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Abstract 

The rapid proliferation of smartphone-mounted multiple sensors has been accompanied by the 

increasing utilization of participatory sensing, which is a type of crowdsourcing by which many 

users effectively share sensing data. Privacy protection is important for this purpose because the 

sensing data often contain private information about the users. Existing privacy protection meth-

ods do not enable effective and precise data restoration in this application when there is many 

choices and few data. In this study, we developed a method for addressing this issue. The ran-

domized response method and negative survey method are used to conceal private information 

contained in individual data by the addition of random noise to the data. Moreover, the proposed 

method utilizes a novel procedure whereby the transmission is repeated multiple times when se-

lecting one option from multiple options. The proposed method is evaluated by simulation and is 

found to be more effective than existing methods. 
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1 Introduction 

Participatory sensing [1] has attracted much attention in recent years due to the widespread use 

of smartphones equipped with many sensors. Participatory sensing is a type of crowdsourcing 

that enables effective sharing of information obtained by sensors mounted on the smartphones of 

multiple users. In conventional sensing, dedicated equipment is required for the acquisition of the 

sensing information, for which the process can be both time-consuming and costly. Participatory 

sensing affords significant cost savings and utilizes the sensor-equipped smartphones of ordinary 

users. The users acquire sensing information through sensors such as GPS receivers, micro-

phones, and acceleration sensors installed on their smartphones and report the information to 

participatory sensing administrators. A participatory sensing operator collects all the data and 

aggregates and analyzes them. 

* National Institute of Technology, Ichinoseki College, Japan
†  Kyoto Institute of Technology, Kyoto, Japan
‡  Advanced Institute for Industrial Technology, Tokyo, Japan

IIAI International Journal of Service and Knowledge Management 
International Institute of Applied Informatics 
2019, Vol. 3, No. 2, 1 – 14



 

However, there are some privacy problems associated with participatory sensing. The sensing 

data collected by participants include private information such as their action history and a mali-

cious attacker may eavesdrop on data received by the administrator. Some participants may thus 

be concerned about the compromise of their privacy and may refrain from sharing sensing infor-

mation with administrators. For participants to safely and confidently supply participatory sens-

ing information, it is necessary for administrators to apply a privacy protection method that en-

sures that only necessary information is collected. 

In this study, we developed a privacy protection method for participatory sensing involving many 

options. The proposed method represents an extension of the randomized response method, 

which is a current privacy protection method for participatory sensing. The randomized response 

method and negative survey method (another existing privacy protection method) are used to 

conceal private information contained in individual data by the addition of random noise to the 

data. These methods are suitable when there is a large amount of sensing data and a small number 

of options. However, when applied to a case with a small amount of data and many options, the 

restoration accuracy of the data distribution in the server would be low, which is unacceptable in 

practice. In this paper, the restoration accuracy is the accuracy of the difference between the sens-

ing data distribution transmitted by all the participants and the data distribution restored based on 

the data received by the administrator using the particular privacy protection method. In the pro-

posed method, we utilize a technique that enables effective restoration of the data distribution in 

the server, even when the number of choices observed by the sensor is large and the sensing data 

sent to the server is small. Experimental simulations were performed to evaluate and compare the 

restoration accuracy of the proposed method with those of existing methods. The results con-

firmed the effectiveness of the proposed method. 

The rest of this paper is organized as follows. Section 2 describes two existing privacy protection 

methods, the problems of which are further discussed in Section 3. Section 3 also presents the 

proposed privacy protection method, which is effective for cases with a small amount of sensing 

data and many options. In Section 4, we compare the proposed method with existing methods 

based on the results of simulation experiments. Section 5 finally summaries the study and its 

findings. 

2 Related Work 

2.1 Participatory Sensing 

Many studies have been conducted on developing a privacy protection method for participatory 

sensing that is optimally applicable to various cases. In this section, to properly identify the nature 

of the proposed method, we will first describe and classify different existing methods based on 

the process of the participatory sensing and the subjects. 

Cryptography technology [7] [8] has been used to protect private information from eavesdrop-

ping by a malicious third party during the transmission of data between a participant an adminis-

trator of participatory sensing. Two encryption methods have been employed for this purpose, 

namely, public key encryption and common key encryption. In both methods, the participant on 

the data transmission side encrypts the data and the administrator on the data reception side re-

stores the encrypted data. The restored data may be different in some ways from that before en-

cryption. 
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A method referred to as the k-anonymity is one of those used to protect the private information 

of users in data contained in a database. This protection method makes any k-1 user indistinguish-

able from other users [9] [10]. Differential privacy protection is another method used to protect 

not only individual data but also statistical data outputted from private data [11] [12]. 

Random noise addition has also been used to protect private information contained in sensing 

information sent by a participant to an administrator in participatory sensing. This method in-

volves adding a value other than the true value to the acquired data during the transmission to the 

administrator. Examples of this type of protection method are randomized response [13] [14] and 

negative surveys [17] [18]. Multidimensional negative surveys [19] [20] is an extension of ran-

domized response and is particularly applied to multidimensional data containing multiple fields 

of information. The method is, however, only effective when the number of options observed by 

the sensor is small and the amount of acquired data transmitted is large. However, when there are 

many options and a small amount of acquired data, the restoration accuracy achieved by this 

method is insufficient. In the use of the random noise addition method, which is the basis of the 

method proposed in this paper, even when the number of choices observed by the sensor is large 

and the number of acquired data is small, the administrator is able to obtain a restoration accuracy 

equivalent to that of existing methods in the converse situation. The proposed method utilizes a 

novel procedure whereby the transmission is repeated k times when selecting one option from 

multiple options. Even for a small number of sensing data and many options, the administrator is 

able to obtain the distribution of the entire sensing data collected by each sensing device, and 

may also achieve the same restoration accuracy as existing methods.  

2.2 Randomized Response 

Randomized response [13] is basically the alternatives method proposed by S. L. Warner. It 

enables respondents to answer without revealing private information, as well as determina-

tion of the statistical distribution of all the respondents. 

Agrawal et al. extended the application of the randomized response method to cases in which 

a single answer is given to the multiple options of a category [14]. In this application, the 

private information of the user is protected by transmitting a true value different from the 

true acquired from the sensing device, using a certain probability. Randomized response is 

used in various fields that utilize position information and participatory sensing [15] [16]. 

The procedure when using randomized response for privacy protection in the transmission 

of participatory sensing data is as follows. 

(1) The sensor acquires sensing data and the sensing device observes one sensing data op-

tion among the total number of options, α. 

(2) The privacy protection process is implemented on the sensing data, which is then trans-

mitted to the server. The sensing device transmits is sensing data to the server with a 

preset probability p. Alternatively, the other α-1 options among the obtained sensing 

data are selected with a probability 
1−𝑝

𝛼−1
 and transmitted to the server. Let A be the data 

distribution of the entire data collected by the sensing device. After the implementation 

of the privacy protection process, the distribution Y of the entire sensing data transmitted 

to the server is given by Equation (1). The privacy protection process can be expressed 

by a square matrix M of size α×α, as in Equation (2). 
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(3) The server reconstructs the statistical information of the sensing data based on the re-

ceived data, using Equation (3) and the distribution A of the entire sensing data. This is 

done without knowing the true value collected by each sensing device, thus ensuring 

privacy protection for all users. 

𝑌 = 𝐴𝑀  (1) 

𝑀 =

(

  
 

𝑝
1−𝑝

𝛼−1
⋯

1−𝑝

𝛼−1
1−𝑝

α−1
𝑝

1−𝑝

𝛼−1
⋯

⋮ ⋮ ⋱ ⋮
1−𝑝

α−1
⋯ ⋯ 𝑝 )

  
 

 (2) 

𝐴 = 𝑌𝑀−1  (3) 

2.3 Negative Surveys 

The negative surveys privacy protection method is an extension of randomized response devel-

oped by Esponda et al. [17] [18]. In Step (2) of the randomized response method, the probability 

of transmitting sensing data to the server in its true form is only set to p=0. The unique feature of 

the method is that only the options different from the true value are transmitted to the server, 

without the need to transmit a true value. 

However, information about each sensing device (that is, which device observed which value) 

cannot be obtained when only the alternatives different from the true value are sent to the server. 

Under this situation, the server can obtain only the distribution of the entire sensing data received 

after their aggregation. Therefore, compared with randomized response, when using negative 

surveys, it is more difficult for the server to make an inference from the sensing data based on 

individual sensing devices. 

The procedure when using negative surveys for data protection in the transmission of participa-

tory sensing data is as follows. 

(1) The sensing device acquires the sensing data and observes one option among the total num-

ber of options, α. 

(2) The sensing device implements the privacy protection process on the sensing data and trans-

mits the data to the server. The sensing device transmits α-1 options different from the ob-

tained sensing data to the server with a probability of 
1

𝛼−1
. Let A be the distribution of the 

entire sensing data collected by the sensor device, and Y the distribution of the entire sensing 

data received by the server after the implementation of the privacy protection process. The 

privacy protection process can be expressed as in Equations (4) and (5). 

(3) The server reconstructs the statistical information of the sensing data based on the data re-

ceived from the sensing device. The server then obtains the data distribution A of the sensing 

data acquired by each sensing device using Equation (6). In addition, for a number of ac-

quired data N, the data distribution A can also be obtained by Equation 7. 

𝑌 = 𝐴𝑀  (4) 
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 (5) 

𝐴 = 𝑌𝑀−1  (6) 

∀𝑖  | 𝐴(𝑖) = 𝑁 − (𝛼 − 1) ∙ 𝑌(𝑖) (7) 

 

3 Proposed Privacy Protection Method 

3.1 Issues Requiring Solution 

Figure 1 compares cases of using randomized response, negative surveys, and a data transmission 

method without privacy protection. In negative surveys, the probability of transmitting a true 

value is 𝑝 = 0, and data other than the true data are randomly transmitted. In randomized re-

sponse, the probability of transmitting a true value is 0 < 𝑝 < 1, and 𝑝 ≠
1

∝
. When the probabil-

ity of transmitting a true value is 𝑝 =
1

∝
, the transmission probability of all the values is also 

1

∝
. 

This is because perfect random transmission will be achieved, and it will be impossible to restore 

the transmitted value to a true value. Furthermore, when the probability of transmitting a true 

value is 𝑝 = 1, only the true value will be transmitted, and a privacy protection method would 

not be applied. 

Existing privacy protection methods, namely, randomized response and negative surveys, are 

suitable for many sensing data with a small number of options. They are, however, characterized 

by the following problems. 

• When the sensing data transmitted to the server is small, there is a low restoration accuracy 

in the restoration of the true value data distribution from the sensing data subjected to pri-

vacy protection processing. 

Figure 1: Outline of the randomized response and negative surveys methods 
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• As the number of options observed by the sensing device increases, the restoration accuracy 

decreases. 

In the use of random noise addition, a total number of data D is required to maintain the restora-

tion accuracy when the number of options α increases. This is because of the transmission of 

values other than the true value as noise. The relationship between the total number of data D and 

the number of choices α can be expressed as in Equation (8) for a probability p of transmitting a 

true value, where pα (the product of the probability and the number of choices α) is constant. 

Here, R(pα) represents an equal distribution of data with respect to the number of choices α; the 

larger the value of R(pα), the more uniform is the data distribution, indicating higher restoration 

accuracy. 

𝑅(𝑝𝛼) =
log 𝐷

log 𝛼
  (8) 

To obtain a good restoration accuracy, it is necessary for the data to be uniformly distributed with 

respect to the number of choices α. Even when the number of choices α increases, the achieve-

ment of the same restoration accuracy requires the total number of data D to be equal to 𝛼𝑅（pα. 

When existing privacy protection methods are applied to a case with a small number of sensing 

data and many options, accurate restoration of the data distribution is impractical. This necessi-

tates the development of a privacy protection method applicable to such cases. 

3.2 Privacy Protection Method Using Multiple Transmissions 

In the proposed privacy protection method, we utilize a technique for obtaining the data distribu-

tion of the entire sensing data in the server even when both the number of options observed by 

the sensing device and the sensing data are small. 

In the proposed method, when one option is selected among multiple options and transmitted to 

the server, it represents k repeated transmissions. The distribution of the entire data collected by 

each sensing device can be obtained on the side of the server, even for a small number of data 

and many options. The procedure when using the proposed method for privacy protection in the 

transmission of participatory sensing data is as follows. 

(1) The sensing device acquires sensing data and observes one option among the total number 

of options, α. 

(2) The sensing device implements the privacy protection process on the sensing data and trans-

mits the data to the server. The device selects true sensing data obtained with a probability 

p, or alternatively selects α-1 options different from the true data with a probability 
1−𝑝

𝛼−1
. The 

above selection is repeated k times and notifications of k options are sent to the server. Let 

A be the distribution of the entire sensing data collected by the sensing device. Let k be the 

number of repeated transmissions to the server. The privacy protection process is imple-

mented by the sensing device and the distribution of the entire sensing data transmitted to 

the server is represented by Y, given by Equation (9). The privacy protection process can be 

represented by the matrix M, which is a square matrix of size 𝛼 × 𝛼 given by Equation (10). 

(3) The server reconstructs the sensing data based on the data received from the sensing device. 

The server then obtains the distribution A of the entire sensing data collected by the device, 

according to Equation (11). 
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𝑌 = 𝑘𝐴𝑀  (9) 

𝑀 =
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𝑝

1−𝑝
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⋯
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 (10) 

𝐴 = 𝑌𝑀−1  (11) 

We investigated the difference between the randomized response method and the presently pro-

posed privacy protection method. Figure 2 is a schematic illustration of the proposed method as 

an extension of the randomized response method. In the latter, when the sensing device acquires 

the sensing data, it transmits the true value of the data to the server with a probability p. The 

device also transmits α-1 options different from the true value with a probability 
1−𝑝

𝛼−1
. In the ex-

isting method, the sensing device transmits one option to the server for sensing data acquisition. 

In the proposed method, the transmission is repeated k times, where k is an integer ≥2. 

In the proposed method, because the data is repeatedly transmitted to the server, the total number 

of data transmitted to the server is 𝐷′ = 𝐷𝑘. The relationship between the total number of data 

D and the number of choices α is expressed by Equation (12), where p is the probability of trans-

mitting a true value, and pα (the product of the probability and the number of choices α) is con-

stant. 

𝑅(𝑝𝛼) =
log 𝐷′

log 𝛼
 𝐷′ = 𝐷𝑘  (12) 

By repeating the data transmission k times and increasing the total number of data D, the proposed 

method can achieve the same effect as when a large amount of sensing data is transmitted. 

 

 

 

Figure 2: Outline of the proposed method 
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4 Evaluation Experiments 

4.1 Evaluation Method 

Evaluation experiments were performed to compare the randomized response method and the 

proposed method with respect to their accuracy for restoring the true data value. Jensen-Shannon 

divergence [22] [23] is used as an evaluation scale for restoration accuracy, being a measure of 

the difference between two probability distributions. It is an extension of Kullback-Leibler diver-

gence [21]. 

The Kullback-Leibler divergence between two equal probability distributions is zero, and it in-

creases with increasing difference between the probability distributions. For two probability dis-

tributions P and Q, the value DKL(P∥Q) of the Kullback-Leibler divergence of Q as seen from P 

can be obtained by Equation (13). However, because it does not satisfy Equation (14), it is asym-

metric. 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖) log2
𝑃(𝑖)

𝑄(𝑖)𝑖   (13) 

𝐷(𝑃||𝑄) = 𝐷(𝑄||𝑃)  (14) 

Jensen-Shannon divergence represents an extension of the Kullback-Leibler divergence because 

it enables the determination of the difference between two probability distributions that are con-

sidered symmetric under Kullback-Leibler divergence. For two probability distributions P and Q, 

the Jensen-Shannon divergence value DJS(P∥Q) can be determined using Equations (15) and (16). 

The Jensen-Shannon divergence is symmetric because it satisfies Equation (14). When DJS(P||Q) 

is small, it indicates that the accuracy of the restoration to the true data value is high. 

𝐷𝐽𝑆(𝑃||𝑄) =
1

2
(𝐷𝐾𝐿(𝑃||𝑀) + 𝐷𝐾𝐿(𝑄||𝑀))  (15) 

𝑀(𝑥) =
1

2
(𝑃(𝑥) + 𝑄(𝑥))  (16) 

In using the Jensen-Shannon divergence to evaluate the accuracy of restoration to the true data 

value in this study, we performed one hundred experiments per data set for a given probability p 

and number of options α, and determined the average of the DJS(P∥Q) values. The number of data 

was linearly increase. For example, when the number of options α was 10, the numbers of data 

for the respective options were {1, 2, 3... 10} and the total number of data D was 55. Similarly, 

when the number of options α was 20, the numbers of data for the respective options were {2, 4, 

6... 40} and the total number of data D was 210. Furthermore, to compare the results for the 

different values of α and D, the division data was normalized by D and the restoration accuracy 

was evaluated. 

4.2 Simulation of Randomized Response Method 

First, for the existing methods (randomized response and negative surveys), we performed sim-

ulation experiments to examine how the accuracy of the restoration of the true data value varies 

with increasing number of options α and total number of data D. In the simulations, the probabil-

ity p of transmitting the true value was varies as 0, 
1

5𝛼
, 
1

4𝛼
, 
1

3𝛼
, 
1

2𝛼
, 
2

𝛼
, 
3

𝛼
, 
4

𝛼
, and 

5

𝛼
, relative to the 

number of options α. The probability p of 0 was only applied to negative surveys. 

Figure 3 shows the simulation results for the existing methods with respect to D and α. From the 
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upper left corner, the values of α are respectively 5, 10, and 20, while they are 100 and 200 from 

the bottom left. The y-axis of each graph represents the Jensen-Shannon divergence, with a small 

value indicating high accuracy. The x-axis represents the probability p of transmitting a true value. 

Where the middle line is missing, the probability p becomes 
1

𝛼
, indicating that recovery is impos-

sible. In the graphs, when α=5, D is 15, 30, 75, and 150; when α = 10,  D is 55, 110, 275, and 

550; when α = 20, D is 210, 420, 1,050, and 2,100; when α = 100, 5,050, 10,100, 25,250, and 

50,500; and when α=200, D is 20,100, 40,200, 100,500, and 201,000. 

For a given number of options α, both randomized response and negative surveys exhibit higher 

restoration accuracy with increasing D, and vice versa. In addition, the restoration accuracy de-

teriorates with increasing α. It can therefore be concluded that, for both randomized response and 

negative surveys, the restoration accuracy deteriorates with decreasing D and increasing α. 

 

Figure 3: Restoration accuracies of randomized response and negative surveys for number of 
options α values of 5,10,20,100, and 200) 
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4.3 Simulation of Proposed Method 

In the simulation of the proposed method, if the product of the total number of data D and the 

number of iterations k was the same as the total number of data to be transmitted in the simulation 

of the existing methods, the total number of data D' received by the server would be the same. 

This was an indication of a restoration accuracy equivalent to those of the existing methods. As 

in the simulation of the existing methods, the probability p of transmitting the true value in the 

simulation of the proposed method was varied as 0, 
1

5𝛼
, 
1

4𝛼
, 
1

3𝛼
, 
1

2𝛼
, 
2

𝛼
, 
3

𝛼
, 
4

𝛼
, and 

5

𝛼
, relative to the

number of options α. The probability p = 0 was only applied to negative surveys. The number of 

iterations k in the implementation of the proposed method was also varied as 5, 10, 20, 100, 200, 

and 500. 

Figure 4 shows the simulation results for both the proposed method and the existing methods 

(randomized response and negative surveys), namely, the restoration accuracies with respect to 

the number of options α. From the upper left corner, the α values are 5, 10, and 20, while they are 

Figure 4: Comparison of the proposed method with the existing methods for α values of 5, 

10, 20, 100, and 200, and k values of 5, 10, 20, 50, 100, 200, and 500 
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100 and 200 from the bottom left corner. In each graph, the number of iterations k is varied as 5, 

10, 20, 100, 200, and 500, as indicated by the black lines. The colored lines correspond to the 

existing methods. The y-axis represents the Jensen-Shannon divergence, with a small value indi-

cating a high restoration accuracy. To make each data more distinguishable, logarithmic display 

is employed. The x-axis represents the probability p of transmitting a true value. Where the mid-

dle line is missing, the probability p becomes 
1

𝛼
, indicating that recovery is impossible. The res-

toration accuracies of the different methods were compared by superimposing the results of the 

proposed method on those of the existing methods in the previous section. 

In Figure 4, for α=5 and D=75 in the existing methods, the result is the same as for D=15 and 

k=5 in the proposed method; and for D=150 in the existing method, the result is the same as for 

D=15 and k=10 in the proposed method. In addition, for α=10 and D=275 in the existing method, 

the result is the same as for D = 55 and k = 5 in the proposed method; and for D=550 in the 

existing method, the result is the same as for D=55 and k=10 in the proposed method. Further-

more, for α=20 and D=1,050 in the existing method, the result is the same as for D=210 and k=5 

in the proposed method; and for D=2,100 in the existing method, the result is the same as for 

D=210 and k=10 in the proposed method. For α=100 and D=25,250 in the existing method, the 

result is the same as for D=5,050 and k=5 in the proposed method; and for D=50,500 in the 

existing method, the result is the same as for D=5,050 and k=10 in the proposed method. For 

α=200 and D=10,500 in the existing method, the result is the same as for D=20,100 and k=5 in 

the proposed method; and for D = 201,000 in the existing method, the result is the same as for 

D=20,100 and k=10 in the proposed method. These combinations reveal equal restoration accu-

racies of all the methods. It can also be seen that the restoration accuracy increases with increasing 

k for all α values. 

Figure 5 compares the Jensen-Shannon divergence and R(pα) results for the simulation data in 

this section. The x-axis of the graph represents the Jensen-Shannon divergence, and the y-axis the 

R(pα) value. The colors of the lines correspond to different values of the probability p of trans-

mitting a true value, namely, 
1

5𝛼
, 
1

4𝛼
, 
1

3𝛼
, 
1

2𝛼
, 
2

𝛼
, 
3

𝛼
, 
4

𝛼
, and 

5

𝛼
.

It can be seen from Figure 5 that there is a correlation between the Jensen-Shannon divergence 

and the R(pα) value. When the probability p of transmitting a true value is equal to α, which is 

the product of the number of options α, the restoration accuracy increases with increasing total 

number of transmitted data D. 

4.4 Consideration 

The simulation results reveal that the restoration accuracy for both randomized response and neg-

ative surveys deteriorate with decreasing total number of transmitted data D and increasing num-

ber of options α. However, the simulation results for the proposed method show that the same 

restoration accuracy as the foregoing methods can be achieved when the product of the number 

of data in the existing method, the total number of data D in the proposed method, and the number 

of iterations k in the proposed method are the same. In addition, the restoration accuracy of the 

proposed method increases with increasing k and α. 

The existing privacy protection methods (randomized response and negative surveys) are suitable 

when there is many sensing data and a small number of options, but very unfavorable when there 

is many options and a small number of sensing data. However, the proposed method, which is an 

extension of randomized response, enables the restoration of effectively distributed data in the 
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server, even when there are many options and little sensing data. 

Although the forgoing discussion of the proposed method for privacy protection in participatory 

sensing focused on restoration accuracy, it is necessary to also consider the method from the 

specific viewpoint of privacy protection. Normally, the privacy protection accuracy and the res-

toration accuracy are in a trade-off relationship. The privacy protection precision is the probabil-

ity that the sensor data transmitted by the participant would be correctly estimated when the data 

distribution restored by the administrator is leaked by an attacker. The privacy protection accu-

racy decreases with increasing restoration accuracy. The feature of the proposed method that dif-

ferentiates it from the existing methods is that the data from a given participant is transmitted k 

times. Because an attacker may know the repetition number k, there is the possibility that the 

transmission of the data k times may itself decrease the privacy protection. Although it is possible 

to maintain the restoration accuracy of the proposed method, it is not always possible to maintain 

the privacy protection precision of the existing methods. 

In addition, when participants transmit sensing data using the proposed method, the amount of 

communication increases with the repetition of the transmission k times, and this may constitute 

a burden on the participants. It is therefore necessary to adjust not only the repetition number k, 

but also the probability p of transmitting a true value. 

Figure 5: Comparison of the Jensen-Shannon divergences and R(pα) values for the different 

methods 
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5 Conclusion 

In this study, we developed a privacy protection method for participatory sensing that addresses 

some of the problems of existing methods. Existing privacy protection methods, namely, ran-

domized response and negative surveys, are only suitable for cases with many sensing data and 

a small number of options. However, the proposed method enables effective data distribution in 

the server even when the number of options observed by the sensor is large and the sensing data 

is small. Experimental simulations were used to evaluate and compare the restoration accuracies 

of the proposed and existing methods, with the observations verifying the effectiveness of the 

proposed method. Future studies are to take measures to the amount of traffic increases when 

participants transmit sensing data by the proposed method. 
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