
(xν ,θ ν ) be the optimal solution of master problem.
Step 2. Check whether the obtained optimal solution satisfies (18), and if
not, add a cut and return to Step 1. Otherwise, if cxν +θ ν ≥ z̄, then z̄ is the
optimal value, and the algorithm terminates. Otherwise, go to Step 3.
Step 3. Solve the subproblem for each scenario, Q(xν) := ∑s∈Ξ psθ s, zν :=
∑(i, j)∈A1 ci j1xi j +Q(xν). If zν ≤ z̄, then z̄ := zν .
Step 4. If θ ν < Q(xν), set r := r+1, and add an optimality cut to the master
problem. Otherwise, z̄ is the optimal value, and the algorithm terminates.
Step 5 Let (xν ′,θ ν ′) be the optimal solution obtained by solving the master
problem in opposite order. Replace (xν ,θ ν ) with (xν ′,θ ν ′) and perform steps
3 and 4 again. After adding the optimality cuts to the master problem, return
to Step 1.

Figure 4: Proposed algorithm

The conventional L-shaped method has been improved; i.e., two feasible solutions are
obtained for each solution of the master problem. As symmetry is assumed for the delivery
cost between each customer, the costs of normal delivery for one delivery route and the
reverse order will be the same. However, the additional costs may be different. Therefore,
whenever we solve the master problem, subproblems based on the obtained solution and
the solution that follows the opposite order need to be solved. Therefore, two additional
optimality cuts are obtained. Based on this algorithm, the number of times the master
problem is solved can be approximately halved, thus expediting calculation.

6 Subtour Elimination Constraint

6.1 Constraints Based on Cuts

Inequality (38), which is a subtour elimination constraint, is usually used. As this is a con-
straint on all the subsets of two or more points, it requires 2n+1 − (n+ 1)− 2 constraint
formulas. If we add all of them for a problem with large n, the number of constraint for-
mulas will be huge. Therefore, we solve the problem without enumerating the subtour
elimination constraints and determine whether the obtained solution satisfies the subtour
elimination constraints; if not, we add a cut and solve the problem again. This reduces the
computation time.

∑
i̸∈S

∑
j∈S

(xi j + x ji)≥ 2, ∀S ⊂V, |S| ≥ 2 (38)
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Figure 5: One route and the opposite route

6.2 ff Constraint

The ff constraint (Gavish and Graves [8]) considers a problem that starts at a depot, collects
one object from each point, and brings n objects back to the depot. These constraints play
the role of subtour elimination constraints because if a subtour exists, it is not possible to
bring n objects back to the depot. The constraints are defined in (39)-(42). yi j is the number
of objects possessed by the vehicle while moving from customer i to customer j (it is 0
when there is no movement from customer i to customer j).

yi j ≤ nxi j, ∀(i, j) ∈ A1 (39)

∑
k∈V\{ j}

y jk − ∑
i∈V\{ j}

yi j = 1, ∀ j ∈V0 (40)

∑
k∈V0

y0k − ∑
i∈V0

yi0 =−n, (41)

n

∑
j=1

y0 j = 0, (42)

Inequality (39) is the constraint on the upper bound of yi j, and (40) is the constraint that the
difference between the number of objects in possession after and before visiting a customer
is 1 for all the customers. (41) is the constraint that the difference between the number of
objects leaving the depot and returning to the depot is −n. (42) is the constraint that the
number of goods when leaving the depot is zero. The number of constraint (39) and (40)
are n(n+1) and n, respectively. Therefore, the total number of constraints is n2 +2n+2.

6.3 MTZ Constraints

The MTZ constraint (Miller et al. [9]) defines a weight, ui(∈ R), of each customer except
for the depot. Inequality (43) is the MTZ constraint.

ui −u j +(n+1)xi j ≤ n, ∀i, j ∈V0, (43)

When subtours exist, there is at least one subtour that does not contain a depot. If the
number of points that constitutes the subtour is k, then adding the equations in (43) for the
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branches that make up the subtour results in (n+ 1)k ≤ nk, which contradicts. Therefore,
by adding this constraint, we can eliminate the subtour. Inequality (43) includes n(n− 1)
formulas.

7 Numerical Experiments

7.1 Experimental Environment

The experimental environment is as follows.
OS: Windows10 64bit
CPU: Core i7-3770S(3.10GHz)8.00GB
Modeling language: AMPL
Solver: CPLEX12.10.0.0.

7.2 Experimental Data

Customers are assumed based on a 2-dimensional space [0,100]2, and the coordinates of
the depot are (50,50). The coordinates of the customer are randomly determined using
uniform distribution. The delivery cost between the depot and the customer and between
the customers is proportional to the distance between the two points.

ci j1 =
√
|xi − x j|2 + |yi − y j|2,

ci j2 =
√

|xi − x0|2 + |yi − y0|2 +
√

|x j − x0|2 + |y j − y0|2.

The vehicle capacity Q and the lower bound of the vehicle inventory C are fixed at the
following values:

Q = 500,

C = 0.

We define α as the ratio of the expected value of total demand to vehicle capacity. When
the expected value of demand for all the customers is d̄, α is represented by the equation
defined below. By changing the value of α , we can change the value of customer demand.

α =
nd̄
Q
.

The value of the demand independent of the scenario and the customer is given by the
following equation

ds
j = round

(
Uniform

(
1
2

d̄,
3
2

d̄
))

, ∀s ∈ Ξ,∀ j ∈V0.

7.3 Comparison Among Decomposition Methods

We compare the computational efficiency of the conventional decomposition method pro-
posed by Omori et al. [2](Table 1), our decomposition method (Table 2), and the direct solu-
tion method without decomposition (Table 3). In the three methods, the subtour elimination
constraints between two points (17) are included in advance, while the subtour elimination
constraints between three or more points (18) are excluded from the relaxation problem,
and cuts are added when the constraints are violated. ”SEC cuts” in Tables 1 and 2 indicate
the number of cuts for subtour elimination constraints. ”Master” in the table indicates the
number of times the master problem is solved.
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Table 1: conventional decomposition method

α customer scenario
SEC optimality

Master
time

cuts cuts (seconds)
1 10 3 5 24 27 3
1 10 5 7 38 42 8
1 10 7 5 6 9 1
1 20 3 27 976 989 937
1 20 5 23 690 701 558
1 20 7 23 570 581 460
1 30 3 46 770 790 979
1 30 5 30 86 98 47
1 30 7 30 1004 1014 1251

Table 2: proposed decomposition method

α customer scenario
SEC optimality

Master
time

cuts cuts (seconds)
1 10 3 5 24 15 3
1 10 5 7 38 23 7
1 10 7 5 6 6 1
1 20 3 27 978 502 533
1 20 5 23 692 357 337
1 20 7 23 570 296 293
1 30 3 46 770 405 542
1 30 5 30 86 55 35
1 30 7 30 1004 512 842
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Table 3: direct solution method

α customer scenario
SEC

Master
time

cuts (seconds)
1 10 3 0 1 1
1 10 5 0 1 1
1 10 7 0 1 1
1 20 3 0 1 4
1 20 5 0 1 12
1 20 7 0 1 17
1 30 3 0 1 32
1 30 5 0 1 48
1 30 7 0 1 37

As listed in Tables 1, 2, and 3, the proposed decomposition method is faster than the
conventional decomposition method and slower than the direct decomposition method. This
is because constraint (20) acts like a subtour elimination constraint. Both decomposition
methods generate several cuts of the subtour elimination constraint to solve the problem, but
the direct solving method does not generate any cuts of the subtour elimination constraint.
Therefore, the direct method is faster in terms of computation time.
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7.4 Comparison Among Subtour Elimination Constraints

We compare the computational efficiency of the normal subtour elimination, ff constraints, 
and MTZ constraints. For the conventional subtour elimination constraint, the subtour 
elimination constraints between two points (17) are included in advance, and the subtour 
elimination constraints between three or more points (18) are excluded from the relaxation 
problem; cuts are added when the constraints are violated, as shown in the experiment of 
the comparison among decomposition methods. SEC cuts indicate the number of cuts for 
subtour elimination constraints.

We obtain the result that the normal subtour elimination constraint is faster for most 
problems. This is because constraint (20) on the total delivery volume acts like a subtour 
elimination constraint.
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Table 4: Comparison Among Subtour Elimination Constraints

α customer scenario
normal SEC ff MTZ

cuts (seconds) (seconds) (seconds)
1 10 3 0 1 1 1
1 10 5 0 1 1 1
1 10 7 0 1 1 1
1 20 3 0 4 3 13
1 20 5 0 12 9 12
1 20 7 0 27 14 19
1 30 3 0 32 21 55
1 30 5 0 4 51 83
1 30 7 0 144 395 223
2 10 3 0 4 7 6
2 10 5 0 38 44 38
2 10 7 0 72 71 68
2 20 3 0 3291 500 553
2 20 5 0 3068 3881 4988
2 20 7 0 3152 7916 5258
2 30 3 2 2722 3885 10962
2 30 5 0 2643 7288 9331
2 30 7 0 5598 18382 13475

7.5 Considerations

The reason that constraint (20) based on the total delivery volume acts like a subtour elimi-
nation constraint has been explained. Let us assume that we have a subtour of 1→2→3→1
(Figure 6).

In this case, we enumerate (20) for each customer as follows:
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gs
121 +gs

122 = ds
1 +gs

311, (44)

gs
231 +gs

232 = ds
2 +gs

121, (45)

gs
311 +gs

312 = ds
3 +gs

231. (46)

If there are no arcs that return to the depot, ws
121,w

s
231,w

s
311 = 1, ws

122,w
s
232,w

s
312 = 0, and

gs
122,g

s
232,g

s
312 = 0. Substituting this into (44)-(46), we obtain the following equations.

gs
121 = ds

1 +gs
311, (47)

gs
231 = ds

2 +gs
121, (48)

gs
311 = ds

3 +gs
231. (49)

Based on ds
1,d

s
2,d

s
3 > 0, these three equations do not hold at the same time and are

contradictory. Therefore, we cannot have a subtour without arcs that return to the depot.
Conversely, consider the case where there is an arc that returns to the depot. For ex-

ample, when moving from customer 1 to customer 2, we go through the depot. Then,
ws

122,w
s
231,w

s
311 = 1, ws

121,w
s
232,w

s
312 = 0, and gs

121,g
s
232,g

s
312 = 0. Substituting this into

(44)-(46), we obtain the following equations.

gs
122 = ds

1 +gs
311, (50)

gs
231 = ds

2, (51)

gs
311 = ds

3 +gs
231. (52)

Solving these three equations, we obtain gs
231 = d2

s, gs
311 = d3

s +d2
s, and gs

122 = d1
s +d3

s + 
d2

s, which are consistent. Therefore, when there is an arc that returns to a depot, there is a 
possibility that a subtour can be formed.

Therefore, when (20) is included in the solution, there is no subtour that does not have 
an arc that returns to the depot, and (20) acts like a subtour elimination constraint. However,
(20) is not a complete subtour elimination, therefore, it is necessary to include a subtour
elimination constraint.
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8 Conclusion and Future Tasks

The proposed decomposition method can be improved compared with the conventional 
decomposition method, but the direct method is even faster in computation time. As for 
the subtour elimination constraints in the direct method, the normal subtour elimination 
constraints are often faster than the ff and MTZ constraints. Constraint (20) in the total 
delivery volume makes it difficult to create a subtour.

We consider a method that sequentially adds a subtour elimination constraint between 
two points as a cut. To make the model more realistic, we can enhance it, so that when a 
shortage occurs, the vehicle goes back and forth between the customer and the depot where 
the shortage has occurred.
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