
Keisuke Yoshida, Tadachika Ozono, Toramatsu Shintani ∗

Abstract

Manual window managements become increased with PCs gaining larger display areas,
greater processing power, and more applications. Therefore, manipulating windows ac-
cordingly and automatically helps us to perform tasks on PCs. In this study, we explored
a prototype window management system called FoXpace. FoXpace uses content on ap-
plication windows and user’s behavior in order to move background windows to optimal
positions according to an active window. FoXpace employs edges in a desktop and user’s
work history to evaluate content on application windows and user’s behavior, respectively.
The edges can be obtained by using image-processing technique. The user’s work history
consists of mouse clicks, keyboard inputs, and application-switches. We developed an al-
gorithm to determine the optimal position of each windows based on edge detection and the
user’s work behavior. This paper shows the development of FoXpace and its evaluations.
We conducted experiments on our algorithm with questionnaires and an eye-tracking de-
vice. We concluded that our window manipulating system can reduce the cost of window
manipulation while performing tasks on PCs.

Keywords: edge detection, eye-movements, user’s work behavior, window management

1 Introduction

In this study, we explored a prototype window manipulating system called the Flexible Opti-
mizing Extraction space (FoXpace). FoXpace finds an empty space on the worker’s display
by estimating the importance of the window regions based on the user’s work behavior. By
allocating the application window to the space, FoXpace reduces the costs of manipulating
windows in workspace design. The workspace is changed to reflect the number and type
of application windows. When using a personal computer (PC) to perform tasks, workers
typically have many application windows open. To perform their tasks effectively, a worker
has to design a workspace by manually managing the windows. Window management has
become more complex with PCs gaining larger display areas and greater processing power.
As the worker performs different tasks, the number and type of applications being used
∗ Department of Computer Science, Graduate School of Engineering, Nagoya Institute of Technology,

Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan

International Journal of Smart Computing and Artificial Intelligence 
International Institute of Applied Informatics 
2017, Vol.1, No.2, P.59 - 75

Developing an Automatic Window Manipulation System
Considering Content on Application Windows and User’s 
Behavior



change and the design of the workspace must be managed accordingly. To improve work 
efficiency, a more flexible mechanism of workspace design is required.

One approach to achieving window opacity or event-transparency is to reflect the avail-
able information[1][2]. This approach increases the visibility of the window contents. The 
cost of manual window management increases if recognition is difficult. Therefore, auto-
mated window management is desirable. This paper presents a definition of an effective 
workspace, and investigates the use of the user’s work behavior in the implementation of 
automated workspace design.

In this paper, we present a study that investigates user’s evaluations of workspaces and 
user’s eye-movement when our system manipulates windows. We have proposed FoXpace 
in the past, but we had not been got feedbacks of it[3]. We carried out questionnaire surveys 
to analyze effectiveness of workspaces designed by our workspace design mechanism. We 
analyzed user’s eye-movement data to discuss user’s cognitive loads.

The remainder of this paper is organized as follows. In Section II, we give a brief 
definition of a satisfactory workspace. We discuss the use of information on the user’s 
work behavior in Section III. Section IV addresses the implementation of the workspace 
design mechanism and identifies future research priorities. We note that designs, results, 
and discussions of experiments about workspaces designed by our system in Section V. 
Finally, Section VI presents our conclusions.

2 Requirements for Workspace Design

Workers often preform multiple tasks in parallel on a PC. Two factors dominate workspace 
design: the combination of applications being used for different tasks and whether win-
dow management can be automated. In this study, we did not address the combination of 
applications, but focused on window management.

Recent operating systems (OSs) such as OS X and Windows 10 include a virtual desk-
top, designed to represent multiple workspaces on the PC. Workers must allocate windows 
on the virtual desktop manually, requiring extrapolation of the combination of applications 
needed for the tasks in hand.

2.1 Discussion toward Manipulating Windows Automatically

Automated window management has two aspects: 1) analyzing the information contained 
in the application window has. 2) Allowing the user to switch applications by directly 
accessing the window. To address the first point, the Window Distinction, Mwd , shows the 
information being displayed, and the visibility of the window is a measure of the display 
space management activity[4]. Therefore, Mwd can be used as a measure of workspace 
design. Note that Mwd does not depend on the language or execution environment being 
used on the PC. 2) A user can switch application by direct window access if such a switch 
is possible using a minimal mouse operation. Switching application methods by mouse 
operation can be achieved by clicking a window directly or by clicking the application icon 
in the taskbar or in Docs[5].

There are two main types of window layouts. One is a tiled window layout, and the 
other is a overlapping window layout. The tiled window layout is any open window is 
fully visible; windows are not allowed overlap. The overlapping window layout is any open 
window is allowed overlap and manipulated position in user’s operations. A tiled window

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

K. Yoshida, T. Ozono and T. Shintani60



layout satisfies both requirements 1) and 2). However, this layout is inflexible with regard
to the number of windows. Automated window management should therefore take into ac-
count the interest of the user in each window. DFW[6] is one way of addressing this. We
focus on an overlapping window layout because this layout has more potential of maximiz-
ing visibility than a tiled window layout[7]. A user should learn techniques to satisfy both
requirements 1) and 2) on an overlapping window layout. These techniques are difficult for
beginners of this layout. Therefore, we discuss an automated window management on an
overlapping window layout.

2.2 Quantity of Information displayed on the workspace

Figure 1: A method of in which only Mwd is used for caliculating a value of information.

Figure 1 shows an example of a method in which only Mwd is used for automating 
window management. In Figure 1, A, B, and C denote the application windows. In the top 
part of Figure 1, B is the active window before the user switches active applications. All 
three windows are visible. A common technique is to make a portion of C visible, to allow

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Developing an Automatic Window Manipulation System Considering Content 61



direct access by mouse click[5][8]. In the bottom part of Figure 1, A is the active window
after the user has switched active applications and updated the position of each window. A
and B are now visible. If the purpose of window management is to increase only Mwd as the
evaluation value, C is hidden behind B. A technique in which that portion of the window
is displayed in automatic window management is not available using only Mwd . For better
automated window management, a method of detecting the importance of the window is
required.

The information that the user is interested in is defined in the Window Interest Map
(denoted as Mwi). This can identify the important region within a window, and the user can
make just a small part of the window visible to allow application switching. The user can
therefore minimize the visible window and optimize the contents displayed in the window.

2.3 Related Works

Many previous studies have investigated ways of increasing the amount of simultaneously
visible information and its accessibility on the screen.

WinCuts allows arbitrary regions of existing of windows to be replicated in separate
windows[9]. WinCuts improves the efficiency of the workspace by manipulating the win-
dow size. This technique provides a user workspace in which only meaningful windows
are displayed. FST and IC are techniques for increasing the visible region by manipulating
the opacity of windows[1][2], allowing users to see the window that is placed behind other
windows. Switchback Cursor is a technique in which the cursor can be moved behind a
window[10], providing the user with a 3D mouse operation. While the active window is
normally in the foreground, Switchback Cursor can operate the window in the background.
Fold-and-drop is a technique based on paper sheet metaphor, in which users can make the
window appear to be folded back[11]. All these approaches attempt to make the workspace
visible and accessible. These studies indicate candidates of parameters manipulated au-
tomaticaly: position, size, opacity, and event-transparency. We discuss how to set these
parameters automatically to increase the window visibility and accessibility.

2.4 Evaluation Value for Workspace Design

In this study, we develop a workspace design to meet the two key requirements set out
above. The importance of pixels consists of level of user interest and distinctiveness of
information. Automatic window manipulation requires a measure to evaluate workspaces.
Therefore, we introduce Mdev(x,y, tc) as a measure of the value of information at pixel (x,y)
and time tc. Mdev is the sum of Mwd and Mwi. Thus, Mdev(x,y, tc) balances the amount of
information displayed and the user interest in the information. To improve the workspace
design, Mdev should be maximized. The effectiveness of the workspace is given by

Evaluation(tc) =
DW

∑
x

DH

∑
y

Mdev(x,y, tc) (1)

The larger the value of Evaluation(tc), the more effective the workspace at time tc. 
Mdev(x,y, t) represents the value of information at pixel (x,y) and time t, and DW and DH 
are the display width and height, respectively. Windows are manipulated to increase the 
sum of Mwd and Mwi, so that Evaluation increases. Mwd and Mwi are measures of the 
distinctiveness of the information and its interest to the user.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

K. Yoshida, T. Ozono and T. Shintani62



We focus on position that is one of the candidate of four parameters: position, size,
opacity, and event-transparency. The positioning of the windows takes into account the
user’s work behavior. Our system manipulates all window of the active widow and inactive
windows. The system operates flexibly, dynamically changing the number and type of
application windows displayed.

3 Importance of Information for Workspace Design

Figure 2: A summary of Mwi and Mwd for calculating the value of information.

3.1 Information Value at Pixels Regarding Content on Application Windows

As noted above, Mdev(x,y,z, t) is a measure of the value of information to the user and the
distinctiveness of that information. Mdev(x,y,z, t) in Equation 2 presents the value of the
information displayed at (x,y)-in the foreground window, and is derived as follows:

Mdev(x,y,z, t) = δ (x,y,z)
{

αMwi(x,y,z, t)+(1−α)Mwd(x,y,z, t)
}

(2)

δ (x,y,z) outputs 1 or 0, showing whether an application window z is displayed in the 
foreground at (x,y), and α is a weight based on the importance of the information dis-
played. In our system, we set α = 0.5 in our experience. We assume that Mwi and Mwd are 
equally important to understand the importance of the information displayed. Mwi, given as 
Equation 3, calculates the user’s level of interest in the information, based on the work 
behavior u(tc) representing the user’s work behavior at the time tc. Mdev is the sum of Mwd

and Mwi. A summary of the operation of Mwd and Mwi is given in Figure 2 and 3. Mwi is a 
matrix of the sum of the user’s work behavior. We call Mwi Window Interest Map. 
Mwi(x,y,z,u(t)) ≥ 0 shows their level of interest in the information presented in a window

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Developing an Automatic Window Manipulation System Considering Content 63



Figure 3: Visualization of Mwi and Mwd when evaluating pixel (x,y).

positioned in the z-th foreground at pixel (x,y) on the display. Mwd(x,y,z, t) ≥ 0 shows
the distinctiveness of the information in the same window, and represents a matrix of the
information windows displayed. We call Mwd Window Distinction Map.

3.2 Level of User Interest Based on User’s Behavior

Mwi derives the level of user interest in the information at (x,y). When a user actively
interacts with a window, this suggests an increase in interest. We use Mwi to reflect a change
in user interest and to restrict the significance of the work behavior. Mwi derives the value
of a pixel from the user’s switching applications, from a mouse click, or from a keyboard
input. Mwi is the sum of ux,y,z, as follows:

Mwi(x,y,z,u(t)) =
T

∑
t j=t

(ux,y,z(t j)) (3)

Equation 3 derives a value for the user’s interest based on the work behavior. Mwi(x,y,z,u(t))
is the sum of ux,y,z(t) for time T , where ux,y,z(t) is the user’s work behavior at time t from
the list of events on the window z, Figure 2. (x,y) shows a pixel in the window z.

In this study, we use mouse and keyboard operation events to represent a user’s work
behavior Mwi. There are three types of events: switching applications, a mouse click, and
a keyboard input. Application switching events comprise clicking the window directory,
clicking an application in the taskbar or Docs, and using a keyboard shortcut (Windows:
Alt+Tab, OS X: Cmd+Tab).

When an application switching is recorded, the Mwi of all new active windows in-
creased. Mouse clicks are recorded unless they involve application switching, and the Mwi

near the pixel at which the event happened increased. Keyboard inputs are also disregarded
if they trigger an application switching. Otherwise, a keyboard input increases Mwi near the
pixel of the most recent mouse click.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

K. Yoshida, T. Ozono and T. Shintani64



Algorithm 1 setting new window position algorithm

1: Input: wnew, tc
2: evaluation← Evaluation(tc)
3: i← 0
4: while isCovered(wnew,w ∈W ) do
5: setPosition(evaluation,wnew, i)
6: i← i+1
7: end while
8: for w′ ∈ {w|isOverlap(wnew,w),w ∈W} do
9: updatePosition(evaluation,w)

10: end for

Figure 3 shows a before-after visualization of the interest level of the information. In-
terest in information in indistinct positions is indicated in light blue. Interest in information
resembles a tab or search form in this example.

3.3 Distinctiveness of Information

Mwd shows the distinctiveness of the information at (x,y). Our system uses an edge detec-
tion technique to extract Mwd , as follows:

Mwd(x,y,z) = EdgeDetection(WindowImagez(x,y)) (4)

EdgeDetection(WindowImagez(x,y)) takes a gray-scale transformation of WindowImagez

and applys edge detection with spatial filtering using the Laplacian filter. Figure 3 shows a
before-after view of edge detection. Areas in red show the pixel of the edges. The system
recognizes both characters and graphics as information. As these have a different color
from the background, differences in color are used to detect borders. Edge detection shows
areas where information is present.

4 Implementation

4.1 Algorithms

In designing the workspace, candidate parameters for automated window management are
position, size, opacity, and event-transparency[1][2][9][14]. Our design takes account of the
legibility of the window, and the position and size are manipulated manually to ensure that
the windows do not overlay each other. An Integrated Development Environment (IDE)
requires the area of the desktop to provide a comfortable work environment. Automatic
manipulation of the size parameter disturbs the user’s work pattern. Opacity and event-
transparency are challenging as the user may become confused. In this study, we focus on
automated manipulation of the window position to optimize its visibility and accessibility.

Our system updates the window position when a new application window is created
or an active application is switched. When a user creates a new application window, the
workspace and Mwd change significantly, reflecting a turning point in the task. Thus, the

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Developing an Automatic Window Manipulation System Considering Content 65



Algorithm 2 setPosition(evaluation,wnew, i)
1: Input: evaluation,wnew, i
2: checkRow← screenWidth/wnew.size.width
3: checkCol← screenHeight/wnew.size.height
4: CA← ⟨⟩
5: for j = 0 to checkRow do
6: for k = 0 to checkCol do
7: for dir ∈ {T L,T R,UL,UR} do
8: wcandidate← candidate(wnew,dir, j,k)
9: wcandidate.score← evalPortion(wcandidate)

10: CA← append(CA,wcandidate)
11: end for
12: end for
13: end for
14: CA← sort(CA)
15: wnew.pos←CA[i].pos

T L:Top Left T R:Top Right BL:Bottom Left BR:Bottom Right

user needs to manipulate the window significantly. If a user switches an active application,
Mwi again changes significantly. Concretely, the user is now less interested in the formerly
active windows and more interested in the currently active window. If two windows are
activated in alternate shifts, Mwi treats these as representing a group for the performance of a
task. When applications are used in parallel, each application window should be maximally
visible. Mwd and Mwi can use the progress of work on a task to reflect the information
needed.

Algorithm 1 gives the setting of a new window position. It ensures that one application
window is not masked by another, and derives the position that maximizes Mdev. The input
values are the creation of a new window Wnew and the current time tc. The algorithm sets
Wnew in an empty space and operates in two steps.

Step 1 sets up a new window in an empty space unless this would mask existing
windows. The function isCovered(wnew,w ∈W ) outputs 1 if this is the case and, 0 oth-
erwise. The function setPosition(evaluation,wnew, i) places the new window in the i-th
emptiest space in the separated displays on the grid. Step 2 detects existing windows
that overlap with the new window. The function isOverlap(wnew,w) outputs 1 if an ex-
isting window overlaps the new window, and 0 otherwise. Algorithm 1 has the function
updatePosition(evaluation,w). This sets the existing window at a position that maximizes
Mdev. These steps take into account that when switching windows with a mouse operation,
the user tends to click on the window directly[5].

When a user switches an active window, the sum of the previously active windows,
Mwi, is increased and that of the newly active windows, Mwi, is reduced. The algorithm that
updates the existing window position when the active window is switched calls-
updatePosition(evaluation,w) in each window that overlaps with the newly active win-
dow. This approach supports the performance of tasks requiring multiple windows. The
algorithm allows each window position to reflect the changed status of the task.

Algorithm 2 sets the window position at the i-th emptiest space in the separated displays

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

K. Yoshida, T. Ozono and T. Shintani66



Algorithm 3 updatePosition(evaluation,wtarget)

1: Input: evaluation,wtarget

2: stopCount← 0
3: current← evaluation
4: while stopCount < 5 do
5: distance← random()
6: CA← ⟨⟩
7: for dir ∈ {T,B,L,R,T L,T R,BL,BR} do
8: wcandidate.pos← move(wtarget ,dir,distance)
9: wcandidate.score← evalAll(wcandidate)

10: CA← append(CA,wcandidate)
11: end for
12: wcandidate←MAX(CA)
13: if current > wcandidate.score then
14: stopCount← stopCount +1
15: else
16: stopCount← 0
17: wtarget .pos← wcandidate.pos
18: end if
19: end while

T :Top B:Bottom L:Left R:Right
T L:Top Left T R:Top Right BL:Bottom Left BR:Bottom Right

in the grid. The inputs are the sum of Mdev at the current time evaluation, a new window 
wnew, and a number of order i. In lines 2 and 3, checkRow and checkCol are calculated 
to separate the displays in the grid. In lines 5 to 13, candidates are selected for the new 
window position and given scores. This algorithm separates the display in grids using 
basing points dir, which are elements of the top left, top right, bottom left, and bottom 
right. candidate(wnew,dir, j,k) outputs a candidate for the separated display in the j-th row 
and k-th column from dir as wcandidate. evalPortion(wcandidate) outputs the sum of a portion 
of Mdev giving a position for wcandidate as a score. append(CA,wcandidate) outputs an array 
that is CA appended to wcandidate. Lines 14 and 15, sort CA with these scores and set wnew 
to the i-th position that has the lowest score in CA.

Algorithm 3 updates the window position. The purpose of Algorithm 3 is to set each 
window as part of a group to perform a common task. The inputs to this algorithm are the 
sum of Mde f at the current time evaluation, and a window wtarget . This algorithm searches 
for a local maximize Mdiv using hill climbing. It sets the window at a position that is local 
maximize of Mdir. In line 5, distance is assigned a random number by random() as the 
moving distance. Lines 7 to 11, line up candidates for new window positions and score 
them. move(wtarget ,dir,distance) outputs a candidate to be moved from dir and distance, 
and evalAll(wcandidate) outputs the sum of Mdev as a score. The candidate with the maximum 
score in CA is selected as wcandidate. If wcandidate has a larger score than the current score 
current, wtarget is updated with wcandidate. If wcandidate has a lower score than the current 
score, stopCount is incremented. The termination condition is that stopCount exceeds a 
value of five, indicating that wtarget has not been recently updated.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Developing an Automatic Window Manipulation System Considering Content 67



4.2 Example

Figure 4: An example of manipulating windows on a new window created.

Figure 5: An example of manipulating windows on an active window switched.

A before-after example of the execution is given in Figure 4 and 5. In Figure 4, window 
A and B existing windows showing a web browser and a PDF viewer. Window C is a new 
window showing a text editor. When the new window is created, it has the least information 
position as its initial position. At this time, the new window is set in a position that overlaps 
with the existing windows, and the overlaid portion is moved to position Mdev, representing 
the local maximum. In Figure 4, window A moves to the top left and window B moves to the 
top right. This example shows our system locally maximizing the amount of information by 
manipulating a single window position. In Figure 5, there are four windows on the desktop.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

K. Yoshida, T. Ozono and T. Shintani68



Window A and B are existing windows showing a text editor with two columns and a PDF
viewer. When a user switches the active window from window A to window B, window A
is overlaid by window B and moves to the left to maximize Mdev. The level of interest in
the information in the indistinct position (indicated in light blue) is six. There is interest
in the information to the right of window A, so window A is moved to the left to show
more information behind the two windows. This example shows how our system retains
the possibility of direct access using a mouse click.

These examples of the execution demonstrate the more effective use of the display area.
Our system increases the amount of information shown in the display, and allows each
window to be directly accessed.

5 Experiment

In this section, we describe our experiments and results on our system. The goal of the
experiments is to evaluate visibility and accessibility of windows in workspaces determined
by our system. First, we explain our experimental setup, then we discuss the results.

5.1 Experimental Setup

We evaluated that our system can improve visibility and accessibility of windows in workspaces.
We conducted questionnaire surveys and eye-movement analysis. In our experiments, sub-
jects evaluated some pictures of workspaces with an eye-tracking device and answered
questionnaire. The subjects were 11 students, consisting of 6 university students and 3
graduated students, 21-23 years old, who are used to managing windows in workspaces.

Table 1: Workspaces.
Workspace A Our system: generated by our system from Workspace B
Workspace B Manual layout: generated manucally
Workspace C Tiled layout: a representative layout method for minimizing empty

space

Table 2: Tasks.
Description Applications

Task 1 developing a web application a Web browser, a text editor, and a Terminal
Task 2 developing a web page a Web browser, a text editor, and a Finder
Task 3 reading a paper two Web browsers, a text editor, a dictionaly,

a PDF viewer, and a Finder
Task 4 making a presentation slide a Web browser, a text editor, a PowerPoint,

and a Finder
Task 5 meeting with online chat a Web browser, and a chat tool

We used the pictures because of applying same experimental environments for all sub-
jects. The size of pictures were 2,560 x 1,440 pixels and the size of the display was 27 
inches. The subjects evaluated 15 pictures, consisting 3 pictures of workspaces in Table 1 
on every 5 tasks in Table 2. Table 1 shows the three types of the workspaces. Workspace 
A was determined by our system, Workspace B was arranged manually, and Workspace C

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Developing an Automatic Window Manipulation System Considering Content 69



was a tiled layout. Table 2 shows the five tasks. In the tasks, users needed to refer multiple
windows in the workspaces and the tasks were often observed in our laboratory. We told a
main window of each task to the subjects in order to evaluate the usefulness of the layouts.
The main window is the most important window on a task.

Table 3: Questions.
Q1 How useful is this workspace to perform the task?
Q2 How much information do you view for performing the task?
Q3 Which window operations are required to improve this workspace?
Q4 How many window operations are required to improve this workspace?
Q5 How many spaces are found to put new windows?
Q6 Which window operations are required before you create a new window?
Q7 How many window operations are required before you create a new window?

The subjects answered the seven questions in Table 3 and free answers during the eval-
uation. Q1, Q2 and Q5 were scored from 1 (worst) to 7 (best). In Q3 and Q6, the window
operations were “move”, “resize”, and “maximize or minimize”. In Q4 and Q7, the options
were “0”, “1 or 2”, “3 or 4”, “5 or 6”, and “7 or more”.

Figure 6: Examples of workspaces: Workspace A, B, C from left to right.

Figure 6 shows an example of the picture workspaces. Workspace A, B, and C in Table
1 are shown from left to right in Figure 6. We shows results of the questionnaire in Figure
7 to 12.

We investigated user’s cognitive loads with user’s eye-movement during automatic win-
dow manipulation because the manipulation may increase the load raised by losing windows
from the user’s sight. We collected eye motion data by using an eye-tracking device Tobii
Eye X1, and then visualized user’s eye movements. In this evaluation, we showed movies
of window management by using our system to the subjects in order to control the experi-
ments. First, we explained performed tasks in the five movies to the subjects. The tasks con-
tained cross-reference tasks. Second, the subjects watched the movies with the eye-tracking
device. Finally, we generated maps of the collected eye movements on workspaces.

5.2 Results

Figure 7 to 12 show results of questionnaires. Figure 13 is an eye-movement map that
represents the frequency of user gazes on locations in a workspace.

Figure 7 shows questionaire results, average scores on Q1, Q2, and Q3. In Figure 7, the
X-axis and Y-axis show questions and an average score of questions, respectively. The three
bars for each question are the average scores for Workspace A (proposed), B (manual), and
C (tiled) from left to right. Workspace A is best for Q5, and it means our method can make

1https://tobiigaming.com/product/tobii-eyex/

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

K. Yoshida, T. Ozono and T. Shintani70



Figure 7: Average scores on Q1, Q2, and Q5.

more space for new windows than the others. The result of Q2 means that Workspace A is
good for the amount of information that users can view. However, the result of Q1 means
the manual window management is better than our method. We discuss the reason why
Workspace A has less score than Workspace B on Q1. A total of nine subjects answered “I
do not want a partially visible main window during the window is active” for Q2 and Q4.
We investigated the difference of Q2 and Q4.

Figure 8: Average scores on each task.

The system made a main window partially visible in Task 2 and 4, a human did not. In 
Task 2 and 4, our system made main windows partially visible. The average scores on Task 
2 and 4 for Q1 are 2.2 and 2.3, respectively. Human PC users move a part of a window to 
out of a display if the window is not a main window, it makes windows partially visible.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Developing an Automatic Window Manipulation System Considering Content 71



Because our system tries to maximize visible content of background windows, the system
also makes partially visible windows. However, our system cannot consider a main window.
On the other hand, the average scores on Task 1, 3 and 5 are 5.4, 4.4 and 6.6, respectively
(Figure 8). In those cases, the workspaces had completely visible main windows. On Task
1, 3 and 5, our method outperforms the manual layout. If we can detect a main window in
a workspace, we can improve our system on partially visible windows.

Figure 9: Averages of participants required to
make a workspace better.

Figure 10: Averages of participants required
to make a workspace better when a new ap-
plication window is created.

Figure 11: Average numbers of window con-
trol required to make a workspace better.

Figure 12: Average numbers of window con-
trol required to make a workspace better when
a new application window is created.

Figure 9 and 10 show averages of numbers of subjects on Q4 and Q6. In this graph, X-
axis shows types of window operations and Y-axis shows an average of numbers of subjects 
who answered the operation is required. Three bars for each question represent Workspace 
A, B, and C from left to right. ”Resize” is required in Workspace C in Figure 9 and 10. 
Tiled layout sets each window to default position and size, however, it ignores application 
functions. It may be good for users because Tiled layout is easy to predict a window posi-
tion and size and to manage empty space for them. Tiled layout depends on only display 
resolution and a number of windows. Figure 9 and 10 indicate that the size of application 
window depends on an application function. Our method may treat application functions.

Figure 11 and 12 show average numbers of window operations on Q5 and Q7. In this 
graph, X-axis is kinds of window control and Y-axis is a average of participants require the 
kind of window control. The average numbers of window control are 2.46 on Workspace A, 
and 2.9 on Workspace B, and 3.1 on Workspace C in Figure 11. These are calculated with

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

K. Yoshida, T. Ozono and T. Shintani72



X-axis items as 0, 1.5, 3.5, 5.5, and 7.5 from left to right in Figure 11. Similarly, average
numbers of window operations are 3.26 on Workspace A, 3.43 on Workspace B, 3.53 on
Workspace C in Figure 12. In Figure 11 and Figure 12, Workspace A is least number
of window operations to improve manually. Therefore, we conclude that our system can
automatically improve workspaces for users.

Figure 13: A map of eye-movements.

Figure 13 shows eye-movements of three participants on our system. The system ma-
nipulated windows during application switches. They saw closed position from the center 
of a display, while windows positioned bottom-left, top-right, and top-left. They had same 
images about the window layout, while our system manipulated windows. Therefore, user’s 
cognitive load is less in manipulating windows automatically.

A map of Figure 13 is similar to 81% of mouse events occurred at the center region 
of display[12]. We got a feedback “I want to put a main application window in center 
of display” from a participant. We indicate that an active window in center of display is 
preferred by users.

5.3 Discussion

In our system, Mdev is the sum of Mwd and Mwi. This allows windows to be accessed 
directly. However, Mwd is equally reflected in meaning less information. For example, in 
an editor like Microsoft Excel, part of the region may represent an empty space to the user, 
but Mwd gives a large value from the edge detection of the ruled region. Mdev requires 
a method of eliminating regular patterns like ruled spaces. Moreover, we should consider 
which application window is main to perform a task from results of experiments. We predict 
that the efficiency of Mdev can be improved by introducing the product of Mwd and Mwi.

Peripheral vision acuity is weaker than central visual acuity. There is a limit to the 
information that can be seen when windows are displayed simultaneously, even when a 
large monitor or multiple monitors are used. When windows are widely separated on a 
large display, switching the gaze between windows alternately is difficult. We closely group 
related windows may improve the user’s work efficiency. Figure 12 shows users prefers to 
the center of a display. Mwi measures user interest in information based on the user’s work 
history, and thus, Mdev may be used to vary Mwi (VARm). As VARm decreases, each interest 
of information is closely.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Developing an Automatic Window Manipulation System Considering Content 73



Files, folders, shortcuts, and applications can be placed directly on the desktop (Desk-
topFolder). DesktopFolder covers almost the complete region of the desktop, and is a spe-
cial folder that can be easily accessed. Users often place temporary files and folders of
projects in progress in DesktopFolder. These are easily accessed by clicking. NMs leave
desktop icons uncovered, allowing direct access[13]. We assume that desktop icons are
important when performing tasks and Mdev should be expanded to include a Desktop Icons
Map Mdi, showing the position of the desktop icons.

In our proposed system, we specifically focused on the position of windows. As noted
above, size, opacity, and event-transparency are also important. A window management
system should understand the user when manipulating the window size automatically. Fig-
ure 8 and 9 show that each application window has proper size in their function. This should
take into account not only resizing of the window but also rescaling. Mwd is changed by
window rescaling, giving an indication of how a window is rescaled.

Mdev is useful for automating the control of window’s opacity and event-transparency.
However, this may also reduce legibility, for example, when translucent characters overlay
other characters. Thus, the automatic opacity and event-transparency need to be controlled
in a way that improves legibility[14].

6 Conclusion

In this paper, we explored a prototype window manipulating system. We presented a defi-
nition of an effective workspace, and discussed the use of a user’s work history to automate
workspace design. We used Mwi to set values from the user’s work history based on ap-
plication switching, mouse clicks, keyboard inputs. We set Mwd based on edge detection.
We defined Mdev as the sum of Mwi and Mwd , and used it to automate window management.
We noted that our questionnaire surveys and eye-movements analysis. In the experiments,
our window manipulation system can reduce the cost of window manipulations on PCs. We
demonstrated that user’s cognitive loads are negligible on automatic window manipulations.
We indicate potential future improvements to automated workspace design.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 15K00422, 16K00420.

References

[1] E. W. Ishak and S. K. Feiner,“ Interacting with hidden content using contentaware
free-space transparency,” in Proceedings of the 17th Annual ACM Symposium on
User Interface Software and Technology, ser. UIST ’04, 2004, pp. 189-192.

[2] M. Waldner, M. Steinberger, R. Grasset, and D. Schmalstieg,“ Importance-driven
compositing window management,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’11. ACM, 2011, pp. 959-968.

[3] K. Yoshida, T. Ozono, T. Shiramatsu,“ FoXpace: Manipulating Windows Based on
the User’s Work History,” in Advanced Applied Informatics (IIAI-AAI), 2016 5th
IIAI International Congress on, 2016, pp. 698–703.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

K. Yoshida, T. Ozono and T. Shintani74



[4] G. Robertson, M. Czerwinski, P. Baudisch, B. Meyers, D. Robbins, G. Smith, and
D. Tan,“ The large-display user experience,”Computer Graphics and Applications,
IEEE, vol. 25, no. 4, 2005, pp. 44-51.

[5] D. R. Hutchings, G. Smith, B. Meyers, M. Czerwinski, and G. Robertson,“ Display
space usage and window management operation comparsons between single monitor
and multiple monitor users,”in Proceedings of the Working Conference on Advanced
Visual Interfaces, ser. AVI ’04. ACM, 2004, pp. 32-39.

[6] H. Shibata and K. Omura,“ Reducing the cost of window operations by docking
windows,”International Journal of Innovative Computing Information and Control,
vol. 9, no. 12, 2013, pp. 4665-4679.

[7] S. A. Bly and J. K. Rosenberg,“ A comparison of tiled and overlapping windows,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’86. ACM, 1986, pp. 101-106.

[8] A. Warr, Ed H. Chi, H. Harris, A. Kusher, J. Chen, R. Flack, N. Jitkoff,“Window
Shopping: A Study of Desktop Window Switching,”in Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, 2016, pp. 3335–3338.

[9] D. S. Tan, B. Meyers, and M. Czerwinski,“Wincuts: Manipulating arbitrary window
regions for more effective use of screen space,”in Proceedings of the CHI ’04 Ex-
tended Abstracts on Human Factors in Computing Systems, ser. CHI EA ’04. ACM,
2004, pp. 1525-1528.

[10] S. Yamanaka and H. Miyashita,“Switchback cursor: mouse cursor operation for over-
lapped windowing,” in Human-Computer Interaction, INTERACT 2013. Springer,
2013, pp. 746-753.

[11] P. Dragicevic,“Combining crossing-based and paper-based interaction paradigms for
dragging and dropping between overlapping windows,” in Proceedings of the 17th
Annual ACM Symposium on User Interface Software and Technology, ser. UIST’04.
ACM, 2004, pp. 193-196.

[12] X. Bi and R. Balakrishnan,“ Comparing Usage of a Large High-Resolution Display
to Single or Dual Desktop Displays for Daily Work,”in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, 2009, pp. 1005–1014.

[13] D. R. Hutchings and J. Stasko,“ Revisiting display space management: Understand-
ing current practice to inform next-generation design,” in Proceedings of Graphics
Interface 2004, ser. GI ’04. Canadian Human- Computer Communications Society,
2004, pp. 127-134.

[14] K. Yoshida, Y. Niwa, T. Ozono, and T. Shintani,“ A method for improving the leg-
ibility of overlay web browsing,” in The Institute of Electronics, Information and
Communication Engineers, vol. 115, no. 381, 2015, pp. 25-30(in Japanese).

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Developing an Automatic Window Manipulation System Considering Content 75




