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Abstract

This paper copes with rule generation from table data sets and applies the obtained rules
to decision support. Here, two types of table data sets are considered. One type of them
is specified as a Deterministic Information System (DIS). The other type is specified as
a Non-deterministic Information System (NIS) for dealing with incomplete information.
Two rule generation algorithms are refined and newly implemented in Python. Every ob-
tained rule is applied as evidence of decision-making. Therefore, the reasoning process
preserves its transparency, which will be an essential characteristic for Explainable AI. The
decision support environment is strengthened due to some described improvements and is
also brushed up in Python. Some running videos of Python are available on the web page.
This framework applies to almost any table data sets, and we can generate rules from them.
This framework based on discrete data will complement statistical data analysis based on
numerical data.
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1 Introduction

This paper discusses Apriori-based rule generation and applies the obtained rules to de-
cision support. We will report the improved situation and further examine the reasoning
functionality for decision-making by using our background. Here, we handle several types
of table data sets with the following subjects.

• Discrete values or numerical values,

• Deterministic values or non-deterministic values (incomplete information),

• Big data and heterogeneous data.

In our framework, it is possible to generate rules from the above tables in the same way.
We can uniformly handle rules from several types of table data sets. Every obtained rule
is applied as evidence of decision-making. Therefore, the reasoning process preserves its
transparency, which will be an essential characteristic for Explainable AI [5]. We need
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a system that maintains not only ‘conclusion’ but also ‘conclusion+reasoning.’ The deci-
sion support environment is strengthened due to some described improvements and is also
brushed up in Python.

This paper consists of the following. In Section 2, the rule generation framework in
DIS is reviewed, and some parts in the DIS-Apriori algorithm [17] are developed. The
functionality of the DIS-Apriori algorithm is also improved to the FDIS-Apriori algorithm
for discretization and big data. The obtained rules are applied to decision-making with
transparency. In Section 3, the rule generation framework in NIS is reviewed. We employ
the NIS-Apriori algorithm [18] [19] and define two types of decision-making. The one
is certainty-first decision-making, and the other is possibility-first decision-making. The
functionality of two kinds of decision-making is implemented in Python. In Section 4,
DIS and NIS’s perspective is considered, and a framework of Machine Learning by Rule
Generation (MLRG) is proposed. Section 5 concludes this paper.

2 Rules and Decision Support in DISs

In this section, we clarify rules and the rule generation algorithm. Then, we enumerate the
improved functionalities and describe the decision-making method in DISs.

2.1 Rules in DISs and Rule Generation

Table 1 is a standard table. Such a table is called a Deterministic Information System (DIS)
[10] [14] [21].

Table 1: An exemplary Deterministic Information System (DIS) ψ .

Object A B C D Dec
x1 1 2 3 3 p
x2 3 3 3 2 p
x3 2 3 3 2 q
x4 2 1 1 3 q
x5 1 3 1 2 r

In Table 1, we consider implications like [A,1]⇒ [Dec, p] from x1 and [C,3]∧ [D,2]⇒
[Dec,q] from x3. If an implication τ satisfies a given constraint, we see τ is a rule from
DIS ψ . A pair of an attribute and an attribute value, like [A,1], is termed a descriptor.
The following is a standard definition of rules [1] [2] [10] [14] [21], and we newly add the
concept of redundancy to it.

Definition 1. We define the following.
(A rule from DIS)
A rule is an implication τ : ∧i[Ai,vali]⇒ [Dec,val] satisfying (1) and (2).
(1) support(τ) ≥ α and accuracy(τ) ≥ β (0 < α, β ≤ 1.0) for given threshold values α
and β .
(2) The condition part of τ is minimal.
(Rule generation from DIS)
A set RULE of all rules from DIS is fixed, if the α and β values are given. Rule generation
is to obtain this set RULE.
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To reduce the size of RULE, we handle only implications with minimal condition
part and do not handle any redundant implication satisfying (1). For example, if we de-
tect [C,3]⇒ [Dec,q] ∈ RULE, we directly decide [C,3]∧ [_,_]⇒ [Dec,q] ̸∈ RULE ([_,_]
means any descriptor). Here, an implication τ is characterized by an occurrence ratio
support(τ) (=(the occurrence number of τ)/(the number of objects)) and a consistency
ratio accuracy(τ) (=(the occurrence number of τ)/(the occurrence number of ∧i[Ai,vali])).
Furthermore, li f t(τ) is a ratio accuracy(τ)/P([Dec,val]) [11], here P([Dec,val]) is a ratio
of the decision part. The lift value is employed for imbalanced data sets [3]. For τ : [C,3]⇒
[Dec,q], τ occurs one time for 5 objects. Thus, support(τ)=1/5. The condition part [C,3]
occurs 3 times, so accuracy(τ)=1/3. The ratio P([Dec,q])=2/5, so li f t(τ)=(1/3)/(2/5)=5/6.

2.2 The DIS-Apriori Algorithm and Some Improvements

In DIS, each object is identified with a set of descriptors, for example object x1 is identified
with a set {[A,1], [B,2], [C,3], [D,3], [Dec, p]} of descriptors. If we identify a descriptor
with an item in transaction data, we may see object x1 shows one transaction. Due to this
way, we can extend the Apriori algorithm [1] [2] for transaction data to the DIS-Apriori
algorithm for DIS in Algorithm 1.

Generally, there is a decision attribute Dec in DIS. We make use of this characteristic
and introduce the next sets IMP1, IMP2, · · · , IMPn.

IMP1 = {[A,valA]⇒ [Dec,val] for decision attribute Dec and for every A,valA,val},
IMP2 = {[A,valA]∧ [B,valB]⇒ [Dec,val]},
IMP3 = {[A,valA]∧ [B,valB]∧ [C,valC]⇒ [Dec,val]},

: : : :

Here, IMP1 means a set of implications, consisting of one condition attribute. IMP2 does a
set of implications, consisting of two condition attributes. IMP3 does a set of implications,
consisting of three condition attributes, etc. IMP=∪iIMPi is a set of all implications from

Algorithm 1 The DIS-Apriori algorithm.
Input: DIS ψ , decision attribute Dec, threshold values α , β .
Output: A set Rule(ψ) of rules.

1: i← 1;
2: create CAN1={τ ∈ IMP1 |support(τ)≥ α};
3: while (|CANi| ≥ 1) do
4: Resti←{}; Rulei←{};
5: for all τi, j ∈CANi do
6: if accuracy(τi, j)≥ β then add τi, j to Rulei;
7: else add τi, j to Resti;
8: end if
9: end for

10: remove redundant implications from Rulei;
11: create CANi+1(⊂ IMPi+1) from Rest1 and Resti;
12: i← i+1;
13: end while
14: return Rule(ψ)=∪k<iRulek
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DIS, and RULE is a subset of IMP. Of course, we can simply examine the constraints (1)
and (2) in Definition 1 for each τ ∈IMP. However, the Apriori algorithm was proposed to
avoid this simple method. To reduce the size of this paper, we enumerate the properties of
the DIS-Apriori algorithm and improvements.

• The DIS-Apriori algorithm basically enumerates all candidates of rules then exam-
ines the constraint. Some propositions for line 11 in Algorithm 1 were proved in [8],
and we reduced the number of all candidates by using IMP’s characteristics. This
result also caused a reduction in the execution time.

• The DIS-Apriori algorithm is sound and complete for RULE. Namely, this algorithm
does not miss any rule in Definition 1. If we assign larger values like 0.2 or 0.3 to
α , smaller numbers of implications are stored in Resti. Therefore, the calculation
will not be time-consuming. If we assign smaller values like 0.01 or 0.001 to α ,
larger numbers of implications are stored in Resti. Therefore, the calculation will be
time-consuming. We can control rule generation by changing the value of α .

• If we change the criterion values support and accuracy, the DIS-Apriori can generate
different kinds of rules. The NIS-Apriori algorithm in the subsequent section follows
this property.

• We recently implemented the DIS-Apriori algorithm in Python. This rule generator
is much faster than the previously implemented rule generator in SQL. The DIS-
Apriori system consists of two new programs in Figure 1, the first one is a translation
program (trans.py) from DIS to one common RDF format [22], and the second one
is a rule generation program (disapri.py) based on the RDF format. In trans.py,
the different characteristics (the number of attributes, the names of attributes, etc.) of
DIS are translated to the common RDF format, so we need to create one translation
program for one DIS. However, disapri.py can handle any data in the form of the
RDF format.

Figure 1: An Overview of the DIS-Apriori System.

The following is the comparison between other frameworks of rule generation.

• The DIS-Apriori algorithm generates the same rules by Pawlak’s reduction [14], if
we specify α > 0 and β=1.0.
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• The DIS-Apriori algorithm also generates the same rules by Skowron’s discernibility
function [21] for α > 0 and β=1.0.

• The DIS-Apriori algorithm generates the same rules by VPRS [23] by Zialko, if we
specify α > 0 and 0.5 < β < 1.0.

• Thus, the DIS-Apriori algorithm can simulate previously proposed rule generation.
However, to obtain all reducts (all sets of consistent attributes for the decision at-
tribute) is proved to be NP-hard by Skowron [21]. Therefore, to obtain all rules will
be NP-hard, and to specify α ≈ 0 means that this rule generation will be very time-
consuming.

2.3 The FDIS-Apriori Algorithm for Discretized DISs with Frequency

To handle table data sets with numerical values, we usually employ discretization of nu-
merical values. In this case, we may reduce the number of objects, and this property may
help handle big data. We describe an improvement of the DIS-Apriori algorithm to the
FDIS-Apriori algorithm using the Iris data set [4].

The Iris data set consists of 150 objects, four condition attributes, ‘spl’, ‘spw’, ‘pel’,
and ‘pew’, one decision attribute ‘class’. Each attribute value is numerical. We classified
each attribute value to the one of ‘small’, ‘medium’, and ‘large’. For example, the attribute
value of ‘spl’ is between 4.3 and 7.9, and we define [spl,small]={object x | spl < 5.5},
[spl,medium]={object x | 5.5 ≤ spl < 6.7}, and [spl,large]={object x | spl ≥ 6.7}. In this
discretization, any object belongs to one block of the following Cartesian product

• Πatt=spl,spw,pel,pew{[att,s], [att,m], [att, l]}×{[class,set], [class,ver], [class,vir]},

whose number of blocks is 243 (=35). Each of the 150 objects belongs to one block. How-
ever, 25 blocks were sufficient for expressing 150 objects in Figure 2.

Figure 2: Each of the 150 objects is expressed by the 25 blocks with frequency (the last
number in the list). Some different objects belong to the same block by discretization.

In Figure 2, block 5 (line 5) expresses 42 objects by this discretization. We are often
faced with such cases in discretization. In the HTRU2 data set [4], 17898 objects are classi-
fied into only 134 blocks. We term such a discretized DIS with frequency a FDIS. We em-
ployed the property of FDIS and improved the DIS-Apriori algorithm to the FDIS-Apriori
algorithm, where the calculation of support and accuracy values are slightly changed.
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Let us consider τ : [C,3]∧ [D,2]⇒ [Dec,q] in Table 1. The DIS-Apriori algorithm
internally generates equivalence classes [14] at the beginning, i.e., eq([C,3])={x1,x2,x3},
eq([D,2])={x2,x3,x5}, and eq([Dec,q])={x3,x4}. Since eq([C,3]∧ [D,2]∧ [Dec,q])={x3},
support(τ)= |{x3}|/5=1/5=0.2 and accuracy(τ)=|{x3}|/|{x2,x3}|=1/2=0.5 are obtained.
Since P([Dec,q])=2/5, li f t(τ)=(1/2)/(2/5)=5/4 is obtained. The frequency of each ob-
ject is 1. However, we need to consider the frequency of the object in FDIS. The fre-
quency of block 5 is not 1 but 42 in Figure 2. By adjusting the calculation of support(τ)
and accuracy(τ) w.r.t. such frequencies, we implemented the FDIS-Apriori algorithm for
FDISs. Of course, this implemented system generates the same rules as that of the DIS-
Apriori for DISs. The execution time of the algorithm for discretized DISs is generally
reduced. In the HTRU2 data set, the execution time is reduced to about 1/15 of the DIS-
Apriori for DISs. The running video on the HTRU2 data set is on the web page [20].

2.4 Decision Support Environment in DISs

In this subsection, we describe the overview of the decision support environment by using
the Car Evaluation data set [4]. This data set consists of 1728 objects, 6 condition attributes,
one decision attribute acceptability. We specify a condition of descriptors and apply each
rule τ ∈ RULE to decision. We employ the following two cases for selecting one rule.

• In case I, some applicable rules (the first priority is accuracy(τ) and the second pri-
ority is support(τ)) are applied to concluding decision.

• In case II, some applicable rules (the first priority is li f t(τ) and the second priority is
support(τ)) are applied to concluding decision.

Figure 3: An example of decision-making in the Car Evaluation data set.

In Figure 3, the condition is
{[buying,_], [maint,vhigh], [doors,_], [persons,_], [lug_boot,_], [sa f ety, low]}.

Here, two descriptors are specified, and

• Rule 16 ([sa f ety, low]⇒ [acceptability,unacc], support=0.33, accuracy=1.0, and
li f t=1.43)

is applied, and the decision value unacc is obtained. Rule 16 is the evidence of this decision-
making. In Figure 4, the decision value is different w.r.t. the selection of accuracy or li f t.
The decision value unacc is concluded by Rule 13, and the decision value acc is concluded
by Rule 31. Probably, we need another information management to solve the above case.
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Figure 4: Another example of decision-making in the Car Evaluation data set.

3 Rules and Decision Support in NISs

This section extends the framework of the DIS-Apriori algorithm. Table 2 is an exemplary
Non-deterministic Information System (NIS) [12] [13] [16].

Table 2: An exemplary Non-deterministic Information System (NIS) Φ.

Object P Q R Dec
x1 a {1,2,3} s 1
x2 a 2 t 1
x3 {a,b,c} 2 t 1
x4 b 3 s 2
x5 c 3 {s,t} 1

In NIS, some attribute values are given as a set of attribute values. We see there is one
truth attribute value in the set, but we can not decide it due to information incompleteness.
NIS was proposed for handling DIS with uncertainty. If we replace every missing value
‘?’ [6] with a set of all possible values, we have one NIS. Therefore, NIS will be a more
general framework than that of missing values.

Under incomplete information, we obtain certain rules and possible rules by using the
NIS-Apriori algorithm [18], and we realize the framework of ‘certainty-first decision sup-
port’ and the framework of ‘possibility-first decision support.’

3.1 The NIS-Apriori Algorithm for Rule Generation from NISs

In NIS Φ, if we replace each set of attributes with one attribute value of the set, respectively,
we have one derived DIS. Let DD(Φ) denote a set of all derived DISs. In Table 2, there are
18 (=32×2) derived DISs.

Definition 2. we define the following.
(1) An implication τ : ∧i[Ai,vali]⇒ [Dec,val] is a certain rule in NIS Φ, if the following
(C1) and (C2) hold.
(C1) In each ψ ∈ DD(Φ), support(τ) ≥ α and accuracy(τ) ≥ β (0 < α, β ≤ 1.0) for
given threshold values α and β .
(C2) The condition part of τ is minimal.
(2) An implication τ : ∧i[Ai,vali]⇒ [Dec,val] is a possible rule in NIS Φ, if the following
(P1) and (P2) hold.
(P1) In at least one ψ ∈ DD(Φ), support(τ)≥ α and accuracy(τ)≥ β (0 < α, β ≤ 1.0)
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for given threshold values α and β .
(P2) The condition part of τ is minimal.

This definition based on the possible world semantics seems natural, but the number
of DD(Φ) increases exponentially. For example, the number exceeds 10100 in the Mam-
mographic data set [4]. It seemed hard to handle rules in Definition 2, however, some
properties were proved and the exponential order problem was solved [17] [18] [19]. We
briefly enumerate them.

• For each descriptor [A,val], we employ two sets in f ([A,val]) and sup([A,val]) in-
stead of equivalence classes eq([A,val]).
in f ([A,val]) = {object x | the value val of A is definite},
sup([A,val]) = {object x | the value val of A is definite or an element of a set},
in f (∧i[Ai,vali]) = ∩iin f ([Ai,vali]), sup(∧i[Ai,vali]) = ∩isup([Ai,vali]).
For example, in Table 2,
in f ([P,a]∧ [Q,2])=in f ([P,a])∧ in f ([Q,2])={x1,x2}∩{x2,x3}={x2},
sup([P,a]∧ [Q,2])=sup([P,a])∧ sup([Q,2])={x1,x2,x3}∩{x1,x2,x3}={x1,x2,x3}.

• For each implication τ :∧i[Ai,vali]⇒ [Dec,val], there is a derived DIS ψmin ∈DD(Φ)
where both support(τ) and accuracy(τ) are the minimum, respectively. This ψmin

depends on τ . Let minsupp(τ) and minacc(τ) be these two values, then we have the
following.
(1) If in f (∧i[Ai,vali]) = /0, minsupp(τ) = minacc(τ) = 0.
(2) If in f (∧i[Ai,vali]) ̸= /0,

support(τ) in ψmin =
|in f (∧i[Ai,vali])∩ in f ([Dec,val])|

|OB|
= minsupp(τ),

accuracy(τ) in ψmin =
|in f (∧i[Ai,vali])∩ in f ([Dec,val])|
|in f (∧i[Ai,vali])|+ |OUT |

= minacc(τ).

Here, OUT =
(
sup(∧i[Ai,vali]) \ in f (∧i[Ai,vali])

)
\ in f ([Dec,val]), and |OB| is the

number of objects. The above formulas do not depend on the number of elements in
|DD(Φ)|.

• For each implication τ :∧i[Ai,vali]⇒ [Dec,val], there is a derived DIS ψmax ∈DD(Φ)
where both support(τ) and accuracy(τ) are the maximum, respectively. This ψmax

depends on τ . Let maxsupp(τ) and maxacc(τ) be these two values, then we have the
following.
(1) If sup(∧i[Ai,vali])∩ sup([Dec,val]) = /0, maxsupp(τ) = maxacc(τ) = 0.
(2) If sup(∧i[Ai,vali])∩ sup([Dec,val]) ̸= /0,

support(τ) in ψmax =
|sup(∧i[Ai,vali])∩ sup([Dec,val])|

|OB|
= maxsupp(τ),

accuracy(τ) in ψmax =
|sup(∧i[Ai,vali])∩ sup([Dec,val])|

|in f (∧i[Ai,vali])|+ |IN|
= maxacc(τ).

Here, IN =
(
sup(∧i[Ai,vali]) \ in f (∧i[Ai,vali])

)
∩ sup([Dec,val]), and |OB| is the

number of objects. These formulas do not depend on the number of elements in
|DD(Φ)|.
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• For each implication τ , threshold values α and β , we have the following.
(1) support(τ)≥ α and accuracy(τ)≥ β in each ψ ∈ DD(Φ) (the constraint (C1)),
if and only if minsupp(τ)≥ α and minacc(τ)≥ β .
(2) support(τ)≥ α and accuracy(τ)≥ β in at least one ψ ∈ DD(Φ) (the constraint
(P1)), if and only if maxsupp(τ)≥ α and maxacc(τ)≥ β .
Thus, it is sufficient for (C1) and (P1) to consider only ψmin and ψmax instead of all
derived DISs in DD(Φ).

• The DIS-Apriori algorithm sequentially enumerates implications in order from the
smaller number of condition part, so the minimalty of the condition part is assured.
Therefore, if we replace two criteiron values support(τ) and accuracy(τ) in the
DIS-Apriori algorithm with minsupp(τ) and minacc(τ), all certain rules are gen-
erated. If we replace support(τ) and accuracy(τ) in the DIS-Apriori algorithm with
maxsupp(τ) and maxacc(τ), all possible rules are generated.

• The NIS-Apriori algorithm is also sound and complete for all certain rules and all
possible rules.

• For NIS, we employ a format termed NRDF [22]. For example, object x1 is translated
to the set {[x1,P,a,1], [x1,Q,1,2], [x1,Q,2,2], [x1,Q,3,2], [x1,R,s,1], [x1,Dec,1,1]}.
The last element in each list means 1: deterministic and 2: non-deterministic. Like
Figure 1, we translate NIS to NRDF format and execute either a certain rule generator
or a possible rule generator.

Figure 5: The obtained all certain rules and all possible rules from Table 2. Each condition
part is minimal.
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Figure 5 shows the stored certain rules and possible rules from Table 2 for the constraint
support(τ)> 0.01 and accuracy(τ)≥ 0.7. We refer to the case of the Mammographic data
set. This data set consists of 961 objects, 5 condition attributes, one decision attribute,
and 179 missing values. The number of derived DISs exceeds 10100. For the constraint
support(τ) > 0 and accuracy(τ) ≥ 0.8, 28 certain rules were obtained in 0.252 (sec), and
98 possible rules were obtained in 0.362 (sec). They are all rules due to completeness of
the NIS-Apriori algorithm, and there is no missing rule. The NIS-Apriori algorithm can
handle both DIS and NIS. If this algorithm handles DIS, the set of certain rules and the set
of possible rules become the same. The running video on the Mammographic data set is
also available on the web page.

3.2 Certainty-first Decision-Making and Possibility-first Decision-Making

We move to decision-making from NIS with uncertainty. In NIS, we obtained certain rules
and possible rules. If we employ certain rules for decision-making, the decision value
will be supported by the most strict and certain rule, which is the rule in ψmin ∈ DD(Φ).
On the other hand, if we employ possible rules for decision-making, the decision value is
supported by the most plausible rule, which is the rule in ψmax ∈ DD(Φ). We term the
former decision-making the ‘certainty-first decision-making’ and the latter the ‘possibility-
first decision making.’ For selecting one implication from some implications, we employ
the strategy that the first priority is accuracy(τ) and the second priority is support(τ).

We describe two types of decision-making by using the Congressional Voting data set
[4]. This data set deals with the political parties in the US. This data set consists of 435
objects, 16 condition attributes, one decision attribute a1, and 288 missing values. The
number of derived DISs exceeds 1080. For the constraint support(τ)> 0 and accuracy(τ)≥
0.8, 135 certain rules were obtained in 2.202 (sec), and 216 possible rules were obtained in
2.417 (sec).

Figure 6 shows the obtained result for the condition {[a2,y], [a3,y], [a4,_], · · · , [a16,_]}. In
the certainty-first case,

• Rule 17 ([a2,y]⇒ [a1,dem], minsupp(τ)=0.359 and minacc(τ)=0.821)

is applied and is the evidence of decision-making. In the possible-first case,

• Rule 110 ([a2,y]⇒ [a1,dem], maxsupp(τ)=0.379 and maxacc(τ)=0.842)

is applied and is the evidence of decision-making.

Figure 6: The obtained decision [a1,dem] from the Congressional Voting data set.
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Figure 7 shows the obtained result for the condition {[a2,_], · · · , [a6,y], · · · , [a11,y], · · ·}.
In the certainty-first case, there is no rule satisfying the specified condition. In the possible-
first case,

• Rule 23 ([a6,y]∧ [a11,y]⇒ [a1,rep], maxsupp=0.205 and maxacc=0.802)

is applied and is the evidence of decision-making.

Figure 7: The obtained decision [a1,rep] from the Congressional Voting data set.

We described the framework of rule generation and decision support from table data
sets. Since almost all table data sets will be classified into one case in Figure 8, we can
consider rule generation and decision support from almost all table data sets.

Figure 8: Apriori-based rule generation and decision support [9].

4 Perspective on Rule-based Table Data Analysis

This section considers two subjects w.r.t. rule-based table data analysis. The first is rule
generation from heterogeneous data sets by the NIS-Apriori algorithm. The second is a
new framework termed Machine Learning by Rule Generation (MLRG).

4.1 Rule Generation from Heterogeneous Data Sets

This section shows some examples and rule generation by the NIS-Apriori algorithm.
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Example 1. (Heterogeneous data I: Additional information from a table)
Let us consider Table 3 and Table 4. Table 4 is Table 2 with additional information from
Table 3. In this case, information on x4 and x5 is not given in Table 3. Thus, we employ
non-deterministic information and can consider additional information. The NIS-Apriori
algorithm generates certain and possible rules from Table 4.

Table 3: An example of ad-
ditional information.

Ob ject T
x1 1
x2 1
x3 2
y1 2
y2 3

Table 4: Information in Table 3 is added to Table 2. Here,
we suppose VALT ={1,2,3}.

Ob ject P Q R T Dec
x1 a {1,2,3} s 1 1
x2 a 2 t 1 1
x3 {a,b,c} 2 t 2 1
x4 b 3 s {1,2,3} 2
x5 c 3 {s,t} {1,2,3} 1

Example 2. (Heterogeneous data II: Additional information from clustered uncertain data)
Let us consider Figure 9. It shows clustered objects x1 to x10. There is information about
x1 to x5 in Table 2. We have additional information from Figure 9 to Table 2. Namely,
in f ([Class,1]={x3}, sup([Class,1])={x3,x5}, in f ([Class,2])={x2},
sup([Class,2])={x2,x4,x5}, in f ([Class,3])={x1}, sup([Class,3])={x1,x4}.
Using such information, the NIS-Apriori algorithm generates rules from Table 2 and Figure
9.

Figure 9: An example of clustered information.

We think the NIS-Apriori algorithm will be applicable to rule generation from hetero-
geneous data sets. This research is in progress. As for big data, we will be able to the
FDIS-Apriori for FDISs. The DIS-Apriori algorithm could handle the Suspicous data set,
which consists of 39427 objects, 41 condition attributes [7].

4.2 Machine Learning by Rule Generation (MLRG)

We apply decision-making from NIS to estimating an attribute value for incomplete infor-
mation, and we sequentially have one DIS from NIS. We termed this framework MLRG.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

H. Sakai, Z. Jian12



Example 3. We briefly describe the overview of MLRG using Table 2.
(Step 1) We fix P as the decision attribute and generate certain rules. Using the obtained
rules, we have one decision attribute value ‘a’ for object x3 (Figure 10).

Figure 10: The estimation of attribute value a from {a,b,c}. Rules 11 and 12 are applicable
to object x3. Due to the support value, Rule 11 is applied.

(Step 2) We revise the original NRDF data to a new NRDF data by the result of Step 1.
Then, we fix Q as the decision attribute and generate certain rules from the revised NRDF
data. By using the obtained rules, we have one decision attribute value ‘2’ for object x1
(Figure 11).

Figure 11: The estimation of attribute value 2 from {1,2,3}. Rule 11 is employed due to
the accuracy value.

(Step 3) We re-revise the current NRDF data to a new NRDF data by using the results of
the Step 1 and 2. Then, we fix R is the decision attribute and generate certain rules from
the revised NRDF data. Similarly, we have one decision attribute value ‘t’ for object x5
(Figure 12).

Figure 12: The estimation of attribute value t from {s, t}.

Through the above three steps, we have one DIS from NIS. We implemented a program
(learn.py), which simulates the above process. In learn.py, we specify the set of attributes
with non-deterministic information and their order. This program sequentially changes the
decision attribute by the specified order of attributes and applies decision making in NIS.
This program employs every certain rule whose accuracy value is the highest. The process
is managed by changing the NRDF format data, namely this program sequentially revises
the NRDF data by the estimated attribute values. It took 0.160 (sec) for this execution.
After this execution, we had the logged files (Figures 10-12).
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Example 4. We applied the implemented program to the Mammographic data set, which
we referred in the previous section. There are 179 missing values, which are specified by the
symbol ‘?’. For execution, it took 2.638 (sec) and 172 missing values were estimated. There
was no applicable rule for 7 missing values. Figure 13 shows a part of the estimated values
(the right side of the table). In the lower part, the logged files on the attributes margin is
shown. The missing margin value of object 7 is estimated to 1 using the Rule 15.

Figure 13: The learning process in the Mammographic data set.

To validate the functionality of MLRG, we are now having some experiments like the
cross-validation method below:
(1) For one DIS, we add some missing values and generate one NIS.
(2) We apply the above MLRG steps to each attribute with missing values and estimate
missing values.
(3) We calculate a rate such that (correctly estimated number of missing values)/ (estimated
number of missing values).
(4) If the correct rate is more than 80% or better percentage, we will be able to see the
MLRG will be valid.

We also enumerate the characteristics of this functionality of MLRG for NIS.
(1) This functionality needs no additional information nor statistical information.
(2) This functionality detects certain rules (or functional dependency) for the specified de-
cision attribute and applies them, namely it will be classified as unsupervised learning.
(3) This functionality seems to correspond to the Backpropagation [15] functionality in
neural networks.

5 Concluding Remarks

We reviewed the framework of rule generation and decision support from table data sets,
and we described some improvements of the execution environment. Since almost all table
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data sets will be classified into one case in Figure 8, we can consider rule generation from
them.

We can also control rule generation by the threshold values α and β . If we employ
smaller α value, most implications in the set {τ ∈ IMPi | support(τ) ≥ α} remain as the
candidates of rules. Thus, we will have large numbers of rules, and the execution time will
be longer. If we employ larger α value, less implications in the set {τ ∈ IMPi | support(τ)≥
α} remain as the candidates. Thus, we will have small numbers of rules. It requires less
execution time. By controlling two threshold values, we can have rules from every table
data set.

Furthermore, we proposed a framework of MLRG, which advances the previous frame-
work to machine learning. In NIS, we generate certain rules, and we know local knowl-
edge (we may see a rule implies local functional dependency). Then, we revise NIS by
using local knowledge. We repeat this process, and we have one DIS from NIS. This strat-
egy, which employs the NIS-Apriori algorithm as the core algorithm, will be unsupervised
learning from table data sets with incomplete information.

Most running videos in this paper are opened on the web page [20]. Each program is
implemented in Python on Windows PC with Intel Core i7 CPU, 3.60GHz.
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