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Abstract 

In this paper, the structure-entropy-based features are used to describe the energy of the complex 
environment and then the entropy energy is further used to extract the region of the spatial 
structural change. Moreover, by finding the maximum entropy energy of the overlapping area, 
the relative pose between two consecutive frames can be estimated. In the final step, the iterative 
closest point (ICP) is utilized to determine the rigid transformation matrix for the remaining 
region. Extensive experimental results show that the proposed method generates more accurate 
result than that by using the traditional ICP algorithm. 

Keywords: Point cloud, red-green-blue-depth (RGB-D) sensor, rigid transformation, structural 

entropy, three-dimensional (3D) reconstruction. 

1 Introduction 

With the development of three-dimensional scanners [1] and the success of two-dimensional 
simultaneous localization and mapping (2D-SLAM) [2], three-dimensional surface 
reconstruction has been intensely studied recently. The reconstruction technique can be divided 
into two parts, namely, environment reconstruction and object reconstruction. Environment 
reconstruction is a straightforward extension of object reconstruction, which aims to reconstruct 
everything in a scene. 

In comparison with a 2D map, the 3D environment reconstruction provides more 
complete detail about the scene, including rich visual information and 3D geometric shapes [3]. 
3D geometric shapes provide the structural information of the environment, and rich visual 
information helps observer to recognize objects in the environment. In various computer vision 
fields, a rich 3D map has been used in numerous applications, such as robot vision [4], virtual 
and augmented reality [5], and entertainment [6]. 
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Practically speaking, most 3D environment reconstruction approaches have relied on 
expensive 3D scanners, such as laser range finders, suffering from the lack of visual information. 
On the other hand, monocular vision devices are difficult to generate precise and robust depth 
information. However, the appearance of low-cost and reliable 3D scanners, such as Microsoft 
Kinect or ASUS Xtion PRO, provides complementary frames to capture both visual and 
geometric information of environment simultaneously. The complementary frames are called 
RGB-D frames which store RGB and depth variables for each pixel. In addition, the RGB-D 
frame can be transformed into RGB-XYZ point cloud data format. Each 3D scanner has 
different characteristics. For instance, the frames captured by stereo camera have more invalid 
values or noise in depth channel compared to Kinect, especially in environments with sparsely 
textured areas. On the other hand, the resolution of the measured depth estimated by laser range 
finder is more accurate compared to the other 3D scanners. Additionally, the field size  of one 
view affects the quality of 3D map. Each scan can only capture partial area of the environment. 
In order to combine each scan to build a global 3D map, many approaches have been developed. 

Most of the 3D environment reconstruction approaches rely on data registration. By doing 
so, three-dimensional dataset scanned in different viewpoints can be transformed into the same 
coordinate system by aligning overlapping components of these datasets. With providing both 
color and spatial information, humans or robots can easily perceive their environments, such as 
minimal invasive surgery. In general, the task of three-dimension environment reconstruction 
can be divided into three stages: feature descriptor estimation, outlier rejection, and 
transformation estimation. First, feature descriptor estimation is used to find some distinct 
features with their special characteristics. Second, feature outlier removal can remove the 
incorrect corresponding pairs between two consecutive frames. Third, transformation estimation 
uses the correct corresponding pairs to find the transformation matrix which can transfer 
different viewpoint frames into global coordinate.  

In this paper, the proposed method utilizes the structure-entropy-based features to 
describe the energy of the environment. The regions of the spatial structural change are extracted 
by analyzing the structural entropy energy. Then, a new method, called entropy image matching, 
is presented to remove outliers. With finding maximum entropy energy of the overlapping area, 
the relative pose between two consecutive frames can be estimated, which can serve as a good 
initial guess for transformation estimation. In the final step, a rigid transformation matrix is 
determined by implementing the iterative closest point (ICP) method on the remaining regions. 
With the transformation matrix, all of the frames can be transformed into global coordinate and a 
3D virtual map with point cloud format can be identified. Experimental result shows that the 
accuracy of the proposed method is better than traditional ICP algorithm, and the proposed 
method is unaffected by color or even in complete darkness compared to RGB-based feature 
mapping method. 

This paper is organized as follows. The introduction is provided in Section 1 and the 
related literature is surveyed in Section 2. Section 3 presents the key ingredients of the proposed 
three-dimensional environment construction. Sections 4 and 5 provide detailed analysis and 
comparison of the proposed approach on different testing scenarios and Section 6 concludes this 
paper.  

2 Related Work and Literature Survey 
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This section reviews the main category of 3D surface reconstruction of indoor environment and 
surveys related literatures on feature descriptor estimation, outlier rejection, and transformation 
estimation. 

2.1 Three-Dimensional Environment Reconstruction 

In the last few years, many approaches have been focused on 3D virtual environment re-
construction using RGB-D scanner. Generally speaking, these approaches can be divided into 
two distinct parts, namely, dense points matching, and sparse feature matching. Several ap-
proaches align data based on sparse feature points matching, using a number of distinct points or 
features to represent the whole data, and finding the correspondence. Moreover, the algorithms 
can be differentiated based on the types of input data, such as color information, or spatial geo-
metric. For example, the authors in [7] and [8] use ‘pure vision’ to achieve real-time structure 
from motion. A state-of-the-art of sparse feature matching approach is presented in [9], which 
improves the two-stage localization method by fusing the SIFT features and points, and the 
tracking with the RANSAC and ICP algorithms. The joint optimization for both appearance and 
shape can generate a precise localization result. Recently, some approaches replace the SIFT 
features with other robust features, such as the FAST-feature-based version [3], [10] and the 
SURF-feature-based version [11]. More recently, some researchers notice that the feature 
matching algorithms fail in the repetitive patterns environment or no texture area. In order to 
overcome this problem, some researchers introduce geometric information into the registration 
scheme, such as the planar-surface patches extracted from data [12]. 

On the other hand, several approaches use dense points matching method to estimate the 
relative position between two datasets. The concept of dense points matching is different from 
the concept of sparse feature matching, where all points in each dataset contribute to the scene 
alignment. The work of dense points matching is proposed in [13], [14]. A mixture of Gaussians 
is used to fit the distribution of the geometric data, and an approximation of the correlation 
measure is used for a mixture of Gaussians [15]. Furthermore, the screened Poisson surface 
reconstruction is proposed in [16] and used to explicitly incorporate the data points as interpola-
tion constraints. By the improvement, the time complexity of the solver is reduced and it enables 
faster, higher-quality surface reconstructions.   

2.2 Feature Descriptor Estimation 

Estimating features is an essential step to registration. Local features are referred to as in-
terest points or salient points which efficiently reduce the amount of data to be analyzed. Feature 
can be a value, or a vector which is formed by these neighboring points. In addition, features can 
be used to describe the characteristics of color information, geometric shape, or even both of 
color and geometric information. For example, a common color feature using intensity gradient 
of pixel, called scale-invariant feature transform (SIFT) [17], and a modified version of SIFT, 
namely, speeded up robust features (SURF) [18], are used to reduce the computation time. Also, 
color binary features, such as BRIEF [19], ORB [20], BRISK [21], or FREAK [22], aim to re-
duce more computation cost. However, the detection of these RGB features is affected by illu-
mination or area without texture. 

On the other hand, geometric features provide specific parts of a structure model. The 
features are directly operated on the 3D coordinate rather than on the 2D coordinate, such as 
plane estimation [23]. Spin images (SI) in [24] encode surface properties in a local ob-
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ject-oriented system. The 3D shape context in [25] is a 3D extension of the 2D shape context 
descriptor. Signature of histograms of orientations (SHOT) in [26] relies on the definition of a 
repeatable local Reference Frame (RF) to define a signature structure. Fast point feature histo-
grams (FPFH) in [27] are based on the combination of certain geometrical relationships. In ad-
dition, a feature, combining both RGB and geometric information in [28], called geometric and 
photometric local feature (GPLF), uses both the geometric and photometric information of 3D 
point clouds from RGB-D camera and is integrated into a descriptor.  

2.3 Outliers Rejection 

After finding features in the data, the features may be matched incorrectly. That is, possi-
ble outliers might lead to inaccurate results or poor performance, In order to solve this problem, 
outliers must be removed. One of the commonly used methods is random sample consensus 
(RANSAC) [29]. Instead of greedy search for feature matching, RANSAC fits the parameters of 
the feature pair model that are valid for inlier points. It iteratively selects samples to compute a 
6-DOF transform matrix with minimal error metric [27]. Binary features can be efficiently
matched with locality sensitive hashing (LSH) [30].

2.4 Transformation Estimation 

Data registration may consider rigid transformation or non-rigid transformation. Rigid 
transformation estimates relative pose with a 6-DOF transformation matrix. In order to estimate 
a 6-DOF rigid transformation matrix between two consecutive frames, many approaches have 
been proposed. These approaches can be divided into two main parts, namely, correspond-
ence-based, and non-correspondence-based. Correspondence-based matching needs pairwise 
points as inputs, such as singular value decomposition (SVD) [31]. The core idea is similar to the 
least-squares method with more than eight points, leading to an over-determined system. On the 
other hand, non-correspondence-based algorithms estimate pose without prior knowledge of 
association of two consecutive frames. The most commonly used matching algorithm is Iterative 
Closest Point (ICP) algorithm in [32]. ICP finds an optimal rigid transformation matrix by asso-
ciating the closest points between two datasets. However, due to aligning two datasets without 
correspondence, poor initial position or noise affect the correctness of the result. In order to im-
prove the robustness of ICP, many related modified approaches are proposed. For examples, 
point-to-plane (P-L) version of ICP [33] modifies its cost function which minimizes error along 
local normals. One of the other alternative ICP versions is the 3D normal distribution transform 
(3D-NDT) in [34], which uses normal distribution to represent input data and increases more 
robustness to outliers. 

3 Three-Dimensional Environment Construction 

In this section, the proposed 3D environment reconstruction method called Entropy-based fea-
ture ICP (EnICP) is presented. Two of the RGB-D frames are captured from Kinect at time t-1, 
and time t, respectively, to estimate the pose between these two consecutive frames. Thus, the 
first step of the proposed registration method is to estimate the normal vectors for input points, 
and then calculate the entropy of image points. The points with entropy energy are extracted for 
the match task in the next step. According to the output data format of Kinect, a set of ordered 4D 
points are divided into two images, namely, RGB image, and depth image. In this paper, an 
‘Entropy Image’ is proposed and used to remove the outliers, which is used to find the initial 
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pose between two consecutive frames. Finally, the remaining points with entropy energy are 
defined as the target cloud at the previous time t-1, and the remaining points with entropy energy 
are defined as the source cloud at the current time t. Then, the target cloud and the source cloud 
can be used to construct a rigid transformation, estimated by iterative closest point (ICP), and is 
applied to the source cloud to align it onto the target cloud. The results after registration are pre-
sented as the 3D map. 

3.1   Camera Calibration 

The pin-hole model projects a 2D image position f( , )u v  into the 3D real-world coordinate sys-
tem (x, y, z)  by the intrinsic matrix. In order to estimate intrinsic matric of the Kinect device, the 
camera calibration is used in this section. A 3D point in the world coordinate system is denoted 
by (x, y,z)X =   and its corresponding 2D projection in the image plane is denoted by 

( , ,1)m u v= . Then, the relationship between X and m is modeled as Tsm AX= .	The detail of 
the formulation are shown in Eq. (1) – Eq. (3), where A is the intrinsic matrix of the Kinect de-
vice, and s is a scale factor. In this case, s z=  . The general camera calibration procedure re-
quires the orientation of different checkerboard poses. First, the four extreme corners on the 
rectangular checkerboard pattern in the RGB image are selected manually. Based on the two 
similar triangles which are presented in Eq. (1) and Eq. (2), the intrinsic matrix of the Kinect 
device can then be estimated.	
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3.2   Calculation of Feature Descriptor 

In order to filter the data of input point cloud 𝑃, a subset of points 𝑃", which are sampled from 
the points based on the distinct and persist characteristics. Two consecutive clouds could be 
replaced by their subset clouds, and it is more efficient to find the transformation between two 
clouds. However, a distinct and persist characteristics, called feature, is difficult to find. Cur-
rently, many reliable features have been developed. In general, the descriptor of these features 
contains information, coming from its surrounding neighbors. Single value is not robust, and is 
not expressive enough.  

Point feature based approaches can be categorized in two different types, color space and 
spatial space. In color space, one widely used color feature detector and descriptor is the scale 
invariant feature transformation (SIFT). Each SIFT feature point provides the position in the 
image coordinate and the 1×128 descriptor is extracted from its neighbors. The SIFT algorithm 
takes an intensity image as input, the intensity value is calculated from the triplet of value  
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(R, G, B). Also, a number of more recent color features, such as SURF and FAST, provide good 
performance. On the other hand, in spatial space, the feature descripts the geometric change, and 
is extracted from the neighbors. The selection is determined by an absolute distance, such as 
jump edges, and generated by the depth discontinuities or point feature histograms (PFH) de-
scriptors. The mean curvature around the points is generated by using a multiple-dimensional 
histogram based on the relationships between the points and their normal vector.  

As the normal vectors alone do not provide enough information about the geometry, the 
entropy energy, estimated by surrounding points, is used to describe the disorder of normal vec-
tors. The core idea is to extract the points in the region of geometric change, such as the edge 
between wall and ceiling, or the edge of the box. It is almost like edge detector in 3D version. By 
doing this, the extracted points represent the cloud, so that the complexity of the registration 
problem is reduced. However, the region of geometric change is affected by taking different 
value of selecting radius, including the radius of normal vectors estimation and the radius of 
entropy estimation  𝑟.  . The step by step of the entropy-based feature estimation is listed in Al-
gorithm 1.  

Algorithm 1: Entropy-Based Feature Estimation 

Inputs: A point cloud P with n points 

Outputs: Entropy Image I2 with u×v pixels 
Part I. Surface Normal Vector Calculation 
1. Select a point 𝑥6 in Point cloud 𝑃,where i = 1, 2, 3, … , n
2. Select neighboring points 𝑃; of 𝑥6 in a sphere with radius 𝑟<, where j =

1, 2, 3, … ,m
3. 

1

1 (p x )(p x )
m

T
i j i j i

j
C

m =

= - -å , a covariance matrix 𝐶6 is defined 

4. The eigenvector v  of 𝐶6 corresponding to the smallest eigenvalue l  is the ap-
proximation of normal vector of 𝑥6, denoted in

5. Repeat Step 1 until i = n
Part II. Entropy Estimation
6. Select neighboring points 𝑃@ of 𝑥6 in a sphere with radius 𝑟. , where k =

1, 2, 3, … ,M
7. The inner product of normal vectors of 𝑥6 and 𝑃@ are stored in 𝑞6,@
8. The histogram of quantized intensity values 𝑞6,@ with bin size Bis generated as

follows: 
,

1( ) hist( , )i k i kp q n n
Q

= , where 
,1 ,2 ,M...i i iQ q q q= + + +

9. 
,

, ,(x ) (q ) log (q )
i k

i i k i k
q

Entropy p p= - ×å , the entropy of 𝑥6 can be estimated. 

10. Repeat Step 1 until i = n
When 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥6) ≠ 0, then 𝑥6 ∈ 𝑃", because of the characteristics of Kinect
data format, the 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥6) can be reshape in u×vdimension, where u×v = n,
then, a entropy image 𝐼.  is generated.

3.3   Entropy Image Matching 

In this section, the entropy image matching process for two consecutive frames is used to reject 
the remaining entropy outliers and guess an initial position for the ICP algorithm. Although the 
frames can be down-sampled by extracted entropy points in the region of geometric change, the 
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problem of outliers still exists. In order to remove the outliers between two consecutive frames, 
the entropy image matching method is proposed to solve the problem of outliers. 

In the first step, two of the consecutive entropy images are selected. Then, the selected 
entropy images are named as target entropy image and source entropy image. The target entropy 
image is extracted at the previous position, and, the source entropy image is extracted at the 
current position. The problem of translation between two frames can be solved by finding the 
best overlapping area with the largest entropy energy, and is defined in Eq. (4). 

,
( ) (u , v , t) (u, v, t 1)E i j E

i j R
F x f x x fa

Î

= × + + × -å (4) 

* argmax (x)
x

x F= (5) 

where (x , x )i jx =  is a shift motion vector between two consecutive frames x , xi j  in the pixel 
space. In order to provide a roughly initial guess for ICP,  x , xi j  in pixel space must be trans-
formed into the real world coordinate by the intrinsic matrix. a  is the weight factor, and usually

1a = .

3.4   Geometric Relationship Estimation 

After finishing the outlier rejection and initial position guessing, the geometric relationship be-
tween the remaining points with entropy energy, defined as the target cloud at the previous time 
t-1, and the remaining points with entropy energy, defined as the source cloud at the current time
t is estimated by the iterative closest point (ICP) algorithm. Geometric relationship estimation is
also called data registration, which brings datasets acquired from different arbitrary poses into
the same coordinate system. A consistent global 3D map is generated by finding a proper rotation
matrix and translation vector between two consecutive frames. Figure 1 shows the process of
registration between two individual point cloud data acquired from different views. Figure 1(a)
shows that an individual scan is captured in different view, red arrow represents camera center at
time t-1, and blue arrow represents camera center at time t. Figure 1(b) shows that an individual
point cloud have transformed into the same coordinate. In this case, a point cloud captured at
time t is transformed into the coordinate of time t-1. The  3 3´  rotation matrix R  and the 3 1´
translation vector T are estimated by the ICP algorithm. Every source cloud and every target
cloud are assumed to be a rigid body, the relationship between source cloud and target cloud is
formulated as follows:

t sP R P T= ´ + (6) 

where sP   is defined as the source cloud, and tP   as the target cloud. Then, the transformation
matrix can be written as a 4 4´  matrix as follows:

11 12 13 1

21 22 23 2
1,

31 32 33 30 1
0 0 0 1

t t

R R R T
R T R R R T

M
R R R T-

é ù
ê úé ù ê ú= =ê ú ê úë û
ê ú
ë û

 (7) 

where 1,t tM -  is the transformation matrix used to transform a data acquired at time t  into time
t-1 coordinate system. However, a global consistent point cloud map consists of different arbi-
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trary poses data, the data should be transformed into global coordinate system. Then, the trans-
formation matrix from Eq. (7) can be modified as follows. 

0,1 1,2 2, 1 1, 1,
1

...
t

t t t t t i i
i

C M M M M M- - - -
=

= =Õ (8) 

where tC  , a global transformation matrix, transforms a data acquired at time t into the global
coordinate system. Therefore, a global consistent 3D point cloud map is built by each individual 
transformed point cloud, and can be formulated as follows: 

1 1

global local
t t
global local

global localt t
t t t tglobal local

t t

X x
Y y

C P C P
Z z

é ù é ù
ê ú ê ú
ê ú ê ú= Þ =
ê ú ê ú
ê ú ê ú
ë û ë û

(9) 

(a) (b) 
Figure 1: The process of registration between two individual point cloud data acquired 
from different views. 
(a) Captured an individual scan in different view, red arrow represents camera center at
time 𝑡 − 1, and blue arrow represents camera center at time 𝑡. (b) An individual point
cloud have transformed into the same coordinate. In this case, a point cloud captured at
time t  is transformed into the coordinate at time 1t - .

4 Experimental Results and Analysis 

In order to evaluate the performance of the 3D environment reconstruction algorithm, a test 
sequence of overlapping data, captured at regular laboratory area, is built. The experimental 
scene is constructed with a size of 3m×3m×2m as shown in Figure 2. To evaluate the perfor-
mance, the Kinect sensor is mounted with a laser scanner (Hokuyo URG-04LX-UG01) as shown 
in Figure 3(a). The checkerboard is set behind the Kinect sensor as shown in Figure 3(b). The 
Kinect sensor is moved by the given commands according to the grid sheet with the resolution 
1cm×1cm on the ground, shown in Figure 3(c) and 3(d). In addition, the pan angle is given by the 
angle gage of the cradle head of BENRO BH0 tripod, as shown in Figure 3(e). The coordinate of 
experimental dataset is defined as follows: the X axis is parallel to the ground and the white wall, 
and the Y axis is perpendicular to the ground, and the Z axis is parallel to the ground and per-
pendicular to the white wall. The camera trajectory is composed by five paths as shown in Figure 
2. 

The set of experimental data consists of 24 camera poses, including Kinect RGB-D data, 
laser data, and calibration image: 
1. In Path 1, Camera moves in the X axis by -0.05m, -0.1m, -0.15m at each step.

Transformation
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2. In Path 2, Camera moves in the Z axis by +0.05m, +0.1m, -0.05m, -0.1m at each step.

3. In Path 3, Camera moves in the X axis by 0.1m and rotates 7.5° until it reaches 15°.

4. In Path 4, Camera moves in the X axis by 0.1m and rotates 7.5° until it reaches 30°.

5. In Path 5, Camera moves in the X axis by 0.1m and rotates 7.5° until it reaches 90°.

The bottom picture in Figure 2 illustrates the above-mentioned camera poses.

Figure 2: Experimental scene. 

The implementation of the proposed EnICP method is divided into five stages. The first 
stage is data acquisition. That is, the frames captured from the environment to be mapped. The 
captured frames must contain overlapping areas between two consecutive frames. At the second 
stage, the normal vector calculation estimates the normal vector for each point. The result of 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
Figure 3: Experiment platform and accessories. 
(a) Kinect sensor with HOKUYO laser scanner. (b) Kinect sensor with checkerboard. (c) The
grid sheet with resolution 1cm X 1cm. (d) The grid sheet in the experimental scene. (e) The
cradle head of BENRO BH0 tripod. (f) All apparatus in the experimental scene. (g) DSLR
camera as the supervisor. (h) The viewpoint of DSLR camera with checkerboard.
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normal vector calculation is shown in Figure 4(b). At the third stage, the entropy estimation 
extracts the structure region with entropy energy. According to Algorithm 1, the set of neighbors 
in a sphere of radius r_N is defined as 0.05m. Also, the entropy searching radius r_E is defined as 
0.025m. The result of entropy estimation is shown in Figure 4(c). In order to provide a good 
visualization, the regions with the top 25% entropy energy are labeled with red, those of the 25% 
- 50% entropy energy are labeled with orange, those of the 50% - 75% entropy energy are labeled
with yellow, those of the final 75% - 100% entropy energy are labeled with green, and the re-
gions without labeling color denote no entropy energy. The fourth stage is entropy image
matching. Because of the Kinect data format, a 3D point cloud can be projected into one 2D
image plane.  The process of projection is shown in Figure 5. Figure 6 shows two of the entropy
images taken at different locations for r_N=0.05m and r_E=0.025m. The estimated energy of
entropy is shown and the extracted points are exactly at the edge of spatial change.

The process of entropy image matching can be divided into two stages. The first stage is 
searching with large range, that is, 10 pixels at each iteration. The second stage is the searching 
with precise range, that is, 1 pixel at each iteration. The result of motion vector is regarded as the 
initial position of the ICP algorithm. Figure 7(a) shows the process of finding maximum entropy 
energy from Figure 6. The red area represents source entropy image, and the green area repre-
sents target entropy image. The white area is the overlapping area. The matching result is shown 
in Figure 7(b). The result shows the translation between target entropy image and source entropy 
is 75 pixels in horizontal and 1 pixel in vertical. The red area represents source entropy image, 
and the green area represents target entropy image. The white area is the overlapping area be-
tween two consecutive frames. The points out of the overlapping area are regarded as outliers. 
However, the ICP algorithm can converge to local minima when the given initial position is bad. 
In order to avoid the local minima, the result of shift path can serve as a good initial guess for the 
ICP algorithm. 

(a) (b) (c) 
Figure 4: Sample result of feature descriptor calculation. 
(a) The original scene. (b) The original scene with normal vectors. (c) The structure region
with entropy energy. To provide a good visualization, the regions with top 25% entropy
energy are labeled with red, those of the 25% - 50% entropy energy are labeled with orange,
those of the 50% - 75% entropy energy are labeled with yellow, those of the 75% - 100%
entropy energy are labeled with green, and the regions without labeling color mean no en-
tropy energy.
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Figure 5: The illustration of projection of Kinect data. 

(a) (b) 
Figure 6: These two parameters 𝑟< and 𝑟.  of Entropy Image.  
The radii of neighborhood selection are assigned as follows: 𝑟< = 0.05𝑚 and 𝑟. = 0.025𝑚. 
The extracted points are exactly distributed over the edge of geometric change.  

(a) (b) 
Figure 7: (a) The process of finding maximum entropy energy matching. (b) The matching 
result between two consecutive frames. 

Furthermore, the Kinect RGB-D data can be used to reconstruct a 3D map.  The registra-
tion of individual point clouds estimated with different 3D environment reconstruction methods 
are plotted onto the world coordinate with point cloud format using Point Cloud Library [35]. 
Figure 8 shows the mapping result of the ICP algorithm. It is obvious that the 3D map of ICP 
does not align together. The result of ICP fails to consistently combine the sequential poses, due 
to the effect of the outliers. The same sequence estimated by the proposed EnICP method is 
shown in Figure 9. Figure 10(a) shows the experimental scene, Figure 10(b) shows the 3D map 
reconstructed by EnICP, and Figure 10(c) shows the local view of 3D map reconstructed by 
EnICP. The result by EnICP has better alignment than that by ICP. Figure 11 shows the recon-
struction result by the RGB-RANSAC algorithm. Figure 11(b) shows the misaligned place in the 
red circle. Figure 11(c) shows the local view of RGB-RANSAC algorithm. Figure 12 shows the 
result given by the camera localization. The mapping of camera localization in the first 10 data 
without rotation pose is shown in Figure 12(a). It provides good result, but the data are misa-
ligned in last 14 frames. Figure 12(b) shows the result of camera localization. Figure 13 shows 
the top view of all the 3D environment reconstruction methods in this thesis. Figure 13(b) shows 
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the result of RGB-RANSAC algorithm in the Z component has better performance. 

The qualitative and quantitative results in this section demonstrate various aspects of the 3D 
environment reconstruction performance, including the dense point-to-point ICP (ICP), the En-
tropy feature-based point-to-plane ICP (EnICP), the RGB feature-based RANSAC mapping 
algorithm (RGB-RANSAC), the camera localization (Camera), and the ground truth laser data. 
The result of ICP is worse in this experiment compared to the other localization approach, espe-
cially when data have rotation pose. That is because the ICP algorithm needs a good initial pose 
between two consecutive frames, and does not have the ability of rejection outliers. The per-
formance of the proposed EnICP method is close to the result of the RGB-RANSAC algorithm. 
In order to generate a better result, the RGB-RANSAC needs an environment filled with rich 
visual information. On the other hand, the EnICP needs a structure environment to estimate the 
entropy energy. In this experiment, the EnICP method helps improve performance when the ICP 
method does not have sufficient initial pose information. Another benefit of using EnICP has an 
ability to reject outliers by entropy image matching. The RGB-RANSAC result has better per-
formance in X-axis and Z-axis, and worse performance in Y-axis. The result of camera localiza-
tion shows that the method only has a good performance when the Kinect moves in one dimen-
sion. The localization by given command has a better performance in this experiment. 

(a) (b) 
Figure 8: The misaligned 3D map reconstructed by ICP algorithm in different viewpoint. 
(a) The misaligned result of ICP. (b) The top view result of ICP.

(a) Step 0 (b) Step 6 (c) Step 12 (d) Step 18
Figure 9: The mapping result of the proposed EnICP method. 

(a) (b) (c) 
Figure 10: The 3D environment map by the proposed EnICP method. 
(a) The experimental scene. (b) The 3D map reconstructed by the proposed EnICP method.
(c) The local view.
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(a) (b) (c) 
Figure 11: The reconstruction result by the RGB-RANSAC algorithm. 
(a) The 3D map reconstructed by the RGB-RANSAC algorithm. (b) The misaligned place

in the red circle. (c) The local view result.

(a) (b) (c) 
Figure 12: The reconstruction result given by the camera localization. 
(a) The 3D map reconstructed from first 10 data which has no rotation pose by the camera
localization. (b) The misaligned 3D map, generated from the 24 data. (c) The local view.

(a) ICP (b) EnICP (c) RGB-RANSAC

(d) Camera localization (e) Command (f) Laser ground truth
Figure 13: The top view of 3D map generated from all the 3D environment reconstruction 
methods: ICP, EnICP, RGB-RANSAC, camera localization, command, laser ground truth. 

5 Testing and Comparison on ASL Datasets Repository 

This section presents the testing result and related comparison on the dataset from the Autono-
mous Systems Lab (ASL) at the Swiss Federal Institute of Technology Zurich [36]. The pro-
posed entropy-feature-based ICP algorithm, EnICP, is tested with laser registration datasets - 
apartment - recorded using laser Hokuyo UTM-30LX with scan angle 270°, angular resolution 
0.025°, and the guaranteed range from 0.1 m to 30 m. The dataset represents a sequence of in-
door apartment structured environment taken from the laser scanner. It is available online at [37]. 
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The global position is recorded from a theodolite from Leica Geosystems, which measures one 
location at a time, and provides ground truth at each camera pose. 

In order to evaluate the result of proposed EnICP algorithm, the ground truth which pro-
vided from ASL datasets repository is used for comparison, and the result of using traditional ICP 
algorithm is also compared. In this experiment, four samples, #20, #21, #22, #23, from the da-
taset are used, which are captured at the office of the apartment. The point cloud map of these 
four sets of data is shown in Figure 14 (a)-(d). The entropy of these data points are then computed 
and shown in Figure 14(e)-(h).  These results demonstrate that the extracted region of the spatial 
structural change are the edge between walls and ceiling, the edge of window, the edge of desk, 
the edge of sofa, and the edge of chair. 

(a) #20 (b) #21

(c) #22 (d) #23

(e) #20 (f) #21

(g) #22 (h) #23
Figure 14: (a)-(d) The point cloud map captured from laser scanner and (e)-(h) The entropy 
of these data points. The extracted region of the spatial structural change are the edge be-
tween walls and ceiling, the edge of window, the edge of desk, the edge of sofa, and the edge 
of chair. 
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The numerical comparison is shown in Figure 15, where the results of using the ICP and 
EnICP localization approaches are individually compared with the ground truth. The X-, Y-, and 
Z-axis components of the laser position are estimated by different 3D environment reconstruc-
tion algorithms, i.e., the blue inverted triangle signs represent the ICP result, the red square signs
represent the EnICP result, and the green star signs represent the ground truth provided by ASL
datasets repository. The Euclidean distance error is shown in Figure 15(d). The performance of
the proposed EnICP algorithm is better than that of the traditional ICP algorithm. The mean error
by EnICP is 0.025m and the mean error by the traditional ICP algorithm is 0.0593m.

(a) (b) 

(c)	 (d)	
Figure 15: The results of ICP and EnICP localization comparing to the ground truth. 
(a) X-axis component, (b) Y-axis component, (c) Z-axis component, (d) the Euclidean dis-
tance error.

The point cloud generated by the traditional ICP and the proposed method EnICP are 
shown in Figure 16(a) and 16(b), respectively. The result shows that the performance of EnICP is 
better than traditional ICP. 
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(a)	 (b)	 (c)	
Figure 16: The top view of 3D point cloud map. 
(a) by traditional ICP, (b) by proposed EnICP, (c) the ground truth.

Finally, to find the relative positions and features in the overlapping area between target 
cloud and source clouds, the performance of different overlapping ratios are discussed. Here, the 
overlapping ratios: 10%, 50%, and 90%, are tested. The dataset of the Office cloud has been 
divided into two parts, the target cloud is in the red region, and the source cloud is in the green 
region. The overlapping area between the target cloud and the source cloud is defined by the 
overlapping ratio and denoted as the white area. Figure 17 shows the top view of the mapping 
results. Figure 17(a), 17(d), and 17(g) show the target, the source, and the overlapping clouds, 
Figure 17(b), 17(e), and 17(h) show the mapping results by using the traditional ICP approach, 
and Figure 17(c), 17(f), and 17(i) show the mapping results by using the proposed EnICP ap-
proach. The numerical registration error is summarized in Table 1.  These results show that, with 
increasing the overlapping ratio, the mapping results become more precise. In addition, the result 
of the proposed EnICP approach is more robust than the traditional ICP approach. Generally 
speaking, with the structure-entropy features, the performance affects by outliers can be im-
proved. 

Table 1: The numerical Registration Error (meter) of Euclidean Distance 
Overlapping Ratios By ICP Approach By EnICP approach 

10%	 1.9826	 1.6571 
20% 1.6574 1.5457 
30% 1.4562 1.5139 
40% 1.3144 1.3899 
50% 1.1320 0.9814 
60% 0.8278 0.4706 
70% 0.5318 0.2177 
80% 0.2934 0.0519 
90% 0.0399 0.0073 

100% 0.0003 0.0000 
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(a)	 (b)	 (c)	

(d) (e) (f) 

(g) (h) (i) 
Figure 17: The top view of mapping results with different overlapping ratios. 
(a)-(c), (d)-(f), (g)-(i): 10%, 50%, 90%.  
(a), (d), (g): The target, the source, and the overlapping clouds. 
(b), (e), (h): By the traditional ICP approach. 
(c), (f), (i): By the proposed EnICP approach. 

6 Summary 
In this paper, a three-dimensional surface reconstruction of indoor environment based on struc-
ture-entropy feature is proposed. The proposed method uses new concept to descript the feature 
of spatial change. The original frames can be replaced by points with the entropy energy, not only 
increasing the robust of the proposed method, but also reducing the computation. And the en-
tropy image matching can reject outliers efficiently and provide a rough initial position for ICP. 
Experimental results demonstrate that the accuracy of the proposed method is better than tradi-
tional ICP algorithm. And the proposed method is unaffected by color or even in complete 
darkness compared to RGB-based feature mapping method. Moreover, the experiment of dif-
ferent overlapping ratio has also been presented. The result shows that the proposed method is 
more robust than the traditional ICP algorithm. The proposed method can not only be used on 
Kinect data, but also on other sensors which provide the spatial geometric information. Most 
complete mapping systems have a closed-loop form architecture, such as the detection of loop 
closures and globally consistent alignment of all frames. With the feedback of error, the mapping 
system performs more robust. Although the performance of the proposed method is better than 
the traditional ICP algorithm, the accumulating error still increases with number of frames. The 
proposed method can be improved with implement of global optimization algorithm, such as 
sparse bundle adjustment. Moreover, the proposed method only can be implemented in static 
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environment. A framework of dynamic environment is the next work of this thesis. An experi-
ment of localization can be conducted with a same scene. Through the same scene captured by 
different viewpoints, the effect of outlier can be reduced. Then, the result only can be affected by 
the characteristics of the mapping algorithms.  
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