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Abstract

We described a walking-posture classification method from a single accelerator attached to a 
human waist using a deep learning technique. We considered deep learning architectures for 
a single accelerator based on previous human activity recognition studies and investigated 
the classification accuracy of the proposed method using the walking-posture dataset. The 
results demonstrate that a deep learning approach to walking-posture classification using a 
single accelerator is more useful than the conventional SVM approach. Additionally, we 
also confirmed that a hybrid network architecture with three convolutional neural layers, 
two pooling layers between the convolutional layers, and a long short-term memory layer 
achieved the best accuracy of 0.9803 compared to other network architectures. We also 
confirmed the deep learning approach yielded more correct classification with less periods 
of each sample for each walking-posture category in spite of the difficulty to detect the 
classification by the SVM approach.

Keywords: Walking-posture classification, Human Activity Recognition, Deep Learning, 
Health-care

1 Introduction

Many researchers have investigated human activity recognition (HAR) based on wearable 
devices to support health-care or smart home. Particularly, using an accelerator has become 
very popular in the HAR domain[17, 9]. This study falls in the HAR domain. Here the goal 
is to detect improper walking postures while walking as a health support activity using a 
single accelerator.

In HAR technologies based on gait analysis, accelerators are commonly attached to 
a human waist to recognize general human activities or for human authentication. To di-
agnose health problems, typically, two accelerator sensors are attached to both sides of a 
human body. For example, Gadalate et al.[4] developed a human authentication method 
that analyzed human gait from acceleration data captured using smartphone. Their authen-
tication method combined a machine learning technique, i.e., a Support Vector Machine 
(SVM), and deep learning. Ordonez et al.[12] developed a machine learning-based method
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to classify daily-life activities, such as “walk” and “sit-down,” using an accelerator attached 
to a human waist. In the health-care support domain, Hashiguchi et al.[7] adapted an SVM 
technique to classify walking postures using acceleration data captured via devices attached 
to both human ankles. Harmmerla et al.[6] developed a method to diagnose Parkinson’s dis-
ease that adapted a deep learning technique using acceleration data captured using devices 
attached to both wrists. Lofti et al.[11] developed a back pain diagnosis system that classi-
fies acceleration data captured at both ankles using a deep learning technique. Chan et al.[2] 
compared some machine learning methods to determine if a user is a back pain patient ac-
celeration data captured on both feet. Therefore, it is evident that two accelerators attached 
bilaterally are required to capture human gait features to achieve a health-care system. For 
daily use of a single accelerator device, the device should be worn on the upper half of the 
body (i.e., from the waist up). However, using an accelerate to detect the features of both 
sides of the human body for each walking posture is difficult.

To recognize human activities, most previous HAR studies have adopted machine learn-
ing techniques. Deep learning techniques are particularly popular due to their flexibility, 
ability to fit complex models, and high accuracy. Although deep learning neural network 
architecture plays a significant role in classification accuracy, a specific neural network ar-
chitecture that can obtain the best result for all datasets has not yet been identified[17]. 
Thus, it is necessary to consider neural network architecture for a targeted dataset.

In this paper, we described a walking-posture classification method that uses a single 
accelerator attached to the human waist using a deep learning technique. In this study, we 
considered the deep learning network architecture for acceleration data based on previous 
studies on sequential data analysis in the HAR domain. We conducted an experiment using 
a walking-posture dataset that included acceleration data for four types of walking postures. 
The results demonstrate that a deep learning approach to classify walking postures is more 
useful with even less periods of each sample than the conventional SVM approach, and that 
hybrid neural network architecture comprising three Convolutional Neural Network layers, 
two pooling layers between the convolutional layers, and a long short-time memory layer 
obtained the best accuracy (0.9803) among the other network architectures.

2 Approach

HAR technologies that use accelerators classify time-series accelerator data into four cat-
egories using a modeling action classifier. In this section, we describe an accelerator and 
its wearing position. Then, we identify walking postures to consider in this study and the 
implementation of a deep learning classifier.

2.1 Accelerator and its wearing position

We use a single small nine-axis motion sensor attached to a belt near the waist on the user’s 
back, as shown in Figure 1. The sensor runs at 116 frame per second and detects values of 
a three-axis accelerator, a three-axis gyro sensor, and a three-axis magnetic sensor. Thus, 
time-series data generated from nine types of sensor values are used as input to a walking-
posture classifier.
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Figure 1: Nine-axis motion sensor and its wearing position.

2.2 Walking-postures to be classified

This study is in the beginning stage of walking-posture recognition using a single accel-
erator. In order to generate a walking-posture dataset, we considered abnormal walking
postures from the perspective of physiotherapy[10] and selected walking postures that can
be easily simulated.

Abnormal walking postures are generally caused by unbalanced muscle strength and
skeleton at the ankle, knee, or hip, and bad walking habits. For example, weak lower limb
abductor and abductor muscles often cause “excessive hip adductions,” as shown in Figures
2 (a) and (b), respectively. Refraction and inner hip rotations often cause a walking posture
with an outward turning heel, as shown in Figure 2(c), which is called “false adduction.
” In terms of no cause of muscle weakness, “False adduction” differs from “excessive
adduction;” therefore, they can simulate a “false adduction” walking postures.

(a) Excessive adduction
caused by weakness of
adductor hip muscle

(b) Excessive adduction
caused by weakness of
abductor hip muscle

(c) False adduction (d) Toe drag
caused by refraction
 and inner hip rotation

Figure 2: Examples of abnormal walking-posture[10]; adductions and toe drag.
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Therefore, as the beginning stage of walking-posture classification, we selected three 
types of abnormal walking postures, i.e., “walking posture with toes pointed outward” (as 
shown in Figure 2(c)), “walking posture with toes pointed inward,” and “walking posture 
with toe drag” (as shown in Figure 2(d)). “Walking posture with toes pointed outward” 
and “walking posture with toes pointed inward” are simulated by intentionally turning the 
toes outward and inward at every step, respectively. “Walking posture with toe drag” is 
simulated by intentionally landing from toe to heel with every step. When using a single 
accelerator attached to the waist, capturing walking-posture features is difficult because the 
features of walking-posture motions tend to appear in both lower limbs.

Samples of acceleration data for each walking-postures and the basic statistics of the 
acceleration data are shown in Figure 3 and Table 1, respectively. Each sensor value in 
Figure 3 shows 120 frames of time series data from different walking postures of the same 
person. The basic statistics for each sensor value of the walking postures in Table 1 were 
computed from the combined time series data of 120 frames collected from six persons.

As shown in Figure 3, although there is periodicity in the time series data of acceleration 
and angular rate for all walking postures, it is considered difficult to identify clear differ-
ences among these walking postures. For example, the Y-axis values for forward/backward 
acceleration are between 0.6 and -0.4 for all the walking postures. The Z-axis value for up 
and down acceleration are between 0.4 and -0.6 for the normal walking posture, walking 
posture with toes pointed outward, and walking posture with toes pointed inward. For all 
the walking postures, the Y-axis rotation angles stay at about 60 to -40 degrees; for the three 
walking postures, the Z-axis rotation angles stay at about 80 to -60 degrees. As shown by 
the basic statistics in Table 1, no statistically significant difference can be confirmed for the 
different walking postures from the respective means and standard deviations. Thus, highly 
accurate classification is hardly expected even if the basic statistic is used as a feature of the 
statistical analysis method, as in the conventional method.

2.3 Adapting deep learning

We adapted a deep learning technique for walking-posture classification using a single ac-
celerator attached to the waist. As described in Section 2.2, the walking postures are as 
follows; “walking posture with toes pointed inward,” “walking posture with toes pointed 
outward,” “walking posture with toe drag,” and “normal walking posture.” In this section, 
we consider deep learning network architecture based on previous HAR studies using an 
accelerator.

A Recurrent Neural Network (RNN) is designed to handle sequential data using a deep 
learning technique. An RNN can adopt long short-term memory (LSTM)[8] architecture, 
which adds a memory unit and has feedback connections. LSTM architecture enables an 
RNN to handle sequential data based on long-term dependencies.

Wang et al.[17] surveyed HAR studies that used a deep learning technique and com-
pared the accuracy of some deep learning techniques to those of studies that employed 
open HAR datasets. The survey results indicated that a Convolutional Neural Network 
(CNN) and hybrid network architecture comprising a CNN and LSTN could obtain better 
accuracy for open datasets. Specifically, the CNN[16] with three convolutional layers and 
pooling layers between the convolutional layers, as shown in Figure 4, obtained the best 
classification accuracies among some comparison methods using the Skada[13] and UCI 
smartphone[1] datasets. The DeepConvLSTM[12] having a hybrid network architecture of 
four convolutional layers and two LSTM layers, as shown in Figure 5, obtained relatively
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(d) Walking-posture with toe drag

(b) Walking-posture with toes pointed outward

(c) Walking-posture with toes pointed inward

(a) Normal walking-posture
Acceleration value Anguler value

Figure 3: Samples of acceleration value and anguler value for each walking-posture.
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Table 1: Samples of Basic Statistics of acceleration value and anguler value for each
walking-posture.

Normal with toe with toe with toes
pointed outward pointed inward drag

Acceleration Mean -0.0028 0.0364 0.0241 0.0209
value Median -0.0100 0.0150 0.0100 0.0100
(X axis) S.D. 0.2031 0.2581 0.1987 0.1670

Minimum -1.2000 -1.2000 -0.6500 -0.8500
Maximum 0.7600 1.1700 0.8700 0.7300
Number of data 720 720 720 720

Acceleration Mean 0.0126 0.0040 -0.0158 -0.0027
value Median -0.0700 -0.0700 -0.0700 -0.0500
(Y axis) S.D. 0.2688 0.2891 0.2335 0.2108

Minimum -0.6300 -0.6100 -0.4700 -0.3900
Maximum 0.9500 1.2500 0.9800 0.9400
Number of data 720 720 720 720

acceleration Mean 0.0231 0.0498 0.0618 0.0805
value Median 0.0500 0.0900 0.0700 0.0700
(Z axis) S.D. 0.2914 0.2852 0.2611 0.2059

Minimum -1.4300 -1.0000 -1.3600 -0.6700
Maximum 1.6000 0.9100 0.9000 0.6600
Number of data 720 720 720 720

Angular rate Mean -0.0918 0.2315 1.8526 1.7429
(X axis) Median 2.0150 2.4750 4.3450 2.2100

S.D. 36.1121 31.6788 26.5552 20.5261
Minimum -181.0800 -154.8500 -150.8600 -111.0200
Maximum 232.0300 168.6300 190.7400 59.7500
Number of data 720 720 720 720

Angular rate Mean 1.1778 2.3083 1.8945 3.1994
(Y axis) Median 2.3400 -3.4850 3.8450 0.9100

S.D. 48.4874 48.1673 37.3553 29.0735
Minimum -250.0000 -194.3200 -186.5600 -135.6600
Maximum 249.9900 237.6900 241.3700 69.6200
Number of data 720 720 720 720

Angular rate Mean -3.5375 -1.8347 -3.8811 -4.2440
(Z axis) Median -2.6050 -2.1550 -4.2650 -4.3200

S.D. 27.1513 27.8683 22.4293 24.6840
Minimum -93.4700 -135.9900 -82.7900 -74.6900
Maximum 73.6000 110.6500 79.2700 84.9800
Number of data 720 720 720 720
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good classification accuracy compared to the OPPORTUNITY[12] and Skada[13] datasets.
In this papers, the DeepConvLSTM network architecture is referenced as “Conv4LSTM2”
to better represent the network architecture.

Input Layer Convolutional Layer
Pooling Layer

Output Layer

Figure 4: Network architecture of CNN compared in this study.

Input Layer Convolutional Layer LSTM Layer Output Layer

Figure 5: Network architecture of Conv4LSTM2 compared in this study.

DeepSense[15] has been developed as a deep learning algorithm to deal with some 
types of unified IoT sensor data. The DeepSense algorithm has hybrid network architecture 
for both of CNN and RNN. The CNN layer contains two types of layers for individual 
sensors and unification on them. Differing from DeepSense network architecture, in this 
study, we adopt a hybrid network architecture comprised of a CNN and LSTM architecture, 
as shown in Figure 6. The first CNN layer is a two-dimensional filter. The second and 
third layers are one-dimensional filters. There are pooling layers between the filter layers. 
LSTM is adopted rather than a GNU since LSTM is more general and there is no significant 
difference between the two architectures[3]. Note, in this paper, the DeepSense network 
architecture is represented as “Conv3P2LSTM.”

Therefore, we compare four types of network architectures (LSTM, CNN, Conv4LSTM2, 
and Conv3P2LSTM) to adapt deep learning to walking-posture classification.
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Pooling Layer
LSTM LayerInput Layer Convolutional Layer

Output Layer

Figure 6: Network architecture of Conv3P2LSTM compared in this study.

3 Experiment

3.1 Overview

We conducted an experiment using a dataset that contained acceleration data from four 
types of walking postures to investigate useful deep learning network architecture. We 
compared the LSTM, CNN, Conv4LSTM2, and Conv3P2LSTM network architecture to 
two types of SVMs using the features from Principal Component Analysis (PCA) results[7] 
and features based on Basic Statistics(BS)[5]. For the SVM features from PCA results, 112-
dimension PCs having a cumulative contribution ratio greater than 0.80 were used to reduce 
the acceleration data parameters. For the SVM features based on BS, average value, me-
dian, standard deviation, skewness, and kurtosis for accelerator and gyro sensor per sample 
and minimum value, maximum value, and minimum-maximum difference for accelerator 
per sample were adopted to summarize the features of each sample following a previous 
study[5].

The programming languages and deep learning frameworks used in this experiment 
were Python and Tensorflow. The input data for deep learning was 9 (each value of the 9-
axis accelerometer) × 160 (frames). It is known that the learning effect is degraded when 
the input data contains bias. Therefore, for each input, the normalized value of the differ-
ence between the mean value of all data and each data divided by the standard deviation 
of the input data was used as the input data. Softmax, Adaptive Moment Estimation, and 
multi-class cross-entropy were set for the activation function, optimization function, and 
loss learning of the final layer of deep learning, respectively. A filter size of 5 × 5 and a 
stride of 1 were set for the convolutional layer, and a pooling size of 3 × 3, a stride of 1, 
and a Max pooling operation were set for the pooling layer. The hidden layer of the LSTM 
consists of 128 nodes. The SVM in this experiment was implemented in Python using the 
scikit-lean library, and multi-class classification was performed using the Gaussian kernel 
and the one-versus-the-rest method.

To create the dataset of walking-posture acceleration data (Section 2.2), we recruited 
six men in their twenties. We attached a motion sensor to their belts and made them do 
three round trips in a 25 m corridor for each participant, motion data from the first two 
round trips were used for training data and data from the third trip was used for test data. 
A single unit of training or test data contains nine types of sensor data in 160 frames (i.e., 
walking for 1.38 seconds). Each data sample was generated with a sliding window length
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of 160 frames. The properties of the generated dataset are shown in Table 2.

Table 2: Properties of the dataset of motion-sensor data for this experiment.
Data Normal with toes with toes with toe Total

pointed pointed drag
outward inward

Training 27,161 29,655 30,400 31,810 119,026
Test 13,515 14,400 15,310 16,460 59,685

3.2 Results and discussions

The experimental walking-posture classification results obtained using deep learning and
an SVM are shown in Table 3.

Table 3: Experimental walking-posture classification results obtained using deep learning
and an SVM.

ACC ACC+GYRO ACC+GYRO+COM
LSTM 0.9485 0.9731 0.9549
CNN 0.9594 0.9771 0.9671
Conv4LSTM2 0.9302 0.9763 0.9744
Conv3P2LSTM 0.9553 0.9799 0.9803
SVM(PCA) 0.7076 0.8400 0.9090
SVM(BS) 0.7797

PCA and BS represent principal component analysis and basic statistics, respectively.
ACC, GYRO, and COM represent each dataset of accelerator, gyro-sensor, and

magnetic-sensor, respectively.

Table 4: Confusion matrix of the walking-posture classification using deep learning having
the network architecture of Conv3P2LSTM.

Normal with toes with toes with toe
pointed outward pointed inward drag

Normal 0.9553 0.0107 0.0160 0.0180
with toes pointed outward 0.0029 0.9923 0.0044 0.0003
with toes pointed inward 0.0400 0.0043 0.9426 0.0131
with toe drag 0.0097 0.0139 0.0106 0.9658

The results show that deep learning classification accuracy (greater than 0.97) for the 
accelerator and gyro sensor dataset of walking postures was better than that obtained by 
SVM approaches (less than 0.91). Thus, adapting the deep learning technique to walking-
posture classification using a single accelerator attached to the waist is useful. In addition, 
the results also show that the Conv3P2LSTM deep learning network architecture obtained 
the best classification accuracy (0.9803) among the compared methods.
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Table 5: Confusion matrix of the walking-posture classfication using a SVM.
Normal with toes with toes with toe

pointed outward pointed inward drag
Normal 0.7230 0.0330 0.1452 0.0989
with toes pointed outward 0.0240 0.8463 0.0787 0.0510
with toes pointed inward 0.0696 0.1231 0.5471 0.2602
with toe drag 0.0699 0.0225 0.0206 0.8871
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Next, we investigated the classification accuracy for each walking-posture category. 
The confusion matrices of the walking-posture classification using deep learning and an 
SVM are shown in Tables 4 and 5, respectively.

As shown in Table 4, the classification method using the deep learning technique achieved 
accuracies greater than 0.94 in all of walking-posture categories. On the other hand, as 
shown in Table 5, the SVM classifier often miscategorized “walking posture with toes 
pointed inward” as either “walking posture with toes pointed outward” and “walking pos-
ture with toe drag.” The SVM classifier also often miscategorized “normal walking posture” 
as “walking posture with toes pointed inward.” Therefore, the deep learning approach to 
walking-posture classification can effectively extract the features of each walking posture 
from a single accelerator attached to the waist, though it is difficult for a single accelerator 
attached to the human torso to detect both the left and right side of walking motion.

Next, we conducted a logistic regression analysis using the basic statistics of the ac-
celerometer used for SVM walking-posture classification, and then investigated the effec-
tive features for walking-posture classification. Table 6 shows the results of the logistic 
regression analysis of the top-30 features and their weights.

As the results in Table 6 show, the minimum value of acceleration in the Z direction 
(longitudinal direction) had the most influence on the classification, with a weight coef-
ficient of 0.0685. In the next rank, the difference between the maximum and minimum 
angular rate, the median value of acceleration in the Z direction had effects with weight 
coefficient of 0.0428 and 0.0373, respectively. The minimum value of acceleration and the 
minimum value of angular rate in the Y direction had effects with 0.0369 and 0.0366, re-
spectively. Thus, the influence of the acceleration and angular rate in the Z and Y directions 
occupied the top 12 positions, indicating that the forward and upward movements have a 
large influence on the walking posture classification.

In addition, we investigated the classification accuracy for periods of each sample. The 
accuracies of the walking-posture classification for sampling periods of 40, 80, 120, 160, 
and 200 frames(0.35s, 0.69s, 1.38s, 1.73s and 2.07s) with using deep learning and an SVM 
are shown in Figure 7.
       In the sampling periods investigated in the experiment, the deep learning methods ob-
tained higher accuracies of the walking-posture classification than the conventional SVM 
method. In particular, the walking-posture classification with deep learning approach 
achieves over 90% accuracy for more than 80 frames per sample (0.38s). In previous gait 
analysis studies, it took five walk-cycles and 30 seconds to detect the walking-posture 
features using the combined SVM and deep learning method [14] and the Hidden Markov 
Model method [4], respectively. Therefore, it is found that the deep learning method can 
capture walking-posture features with less period of each sample than the conventional 
methods.



Table 6: Results of Logistic Regression Analysis for Basic Statistics of Accelerometers in
Walking Posture Classification.

Rank Feature Weight
1 Min. value of acceleration (Z axis) 0.0685
2 Difference between min. and max. angular rate (Z axis) 0.0428
3 Median value of acceleration (Z axis) 0.0373
4 Min. value of acceleration (Y axis) 0.0369
5 Min. value of angular rate (Y axis) 0.0366
6 Mean value of acceleration (Z axis) 0.0363
7 Kurtosis of acceleration (Y axis) 0.0357
8 Max. angular rate (Z axis) 0.0355
9 S.D. of acceleration (Y axis) 0.0333
10 S.D. of acceleration (Z axis) 0.0328
11 S.D. of angular rate (Z axis) 0.0321
12 Max. value of acceleration (Z axis) 0.0318
13 Average value of Acceleration (X axis) 0.0293
14 S.D. of acceleration (X axis) 0.0291
15 Max. value of Acceleration (X axis) 0.0264
16 Max. value of Acceleration (Y axis) 0.0263
17 Min. value of acceleration (X axis) 0.0260
18 Skewness of Acceleration (Z-axis) 0.0253
19 Difference between min. and max. value of acceleration (Z axis) 0.0252
20 Difference between min. and max. angular rate (Y axis) 0.0250
21 S.D. of angular rate (Y axis) 0.0241
22 Max. value of angular rate (X axis) 0.0225
23 Difference between min. and max. value of acceleration (Y axis) 0.0212
24 Difference between min. and max. value of acceleration (X axis) 0.0205
25 Min. value of angular rate (X axis) 0.0187
26 S.D. of angular rate (X axis) 0.0185
27 Difference between min. and max. angular rate (X axis) 0.0184
28 Max. value of angular rate (Y axis) 0.0184
29 Min. value of angular rate (Z axis) 0.0175
30 Median value of acceleration (X axis) 0.0172
31 Kurtosis of angular rate (Z axis) 0.0147
32 Skewness of acceleration (Y axis) 0.0137
33 Kurtosis of angular rate (Y axis) 0.0134
34 Skewness of angular rate (X axis) 0.0124
35 Skewness of acceleration (X axis) 0.0100
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Figure 7: Experimental walking-posture classification results for periods of each sample 
obtained using deep learning and an SVM.

4 Conclusion

In this paper, we described walking-posture classification using deep learning and data from 
a single accelerator attached to the human waist. The overall objective of the study was to 
develop a walking-health-care support system for daily use. It is difficult for a single 
accelerator attached to the waist to capture the walking-posture features because walking 
motion features tend to appear on both lower limbs. We considered various deep learning 
network architectures based on previous HAR studies using an accelerator. We conducted 
an experiment using a walking-posture dataset that included acceleration data of “walking 
posture with toes pointed inward,” “walking posture with toes pointed outward,” “walking 
posture with toe drag,” and “normal walking posture.” The experimental results 
demonstrated that the deep learning approach obtained classification accuracy of greater 
than 0.97, which was more useful to classify the walking postures with less period of each 
sample than the conventional methods. In addition, the results also showed that the deep 
learning technique with hybrid network architecture comprised of three CNN layers, two 
intermediate pooling layers, and an LSTM layer obtained the best classification accuracy 
(0.9803) among the compared methods. We confirmed that the deep learning approach can 
well extract the features of each walking posture from a single accelerator attached to the 
human waist,

In future, we intend to develop a walking-health-care support system. We need to add 
additional improper walking postures into the categories adopted in this study and inves-
tigate the classification accuracy. Then, we are going to incorporate the walking-posture 
classification method in daily-human-activity-recognition technology and confirm the use-
fulness of walking-posture classification in practice.
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