
IIAI International Journal of Service and Knowledge Management
International Institute of Applied Informatics
2019, Vol. 3, No. 2, 48 – 61

Akiyoshi Takahashi *, Hiromitsu Shiina †,
Ryunosuke Ito ‡ , Nobuyuki Kobayashi §

Abstract

We have constructed a learning system by organizing procedures for learning program cre-
ation. However, manually creating procedures for learning systems requires a significant
amount of time. In this study, in addition to automatically generating program procedures
using natural language processing, we generate new program content and procedures by
learning program code and comments through deep learning long short-term memory.

Keywords: Programming learning, Comment Generating, Summarization, Neural Machine
Translation, Encoder–Decoder Translation Model

1 Introduction

Training the ability to utilize information is important for the progress of an information
society. In school education, it is important to enrich information and communications
technology (ICT) education at every stage. Preparation has already begun in elementary,
middle, and high schools; for example, programming education in elementary schools will
be compulsory by 2020 in Japan [1]. Considering programming education for university
students and the connection to ICT education in elementary, middle, and high school, it
is necessary to prepare content for programming education and study its support system.
In particular, it is important in ICT education to operate programs directly on computers;
however, learning computational thinking [2] is more important than learning programming
grammars. Many studies on programming education have been done [3]. As a related study,
there is research on programming education for beginners using operation logs [4, 5].

In computational thinking, we have discussion on the relationship between computa-
tional thinking and logical thinking. Relationship with language management is being
debated [6]. Though, the purpose of this study is to aid in understanding the procedures
for solving problems, we have constructed an algorithm learning system that rearranges
algorithm procedures on a tablet PC [7]. This system is intended for students studying pro-
gramming at the university level. It differs from learning programming language grammar
∗ Graduate Shcoolof Informatics, Okayama Univerity of Science, Okayama, Japan
† Okayama Univerity of Science, Okayama, Japan
‡ Advanced Information Design, Tokyo, Japan
§ Sanyo Gakuen University, Okayama, Japan

Procedure Generation for Algorithm Learning System
using Comment Synthesis and LSTM

and aims to simplify learning algorithms. We have evaluated the use of this system by in-
ternational students at Okayama University of Science in Japan. Creating many exercises
requires time and effort on the part of the lecturer; therefore, a system for automatically
generating these exercises is beneficial and necessary. As a related work in the field of soft-
ware engineering research, there is research on the generation of nouns for programming
comment generation [8]. However, it is not study on the generation of comments.

As the first step, a summarization technology [9, 10, 11] of division, merging, and
paraphrase processing is used for program code comments. Since procedures are similar to
comments, both can be generated automatically. The development of a method using neural
networks has led to the development of natural language translation and sentence genera-
tion. In particular, an encoder–decoder translation using long short-term memory (LSTM
[12]) has been proposed, which improved the translation accuracy. As the second step, pairs
comprising one line of program code and its comments are learned in the encoder–decoder
translation model used for the translation of program code to comments. In addition, LSTM
generates a comment for a new piece of program code. In this study, we used 53 programs
written in the C language used in first year university lectures in Japan. While learning the
computational thinking, it is important to be able to summarize and disassemble the expla-
nation of an algorithm. Although it is not necessary to understand variables in the first stage
of learning, it is necessary to understand the programming language in the second stage. In
particular, it is necessary to understand changes in variables. In addition, since informa-
tion about the variables is insufficient from the program code originally used for learning,
the flow relating to the program variables tends to be difficult to understand. Therefore,
the comment generation process includes the added conversion of variable information of
learning program code and variable names to generate comments by LSTM.

2 Algorithm learning system

Programming involves a number of procedures, such as declaring variables, inputting val-
ues, performing calculations, and outputting results. This programming procedure test
involves converting programming into Japanese and dividing the procedures into several
parts. There is text that rearranges the divided procedures in sequential order so that they
match the flow of the programming. This text is utilized for understanding learning situa-
tions in lectures.

For example, we consider a foreign currency conversion problem that involves creating
a program that takes an amount in yen as input and returns its conversion to US dollars,
pounds, or euros as output. The procedure for solving this problem can be divided into
sections, as shown in Figure 1(a). In this study, we have developed a system for testing the
problem of rearranging this text, as shown in Figure 1(b).

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

49Procedure Generation for Algorithm Learning System using Comment Synthesis and LSTM

Figure 1: Procedure learningtest and sorting procedures

3 Procedure generation through comment synthesis using pro-
gram structures

In the algorithm learning system, procedures are generated by summarizing comments
based on their vocabulary and degree of association with the lecture. material and the
program structure, as shown in Figure 2.

Figure 2: Outline ofprocedure generation system by comment Synthesis

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

50 A. Takahashi, H. Shiina, R. Ito, N. Kobayashi

3.1 Evaluation ofcomment priority

Comment priority can be evaluated based on the following procedure. The overlap of im-
portant words between the comments in the program code and the lecture materials is given
by the F-value, as shown in Figure 3.
(1) Obtain the term frequency inverse document frequency (TF-IDF) in the course material.
(2) Obtain the F-value for important words in the course material and program comments.
(3) Determine the comment evaluation value, which is the total F-value for the words in-
cluded in the comment. This value selects comments with F-values over a certain threshold.

Figure 3: Important word shared by program comments and lecture material by F-value

3.2 Procedure generation using program structure

After deleting the comments , we merge the remaining comments using the merging condi-
tions shown below. An example of the procedure generation is shown in Figure 4.
(1) For an unused function, the comments at its beginning and end are deleted.
(2) Parallel integration: comments at the same level in the program code in which the same
noun is at the end of the statement are summarized as one statement.
(3) Deletion based on F-value: comments with small F-value s are deleted.
(4) F-value priority: lower layer comments are preserved for comments with large F-values.
Figure 5 illustrates the comment synthesis results, using an example of source code.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

51Procedure Generation for Algorithm Learning System using Comment Synthesis and LSTM

Figure 4: Extraction ofimportant comments by F-value

Figure 5: Comment synthesisresults

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

52 A. Takahashi, H. Shiina, R. Ito, N. Kobayashi

3.3 Procedureevaluation based on comment synthesis using program struc-
ture

The deletion rate of the program comments extracted for evaluation was approximately
60%. Additionally, nine participants studying the program participated in a questionnaire
with a five-point rating system (ranging from 1 [bad] to 5 [good]) regarding the following
two questions:
(1) Evaluation of procedure text
(2) Program understanding related to the procedure
The results of this questionnaire are shown in Table 1. In the text evaluation of the question-
naire, half or more of the participants evaluated it as ordinary text; however, when asked
to evaluate their understanding of the content of the program based on this text, many par-
ticipants awarded a rating of 2, which is considerably low. We conjectured that the large
amount of low ratings resulted from the fact that the procedure generation ended with an
initial declaration of variables.

Table 1: Evaluation of generated procedure by F-value

Evaluation(1-5)
Questionnaire

1 2 3 4 5
(1) Evaluation ofprocedure 0% 27% 62% 11% 0%
(2) Program understanding
related to the procedure

0% 46% 43% 9% 2%

4 Procedure generation with LSTM

In cases where the program code contains comments, it is possible to generate procedures
using the summary technology described in the previous section; however, not all program
code has attached comments. Therefore, it is necessary to learn to generate comments
on program code lacking comments from the programs with attached comments. Previous
studies considered using an encoder–decoder translation model [13, 14] that use deep learn-
ing LSTM to translate. In addition, sentnce summarization by neural network is proposed
by Rush [15].

In this study, we use this translation model to translate the program code into comments
and attempt to generate comments and procedures. There are two steps to the process. The
first is the generation of procedures one line at a time from the program code. The second is
the generation of procedures related to program block units across multiple lines, such as if
and while constructs. Procedures pertaining to the program code are generated by learning
using the encoder–decoder translation model via LSTM on the program code and comment
pair discussed in the previous section. In addition, procedures are generated for programs
that do not have attached comments. To generate procedures using the encoder–decoder
translation model, it is necessary to perform preprocessing on the learned data, define the
encoder–decoder translation model, and learn the data. The general flow of the procedure
generation model is shown in Figure 6.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

53Procedure Generation for Algorithm Learning System using Comment Synthesis and LSTM

Figure 6: Encoder–decoder translation model for neural machine translation from com-
ments to procedure

4.1 Preprocessing of learning data of program code and comments.

To learn using the encoder–decoder translation model, it is necessary to separate the pro-
gram source code from the comments. The LSTM model takes a sequence of program
source code tokens as input and a word sequence of comments as X = x1,. . . xi , The
token is converted to the token ID number, and similarly, the word is converted to the word
ID number.

4.2 Encoder–Decoder translation model using LSTM

With LSTM blocks, a sigmoid layer is used, and the information that should and should not
be considered is set to 0 and 1, respectively. Furthermore, the error from the data saved in
advance for the translation pair is lost, and the loss for each LSTM block is accumulated.
Finally, the parameters are learned by performing an error back propagation method on the
loss.
(1) With encoder–decoder translation model αt , a normalization of the degree of similarity

is performed for output ht in relation to yt , and ̄hi on the encoder side. ct creates context
vectors using the degree of similarity obtained with αt and ̄ht .
(2) In the LSTM output using the encoder–decoder translation model, ct and h̄t are linked
to create a vector, and weight is applied with a linear operator. By applying the activation

function tanh to this, the intermediate layer ̌hi is output in relation to yt . Finally, a weight is
applied with a linear operator with respect to ȟi , and ȳ t is output with the softmax function.

4.3 Data learning with a source code comments pair

Learning is performed multiple times using the defined procedure generation model. LSTM
is used for learning data, and screening occurs using the sigmoid layer to select whether
input xi is required. Furthermore, the loss with the accuracy data that was saved in advance
is obtained. The accumulated loss is obtained and the parameter is retained after performing

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

54 A. Takahashi, H. Shiina, R. Ito, N. Kobayashi

an error back propagation method. The retained parameter is passed to the next model and
learning occurs. Additionally, in the LSTM implementations and algorithms, there are
models that generate procedures learned from the tokens and comments for each line and
block of program code.

4.4 Procedure generation and evaluation

Examples of generating 20, 100, and 500 learning times for the model learning by line and
by block are shown in Figures 7 and 8, respectively.
(1) Evaluation of procedures generated by line For procedures generated by line, learning
in terms of comments was not achieved at all after several learning attempts; however,
nearly 20 learning attempts resulted in the desired procedures. After 100 learning attempts,
procedures were properly generated in relation to approximately 80% of all of the program
code. After 500 learning attempts, the procedure generation converged , but in the case
of other procedures repeatedly generated in an unstable way, there was a decrease in the
number of procedures generated with a correct meaning in Japanese.
(2) Evaluation of procedures generated by block
In contrast to procedures generated by line, procedures generated by block were generated
after a smaller number of learning attempts. Those with simple and short blocks or a large
portion of code similar to the learning data were able to generate good code. In contrast, the
procedure generation text that failed either included many words that were not registered as
data or lacked distinct terms. The results were also dependent on the volume of the learning
data.

4.5 Rating using a questionnaire on procedure generation

The results of the manually conducted questionnaire are shown in Tables 2 and 3, and the
following observations can be made based on the ratings.
(1) When rating by line, the participants often understood the meaning of the procedures.
The procedures were considered easy to understand regardless of the flow of the program.
(2) There was a significant difference in results depending on whether all blocks had either
different or nearly identical learning data. This accounts for the clear differences in ratings
indicating whether the procedures were understandable. However, there was a poor result
because the meaning of the important sections of the processing was not understood.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

55Procedure Generation for Algorithm Learning System using Comment Synthesis and LSTM

Figure 7: Example of proceduregenerations

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

56 A. Takahashi, H. Shiina, R. Ito, N. Kobayashi

Figure 8: Procedure generationfor each block of source code by encoder–decoder transla-
tion model

Table 2: Evaluation of generated procedure by line

Line Evaluation(1-6)
number

Generated procedure
1 2 3 4 5 6

Include standard input outputfile
1

標準入力ファイルの読込
0 0 0 0 0 5

Definition of maximum value
2

最大値の定義
0 0 0 0 0 5

Declaration of main
3

mainの宣言
0 0 0 0 0 5

For input string
4

入力文字列用
0 0 3 2 0 1

Declare the integertype variable
6

整数型変数を宣言
0 0 0 0 0 5

Display text prompting
7 input processing 0 0 0 0 0 5

入力処理を促す文章を表示
Enter a character string

8
文字列を入力

0 0 0 0 0 5

Display the input characterstring
9

入力された文字列を表示
0 0 0 0 0 5

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

57Procedure Generation for Algorithm Learning System using Comment Synthesis and LSTM

Table 3: Evaluationof generated procedure by each block

Line Evaluation(1-6)
number

Generated procedure
1 2 3 4 5 6

1–5 none 1 0 0 1 0 3
input processing

7–9
入力処理

0 0 0 0 0 5

Output of outliers
11–17

異常値の出力　
0 5 0 0 0 0

Output of result
19–21

結果の出力
0 0 3 2 0 0

5 Procedure generation with addition of variable information

In computational thinking learning, it is necessary to be able to summarize and disassemble
the explanation of an algorithm. Although it is not necessary to understand variables in the
first stage of learning, it is necessary to understand the programming language in the sec-
ond stage. In particular, it is necessary to know about variable changes. In addition, since
information about the variables is insufficient with only the program code originally used
for learning, the flow related to the program variables tends to be difficult to understand.
Therefore, the procedure generation process is introduced in added conversion of the vari-
able information of the learning program code and variable names to generate procedures
by LSTM. The process of generating procedures including variables is explained separately
for the conversion of learning data and the conversion of test data.
(1) Process learning data variables.
(1-1) Convert the learning program variables into temporary variable names, such as string1
for x(string1 → x) and i for x(i → x).
(1-2) Convert the learning data variable to a temporary variable name (x).
(1-3) Learn data that processes variable information repeatedly.
(2) Process test data variables.
(2-1) Obtain the variable information of each line from the test data to apply it to procedure
generation.
(2-2) Convert the test data variable to a temporary variable name.
(2-3) Generate procedures from the test data whose variables are returned using LSTM.
(2-4) Restore the original variable name from the temporary name in the generated proce-
dure.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

58 A. Takahashi, H. Shiina, R. Ito, N. Kobayashi

Figure 9: Procedure generation by LSTM and procedure conversion after variable name
processing

Figure 9 shows the procedure generation by LSTM, the comment conversion after vari-
able name processing, correctness of generated procedure and correctness of addition of
variable information by five students. We evaluated each line of the generated procedure.
Two questionnaires were administered to five participants in the fourth grade, each question-
naire evaluating the validity of the program and the variable information. The evaluations
of the procedure generation and variable information had high ratings, and the accuracy of
complementing the variable information was also high.

6 Conclusion and future work

In this study, we generated procedures to simplify understanding algorithms. We used
source code and comments as pairs of learning data. It is possible to generate procedures
from a source code when the purpose of the program is limited, such as in the case of
course material. Structure information is not using in learning data pairs. Using parse
data as structure information is an remarkable improvement for generating procedures for
blocking source code. In future research, we would like to extend the translation model
beyond source codes and generate LSTM comments in a merged form, from both textbook
and course information.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

59Procedure Generation for Algorithm Learning System using Comment Synthesis and LSTM

References

[1] Ministry of Education, Culture, Sports, Science and Technology, “Elementary
school programming education guide (2nd edition),” 2018. [Online] Available: http:/
/www.mext.go.jp/amenu/shotou/zyouhou/detail/1403162.htm, [Accessed Nov.15,
2018] (in Japanse).

[2] Ministry of Education, Culture, Sports, Science and Technology. “How to pro-
gramming education at elementary school level (Summary of discussion).” 2016.
[Online] Available: http://www.mext.go.jp/bmenu/shingi/chousa/shotou/122/attach/
1372525.htm , [Accessed Nov. 15, 2018] (In Japanese).

[3] H. Kanamori, T. Tomoto and T. Akakura, “Development of a Computer Program-
ming Learning Support System Based on Reading Computer Program,”Human In-
terface and the Management of Information. Information and Interaction for Learn-
ing, Culture, Collaboration and Business (HIMI) 2013, pp. 63-69, Springer, 2013.
DOI:10.1007/978-3-642-39226-98

[4] K. Okimoto, S. Matsumoto,S. Yamagishi and T. Kashima, “Developing a source
code reading tutorial system and analyzing its learning log data with multiple clas-
sification analysis,”Artificial Life and Robotics, Vol 22, No. 7, pp. 227-237, 2017.
DOI:10.1007/s10015-017-0357-2

[5] S. Matsumoto, K. Okimoto, T. Kashima and S. Yamagishi, “Automatic Generation of
C Source Code for Novice Programming Education, Human-Computer Interaction,”
Theory, Design, Development and Practice 2016, pp. 65-76, 2016. DOI:10.1007/978-
3-319-39510-47

[6] M. Oba, K. Ito,and A. Shimogoori, “Analysis of Correlation between Programming
Skills and Technical Writing Skills,”IPSJ SIG Technical Report, Vol 2015-IFAT-118
No. 2, pp. 1-4, 2015.

[7] K. Sakane, N. Kobayashi, H. Shiina and F. Kitagawa, “Kanji Learning and Program-
ming Support System which conjoined with a Lecture,”IEICE Technical Report,
ET2014-86, Vol. 114, No. 513, pp. 7-12, 2015.

[8] F. Tetsuya, Y. Hayase and K. Inoue, “Generating Descriptions of Nouns in Software
from Program Comments,” IEICE-110, no. 169, pp. 65-69, 2010.

[9] I.Mani and E. Bloedorn, “Multi-document summarizzation by graph search and
matching,” In Proc. 14th National Conferenece on Artificial Intelligence, pp. 622-628
1997.

[10] D. Marcu, “Improving summarization through rhetorical parsing tuning,” In Proc. 6th
Workshop on Very Large Corpora, pp.206-215, 1998.

[11] I. Mani. Automatic Summarization, John Benjamins Pub Co, 2001.
DOI:10.1075/nlp.3

[12] K. Greff, et al., “LSTM: A Search Space Odyssey,”IEEE Transactions on Neural
Networks and Learning Systems, Vol. 28, Issue10, pp. 2222-2232, 2017.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

60 A. Takahashi, H. Shiina, R. Ito, N. Kobayashi

[13] I. Sutskever, O. Vinyals and Q. Le, “Sequence to Sequence Learning with Neural
Networks,” Advances in Neural Information Processing Systems 27 (NIPS 2014), pp.
3104-3112, 2014.

[14] M. Luong, H. Pham and D. Manning, “Effective Approaches to Attention-based Neu-
ral Machine Translation,” arXiv preprint arXiv:1508.04025v5, 2015.

[15] A. Rush, S. Chopra and C. Weston, “A Neural Attention Model for Sentence Sum-
marization,” In Proc. EMNLP 2015: Conference on Empirical Methods in Natural
Language Processing, pp. 379-389, 2015.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

61Procedure Generation for Algorithm Learning System using Comment Synthesis and LSTM

