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Abstract

The present paper aims to demonstrate the existence of simplification forces in neural net-
works. These simplification forces can be represented by the simplest network, called “pro-
totype.” To extract the prototype, we need to identify necessary and important information
during learning. The structural potentiality has been proposed to reduce information, aim-
ing to reduce unnecessary information, but one of its problems lies in excessive information
reduction. To preserve important information, we need to maximize or at least weaken the
excessive information reduction. To solve this problem, we introduce a new potentiality
called “selective potentiality,” which allows us to move a focus field where a group of con-
nection weights can be flexibly reduced. This method aims to replace the troublesome
contradictory operations of potentiality reduction and augmentation with more concrete
and manageable ones. The method was applied to an artificial dataset, in which linear and
non-linear relations were introduced. The results confirmed that selective potentiality could
be increased to weaken structural potentiality reduction. The selective potentiality showed
strong forces of simplification throughout the entire learning process. By seeking the sim-
plest prototype, additional results were obtained, where networks tried to infer the outputs,
enhancing both linear and non-linear inputs for better generalization.

Keywords: structural potentiality, selective potentiality, moving focus, prototype, interpre-
tation

1 Introduction

1.1 Simplification and Prototype

The present paper aims to demonstrate that there are strong forces for the simplification of
network configurations in neural networks. The simplest form is realized by the prototype,
which has the simplest network configuration, and all surface networks are assumed to be
generated from this prototype network through transformational rules. One of our primary
objectives is to determine whether we can extract this prototype from actual multi-layered
neural networks.

The simplification principle seems to be observed in a variety of phenomena, for exam-
ple, in terms of implicit bias or regularization toward simpler solutions [1]–[7]. In neural
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networks, the components and learning mechanisms are considerably simplified, realized by
imitating only a tiny fraction of our cognitive functions. This inherent simplicity certainly
contributes to their success in various applications, because it has been easy to develop
the partially imitated functions to the extreme point. Considering this fact, the simplicity
principle, here stated, seems to be more easily accepted. Technically, this simplification
principle has the merit that the interpretation of neural networks becomes much easier.
Due to complicated network configurations and input patterns, the interpretation becomes a
troublesome problem in neural networks. If the simplification in terms of prototype is valid,
the actual interpretation process becomes much easier because all we have to do is to un-
derstand the simplest form of networks and how to transform them into more complicated
surface ones.

1.2 Structural and Selective Potentiality

To extract the presumed simplest prototype concealed within complex surface networks,
we have developed a structural potentiality method to reduce the complexity of connection
weights. This structural potentiality primarily aims to reduce weight complexity, with the
expectation of eliminating unnecessary information. However, as the method may not ad-
equately consider the quality of information in connection weights, important information
could be lost during the potentiality and complexity reduction processes.

To address the issue of excessive information reduction caused by the structural po-
tentiality reduction, we propose a new type of potentiality, termed “selective potentiality.”
Rather than simply reducing the structural potentiality, the selective potentiality actively
controls a specific group of weights for controlling the potentiality. In essence, this method
aims not to increase potentiality but to mitigate the impact of potentiality reduction. In terms
of information content, we try to combine and unify information maximization and mini-
mization by controlling the focused fields for potentiality reduction. Although reconciling
potentiality reduction and augmentation may seem challenging, the selective potentiality
addresses this issue by controlling a field, focusing on a group of connection weights to
be reduced. This flexible control of focused fields enables the realization of potentiality
maximization within the framework of potentiality minimization. In other words, we aim
to replace the problem of potentiality reduction and augmentation with the problem of mov-
ing focused fields. The ambiguous nature of potentiality reduction and augmentation can
be replaced by a more concrete operation involving the movement of focused fields. This
selective potentiality is expected to solve the problem of excessive information reduction,
where information can be reduced while keeping important information intact.

1.3 Outline with Main Contributions

Then, we here outline the paper with our main contributions as follows:

• This paper attempts to demonstrate the existence of simplification forces in neural
networks by considering the simplest form of a prototype.

• Because the simplest prototype should retain necessary and important information,
we need to carefully select important information from available information. The
structural potentiality method has focused on information reduction to reach the pro-
totype. However, this reduction does not necessarily guarantee the acquisition of
necessary information.
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• To mitigate the force of structural potentiality reduction, we introduce selective po-
tentiality to resolve the contradiction between potentiality reduction and augmen-
tation by moving focused fields. The moving focus aims to control the groups of
weights to be reduced, corresponding to the potentiality control.

• The selective potentiality was applied to an artificial dataset with both linear and
non-linear inputs. The results confirmed that the increase in the selective potentiality
entailed a moderate increase in the structural potentiality during the structural poten-
tiality reduction process.

• The method produced estimated prototypes that were significantly closer to the sup-
posed prototype. In addition, improved generalization was observed by enhancing
both non-linear and linear relationships.

• The final results confirmed that the selective potentiality could be used to increase the
structural potentiality while simultaneously reducing it. The interpretation process
was simplified by relying on the prototype interpretation, and improved generaliza-
tion was achieved by enhancing both important linear and non-linear inputs.

2 Related Work

2.1 Prototype-based Interpretation

The prototype finding attempts to transform the diverse interpretation approaches of neural
networks into the interpretation of the simplest network, hidden behind a great number of
surface neural networks. One of the major challenges in neural networks lies in solving the
difficulty of understanding their inference mechanism. Even if multi-layered neural net-
works demonstrate success in prediction, we may encounter unexpected problems in actual
processing due to the incomprehensibility of the final inference. To address this problem,
numerous interpretation methods have been proposed [8]–[13]. From our perspective, the
majority of these methods seem to be oriented towards local interpretation [14], meaning
that they attempt to understand the inference mechanism for a specific input, although some
have sought to interpret neural networks globally [15], [16]. For these diverse surface net-
works, correspondingly a large number of local interpretations may be required. However,
when we examine the components of neural networks, one of their most important charac-
teristics is simplicity. All elemental components, such as units and connection weights, are
relatively simple to interpret, even though complex components may be employed in re-
cent developments of convolutional neural networks [17] and natural language processing
models [18]. Neural networks have achieved significant success in applications by focus-
ing on a small fraction of our cognitive functions. This simplicity has been a key factor in
accelerating their remarkable development.

2.2 Selectivity and Selective Attention

Prototype finding is based on increasing the potentiality of neural network to select impor-
tant information, which is realized by a new measure of selective potentiality. Our selective
potentiality tries to focus on specific groups of connection weights to be weakened. The se-
lectivity is one of the major principles to regulate the behaviors of neural networks, where
a specific neuron tends to respond to specific inputs [19], [20]. This is because the acqui-
sition of specific behaviors of neurons should be one of the major characteristics of neural
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networks. Then, there have been many studies to use the selectivity principle in neural
networks, cognitive sciences and neurosciences [21]–[25]. In particular, the selective at-
tention, focusing on specific parts of inputs, has been widely used in the natural language
processing and vision [18], [26]–[28]. Those methods should be classified as the passive
selectivity detection, where the selectivity is based on an idea that a neurons respond well to
a specific input. A neuron should be chosen selectively by responding to an specific input.
When we adopt this idea of selectivity, the selectivity of neurons should be represented by
a great number of different types of selectivity, corresponding to different input patterns.

On the contrary, our selective potentiality is a mechanism inherent to neural networks,
meaning that neural networks should have an ability to focus selectively on their compo-
nents. The components are not selected by specific neurons but a network can choose which
inputs should be responded by some specific components. The selectivity in this paper is
derived not from the specific inputs but from the specific components in neural networks.
This eventually means that we try to understand the limitations of neural networks beyond
which it is impossible to continue the learning processes.

2.3 Mutual Information

In addition, our selective potentiality is closely related to attempts to unify information
maximization and minimization. This is because the potentiality has been developed to ap-
proximate the well-known entropy function for easier computation and understanding. In
learning theory, the entropy, on which our proposed potentiality is based, has played one of
the most important roles from the beginning [29]. Actually, learning has been considered
a process of entropy reduction, or in our terms, potentiality reduction. However, a process
of learning has turned out to be a more complex process mixing entropy minimization and
maximization. Then, in neural networks, mutual information has gained more popularity
in describing learning processes [33]–[36]. In the formulation of mutual information, there
exist two types of entropy, and to maximize mutual information, entropy should be maxi-
mized, and at the same time, conditional entropy should be minimized. Because of those
contradictory operations inside mutual information and the computational burden, mutual
information seems to be not appropriately used in describing learning since the pioneering
work by Linsker [30]–[32].

Furthermore, a more complex formulation of mutual information has been well ac-
cepted in neural networks in the name of the information bottleneck [37]–[43]. In those
methods, mutual information should be minimized to have compact representations, but
mutual information should be maximized to have enough information for predicting the
outputs. As mentioned above, one of the major problems of those methods is that it is
quite challenging to compromise entropy maximization and conditional entropy minimiza-
tion and even more challenging to compromise mutual information maximization and mini-
mization. Though the computational burden of those methods exists, some important results
were reported, related to this paper. For example, stochastic gradient descent should have
two learning phases, namely, a fitting phase to increase target information and a compres-
sion phase to decrease input information [44]. Our results in this paper show that there
exist two learning phases: prototype and non-prototype phases. Those two phases seem
to be similar to those described by the information bottleneck principle, though they differ
from those of the information bottleneck in terms of the acquisition of the simplest form in
the first place.

As discussed above, mutual information has produced many important results in learn-
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ing, but it has the serious problem of computational burden and serious contradictory oper-
ations inside mutual information. Our method of selective potentiality seems to solve this
problem. First, the computational burden of entropy is replaced by a simpler potentiality
function, behaving similarly to the entropy. More importantly, the meaning of processing
information becomes clearer. Actually, we try to minimize the structural potentiality, cor-
responding to the entropy, and at the same time to maximize it. Because the compromise
between two contradictory operations is quite challenging, we try to replace this optimiz-
ing operation with the operation of moving focus. The structural potentiality is forced to
decrease as a property of potentiality, but by controlling the size and strength of weights to
be selectively focused on, the potentiality reduction is weakened.

2.4 Least Effort Principle

Finally, we should mention the relations between simplification forces and the least effort
principle in quantitative linguistics [45]. This principle states that human linguistic behavior
should be governed by the least effort, realized by the relations between word frequency and
its rank. This linguistic phenomenon has been applied to many other fields [46]–[52], and
the ubiquitous presence of this principle has been gradually confirmed.

This paper tries to show the existence of simplification forces in multi-layered neural
networks. For simplification, a variety of facts and experimental results have been accumu-
lated, related to these simplification forces from different viewpoints such as architecture,
optimizing methods, initialization, and so on [1]–[7], [53]–[61], to cite a few. Mainly, they
have tried to explain, from technical viewpoints, the fact that generalization cannot be de-
graded even if the network architecture becomes more complicated and overparameterized,
contrary to our intuition. Then, there are a number of different hypotheses for explaining
this implicit simplification.

Contrary to those hypotheses from technical viewpoints, we think that the simplification
is due to the collective principle of our cognitive behaviors. This least effort principle shows
that simplicity is inherited by the collective properties of our behaviors, which neural net-
works try to imitate. The reason why neural networks have produced seemingly successful
results in many applications is that they try to simplify relations among many components
inside as much as possible, and only this extreme simplification is the cause of good results
of neural networks over many applications. Paradoxically, for dealing with complicated
data sets, any components should be as simple as possible.

3 Theory and Computational Methods

3.1 Concept of Selective Potentiality

As mentioned above in the section on the related work, there is almost always a serious
contradiction in information control in neural networks. First, this contradiction can be
solved or, more exactly, weakened by focusing on simpler aspects. For example, we have
almost always tried to resolve one factor among many contradictory ones to be optimized.
From the pioneering studies on the mutual information-theoretic methods by Linsker [30],
we have tried to deal only with one factor in mutual information, where the entropy is al-
most always maximized, without considering the corresponding conditional entropy due
to its simplicity. Thus, mutual information maximization has been replaced by simple en-
tropy maximization. Second, multiple contradictory terms are adjusted by introducing a
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Figure 1: An example of network configurations with different moving focuses by the se-
lective potentiality control.

controlling parameter to compromise contradictions between them. As mentioned above, 
the information bottleneck has principally adopted this approach [37].

Contrary to those methods, we propose a new method that involves replacing the con-
tradiction with more concrete and manageable operations. In our method, the potentiality 
increase and decrease, corresponding to information minimization and maximization, are 
replaced by the operation of how many weights should be focused on. This operation can 
actually control a new type of potentiality, called “selective potentiality.” The selective 
potentiality is introduced to compromise between potentiality reduction and augmentation. 
Figure 1 shows a concept of selective potentiality, where we try to examine which con-
nection weights should be focused on. The selective potentiality aims to determine which 
connection weights are focused on by controlling the selective parameter. For example, in 
the upper figure, only the connection weights on the upper s ide are focused o n, then the 
figure i n t he m iddle s hows t hat t wo g roups o f c onnection w eights o n t he u pper s ide are 
focused on. Finally, in the lower figure, three groups of connection weights are focused 
on. The selective potentiality tries to change the focus point and its width flexibly. This 
moving focus field can be directly related to the structural and selective potentiality change. 
Naturally, as the number of weights to be focused on decreases, the potentiality tends to 
increase eventually by definition. By this method, potentiality reduction and augmentation 
can be controlled more concretely by controlling the number of weights to be focused on.

3.2 Difference in Structural and Selective Potentiality

The structural potentiality is introduced to describe the complexity of connection weights, 
and this potentiality is used to define the selective potentiality introduced here. We will ex-
plain the main differences between structural and selective potentiality roughly, with more 
computational procedures provided in the next section. Figure 2 shows the structural (a) 
and selective (b) potentiality as a function of the structural parameter βstr. As can be seen 
in Figure 2(a), the structural potentiality decreases gradually as the structural parameter 
increases. On the other hand, in Figure 2(b), the selective potentiality is plotted. One of 
the main characteristics is that the selective potentiality decreases in the beginning and then
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Figure 2: Structural potentiality (a) and selective potentiality (b) as a function of the struc-
tural parameter βstr.

Figure 3: Individual structural potentiality as a function of simple individual potentialities, 
when the structural parameter βstr increased from 0.01 to 10.

begins to increase. This means that when we can use relatively larger structural param-
eter values, the selective potentiality can be increased, and correspondingly the structural 
potentiality does not necessarily increase but at least its reduction force can be weakened.

Let us explain more concretely how the potentiality can be changed. Figure 3 shows 
the individual structural potentiality when the structural parameter increases from 0.01 to 
10 from top left to bottom right. When the parameter is 0.01, all the individual structural 
potentialities are close to their maximum value. As the parameter increases, the number of 
smaller individual structural potentialities becomes larger and larger. This means that the 
structural potentiality tries to reduce the number of stronger connection weights as much as 
possible. Finally, only one connection weight with the strongest potentiality remains, while 
all the other weights become close to zero. Compared with conventional weight decay, 
this reduction is stronger, eliminating as many weights as possible. However, this structural 
potentiality reduction is sometimes too strong, causing the problem of eliminating important 
connection weights. To solve this problem, we introduce the selective potentiality.

On the contrary, Figure 4 shows the individual selective potentiality when the structural 
parameter increases from 0.01 to 10. When the parameter increases from 0.01 to 0.2, the
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Figure 4: Individual selective potentiality as a function of simple individual potentialities, 
when the structural parameter βstr increased from 0.01 to 10.

selective potentiality is close to the structural potentiality, though minimum values are dif-
ferent. Then, when the parameter increases from 0.5 to 10, the focus field for the reduction 
in terms of lower potentiality values gradually moves from left to right. We call this phe-
nomenon “moving focus.” As explained below, both the structural and selective potentiality 
are the sum of individual potentialities. As the structural parameter increases, the width of 
the focus field becomes smaller and s maller. This means that the number of stronger indi-
vidual potentialities increases, leading to an increase in the selective potentiality in terms 
of the sum of all individual potentialities. In actual learning cases, this has the effect of 
pushing some stronger weights toward smaller ones, which can be related to the reduction 
of structural potentiality. Roughly speaking, the selective potentiality can be increased by 
increasing the structural parameter. At the same time, even in those cases, the structural 
potentiality tends to reduce its potentiality.

3.3 Structural Potentiality

Before going into details on the selective potentiality, we need to explain the structural 
potentiality, on which the selective potentiality is based. The structural potentiality is in-
troduced to reduce the complexity of connection weights. We now consider a hidden layer 
from the nth layer to the n + 1th layer, termed (n,n + 1). The individual structural poten-
tiality is defined by using the absolute values of connection weights:

u(n,n+1)
jk =| w(n,n+1)

jk |, (1)

where, for simplicity, all connection weights are supposed to be larger than zero. Then, the
relative individual structural potentiality can be obtained by dividing the individual poten-
tiality by its maximum value:

g(n,n+1)
jk =

u(n,n+1)
jk

max j′k′ u
(n,n+1)
j′k′

, (2)
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where the maximum operation is over all connection weights in the layer. The parametric
form of the individual structural potentiality is obtained by raising the individual poten-
tiality to the power of the structural parameter βstr. We introduce a new function “str” to
simplify the following notation and to clarify which variables are focused on by hiding the
structural parameter, because the structural parameter is always present in the formulation
of structural potentiality. Then, the structural potentiality is defined by:

str
(

g(n,n+1)
jk

)
= power

(
g(n,n+1)

jk ,βstr

)
, (3)

where the function power(x,a) means raising x to the power of a. By summing all relative
individual structural potentialities, we have the final form of structural potentiality:

G(n,n+1) = ∑
jk

str
(

g(n,n+1)
jk

)
. (4)

As explained above, the structural potentiality decreases gradually as the structural pa-
rameter increases. The structural potentiality is introduced principally to reduce its strength
for reducing the complexity of connection weights. In addition, we aim to replace the well-
known entropy with this structural potentiality for simpler computation and interpretation.
When all the individual potentialities become the same, the potentiality becomes maximum.
On the other hand, when one individual potentiality becomes larger than any other ones, the
structural potentiality becomes smaller. Compared with entropy, the potentiality is simpler
without logarithmic functions inside, and the meaning of potentiality can be more easily
understood. For example, when entropy is maximized, all the probabilities should be the
same, irrespectively of the strength of connection weights. When the structural potentiality
is maximized, the strength of all the corresponding weights should be maximized.

This potentiality can be used to change the strength of connection weights simply by
multiplying the weights by the corresponding individual structural potentialities. Then, the
weight change aims mainly to reduce the structural potentiality:

w(n,n+1)
jk (t +1) = str

(
g(n,n+1)

jk

)
w(n,n+1)

jk (t), (5)

where the weight at the (t + 1)th learning step can be obtained by multiplying the weight
by the corresponding individual structural potentiality. By the use of simplified notation for
the structural potentiality str(g(n,n+1)

jk ), this method tries to replace the connection weights
with the corresponding potentialities. We should note that the multiplication by the weight 
is only for making learning easier, and it is possible to eliminate it in the actual learning. 
However, the parameter setting becomes challenging, and we adopt this weight multiplica-
tion for easy implementation at the present stage.

3.4 Selective Potentiality and Selective Focus Moving

The selective potentiality aims to see and determine which connection weights should be 
selectively focused on. As shown in Figure 2(a), the structural potentiality decreases when 
the structural parameter βstr increases. On the contrary, the selective potentiality decreases 
initially and then gradually increases as the structural parameter increases, as shown in 
Figure 2(b). Thus, it is possible to increase the potentiality by choosing larger structural 
parameter values. We should note that we do not necessarily increase the structural po-
tentiality directly, but since the selective potentiality is based on the structural potentiality, 
changes in the selective potentiality naturally affect the structural potentiality.
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Now, let us define the selective potentiality for the (n,n + 1) layer. The individual
selective potentiality is obtained by raising the individual structural potentiality to the power
of itself:

sel
(

g(n,n+1)
jk

)
= power

(
str

(
g(n,n+1)

jk

)
,str

(
g(n,n+1)

jk

))
. (6)

By summing all the individual selective potentialities, we have the final form of selective
potentiality:

H(n,n+1) = ∑
jk

sel
(

g(n,n+1)
jk

)
(7)

Now, weights at the t +1th learning step can be obtained by multiplying the weights at the
tth step by the corresponding potentiality:

w(n,n+1)
jk (t +1) = sel

(
g(n,n+1)

jk

)
w(n,n+1)

jk (t). (8)

As shown in Figure 4, the selective potentiality’s focus moves gradually from left to
right as the parameter increases. When the structural parameter is small, the potentiality
focus is similar to the structural potentiality in Figure 3, where, as the parameter becomes
smaller, all individual potentialities become the same and flat, close to maximum potential-
ity. Then, as the structural parameter increases gradually, the focus point moves to the right,
meaning the focus is on larger individual potentialities except the maximum ones. The po-
tentiality is not effective for the maximum individual one, but the strength of the surround-
ing individual ones is effectively reduced. This may be closely connected with soft-type
competitive learning, and this property is one of the main differences between potentiality
and other regularization methods. We should reiterate that the selective potentiality method
tries to reduce connection weights except the maximum one, which makes learning more
stable because, without this property, the weights become smaller and smaller. The selec-
tive potentiality is introduced to determine which connection weights should be focused on
with the very flexible control of reducing the strength of connection weights.

4 Results and Discussion

4.1 Experiment Outline

The data set was artificially created by imitating the input variables of the actual bankruptcy
data set [62], focusing on the clearer understanding of the inference mechanism of neural
networks, as shown in Figure 5. We prepared seven input variables, and one of the major
characteristics is that the first three input variables were created with three different types
of random values, and used without any modifications. However, the remaining four inputs
were modified through the non-linear transformations of the original inputs. For example,
input No. 4 was created based on the sigmoid function, input No. 5 was created based on
the squared function, input No. 6 was based on the square root function, and input No. 7
was based on the uniform distribution with different ranges. We tried to examine how the
selective potentiality control detects those complicated relations, distinguishing between
linear and non-linear ones.

The number of inputs was seven, the number of hidden layers was ten with ten neurons
for each hidden layer, and the number of input patterns was 1,000. We used the Pytorch
program package with the default parameter setting for almost all cases to easily reproduce
the final results presented here. The activation function was the ReLU function because we
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Figure 5: Supposed prototype (left) with the corresponding weights by the normalized cor-
relation coefficients of training data set (right).

could produce clearer results with this activation function. The following results were all 
the averages obtained by five different t rials, randomly chosen, for each parameter value. 
As the prototype is supposed to be the simplest one, the connection weights of the proto-
type were computed by taking the correlation coefficients between inputs and targets of the 
training data set, as shown in Figure 5. Then, we tried to estimate the supposed prototype 
by compressing multi-layered neural networks with ten hidden layers. For the procedures 
of compression, see Appendix A.

The main findings can be summarized as follows:

• The results confirmed that while the structural potentiality decreased, the selective
potentiality increased. In addition, when the structural potentiality decrease was
weakened, generalization accuracy increased gradually.

• In all cases, the ratio potentiality, measuring similarity to the supposed prototype,
took higher values in the beginning of learning. In the later stage of learning, the ratio
potentiality decreased, but by the selective potentiality control, the ratio increased
again. This means that the strong forces of simplification could be clarified for the
entire learning step by controlling the selective potentiality.

• By examining individual ratio potentialities, the network tried to extract a non-linear
input in the first place, and then linear inputs were focused on. Finally, when the
structural parameter was ten with the best generalization, the network tried to enhance
both linear and non-linear inputs. This means that to improve generalization, the
properties of both linear and non-linear inputs must be enhanced.

• These results confirmed that the detection of the simplest prototype was related not
only to easier interpretation due to the simple and linear relations but also to the
discovery of important relations beyond the prototype for better generalization.

4.2 Potentiality and Generalization

The results showed that the structural potentiality decreased and, at the same time, the selec-
tive potentiality increased. Generalization performance was improved when the structural
parameter increased. Note that we present the results when the structural parameter was
larger than six because we had better results only when the structural parameter was larger
than six.

Figure 6 shows the structural potentiality (left), selective potentiality (middle), and gen-
eralization and validation accuracy (right) as a function of the number of steps (epochs).
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Figure 6: Structural potentiality (left), selective potentiality (middle), and generalization 
and validation accuracy (right) as a function of the number of steps, when the conventional 
method without the selective potentiality control was used (a), and the structural parameter 

βstr increased from 6 (b) to 10 (f).

When the conventional method without selective potentiality control was used in Figure 
6(a), the structural potentiality decreased, but it remained at a relatively high level through-
out the entire learning process. The selective potentiality in the middle decreased and re-
mained unchanged in the later stage of learning. Generalization accuracy (right) increased 
immediately but moderately and remained unchanged in the later stage of learning. The 
structural potentiality decreased gradually, and the selective potentiality increased gradually 
when the number of learning steps increased and when the structural parameter increased 
from 6 (b) to 10 (f). In addition, we observed that the decrease in structural potentiality 
and the increase in selective potentiality were gradually weakened as the structural param-
eter increased. The effect of the selective potentiality decreased as the structural parameter 
increased because the size of the group of connection weights to be focused on became
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smaller when the structural parameter increased. Generalization accuracy increased step-
by-step, and when the structural parameter increased, generalization tended to increase.
When the structural parameter was 10 in Figure 6(f), the highest generalization accuracy
was obtained.

The results confirmed that although the effect of selective potentiality decreased, we
observed that the structural potentiality decreased and, at the same time, the selective po-
tentiality increased. Eventually, generalization performance improved as the structural pa-
rameter increased gradually.

4.3 Ratio Potentiality

The ratio potentiality (see Appendix C), similarity to the supposed prototype, became higher
in the beginning for all cases, meaning that the prototype was detected in the beginning of
learning by all methods. By using the selective potentiality, after the first peak in the ratio
potentiality, the higher values of ratio potentiality continued to be observed in the later stage
of learning. This means that the forces of simplification continued to exist throughout the
entire stage of learning, which could be found by the selective potentiality control.

Figure 7 shows the ratio potentiality (left), KL-divergence (middle), and correlation co-
efficients between estimated and supposed prototype (right) as a function of the number of
learning steps. When the conventional method was used in Figure 7(a), the ratio potentiality
increased in the first place and then remained unchanged in the later stage of learning. The
divergence in the middle increased at the beginning of learning and became much smaller
in the later stage of learning. The correlation coefficients (right) increased immediately to
higher values and remained unchanged. The conventional method could detect the existence
of the prototype in the beginning of learning. Figure 7(b) to (f) shows the results when the
structural parameter increased from 6 (b) to 10 (f). The ratio potentiality increased rapidly
in the beginning of learning and then decreased considerably. Finally, it increased again
and remained unchanged, keeping relatively higher values, in the later stage of learning.
This means that by the selective potentiality control, the ratio potentiality showed a ten-
dency for a large increase in the beginning, a large decrease in the middle of learning, and
finally a large increase at the end of learning. The correlation coefficients (right) showed
the same tendency of increase and decrease, though the variation in correlation coefficients
was smaller compared with the ratio potentiality. However, the divergence in the middle
could not necessarily detect the tendency, because the divergence produced much higher
values in the beginning due to the unbounded property of divergence.

The results confirmed that the selective potentiality control successfully detected the
prototype in the beginning and, even in the later stage of learning, the ratio potentiality be-
came higher, showing the detection of the prototype even in the later stage of learning. This
means that there exists a strong force for simplification in learning. The ratio potentiality
could show this tendency more clearly than the divergence and correlation coefficients.

4.4 Individual Potentialities and Rotation

The results confirmed that the signed individual structural potentialities or normalized con-
nection weights became close to the supposed prototype. Then, by increasing the structural
parameter βstr or through the rotation of ratio potentialities, the number of strong potential-
ities became smaller and smaller. This simplification of final ratio potentialities helped us
understand which inputs the networks tried to use for producing the outputs.
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Figure 7: Ratio potentiality (left), divergence (middle), and correlation coefficient between 
estimated and supposed prototypes (right) as a function of the number of steps (epochs), 
when the conventional method was used (a), and the structural parameter βstr increased 

from 6 (b) to 10 (f).

Figure 8(a) shows signed individual structural potentialities or normalized connection 
weights, when the structural parameter was set to 10 with the best generalization. As can 
be seen in the figure, t he p otentialities w ere c lose t o t he s upposed p rototype e xcept for 
input No.4 in Figure 5. To more easily clarify the characteristics of those potentialities, 
we tried to change them by controlling the structural parameter for the ratio potentiality. 
When the structural parameter for the ratio potentiality increased from 0.1 (b) to 10 (e), the 
number of strong potentialities became smaller. This process of enhancement can be called
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(a) Signed individual potentiality

(b) Individual ratio potentiality (beta=0.1)

(c) Individual ratio potentiality (beta=1)

(d) Individual ratio potentiality (beta=2)

(e) Individual ratio potentiality (beta=10)

Figure 8: Signed individual structural potentialities (a) and individual ratio potentialities, 
when the structural parameter βstr for the ratio potentiality increased from 0.1 (b) to 10 (2).
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“potentiality rotation,” and it can be used to examine which inputs are more important than
the others. When the structural parameter was 0.1 (b), all individual structural potentialities
were approximately the same. When the parameter increased to 1 (c), input No. 6 remained
relatively stronger in the initial stage of learning, and in the later stage of learning, the
linear inputs No.2 and 3 tended to be relatively higher. When the structural parameter
increased to 2(d), in the later stage of learning, the linear inputs No.2 and 3 tended to be
more accentuated. Finally, when the parameter was 10 (e), initially, the non-linear input
No.6 was detected, and gradually the linear inputs No.2 and 3 were accentuated. In the
final stage, the linear inputs No.2 and 3 were weakened, while the non-linear input No.6
remained strong. This means that to achieve the best generalization, the linear and non-
linear inputs should be jointly enhanced, and they should cooperate with each other.

The results showed that the selective potentiality could produce the estimated network
close to the supposed prototype. In addition, by increasing the structural parameter, the
number of strong ratio potentialities became small for easier interpretation.

4.5 Rotation of Ratio Potentialities

We show that by rotating the ratio potentialities, we can understand how networks tried to
use specific inputs for better generalization.

Figure 9 shows the individual ratio potentialities by the conventional method (a), and
when the structural parameter increased from 6 (b) to 10 (d). In all cases except the con-
ventional method, the structural parameter for the structural potentiality was kept at 10 with
the best generalization, as explained in the previous section. As shown in Figure 9(a), by
the conventional method, the non-linear input No. 6 was strongly detected, and two linear
inputs No. 2 and 3 were very weakly detected. This means that the conventional method
focused on only one non-linear input No. 6 from the beginning. When the structural pa-
rameter increased from 6 (b) to 10 (d), in addition to input No.6, inputs No. 2 and 3 were
detected. When the parameter was 6 (b), the non-linear input No. 6 was considered impor-
tant, and only in the final stage of learning the linear inputs No. 2 and 3 were enhanced.
When the parameter increased to 7 (c), the linear inputs No. 2 and 3 appeared earlier, with
700 learning steps. Finally, when the parameter increased to 10 (d), the linear inputs No.2
and 3 were combined with the non-linear input No. 6 from the middle of learning to produce
the best generalization.

The rotation of ratio potentialities made it clear that the enhancement of linear and
non-linear inputs was important for better generalization. In addition, increasing the struc-
tural parameter means that the selective potentiality control tried to extract linear inputs in
the middle of learning, accompanied by the enhancement of non-linear inputs. This also
indicates that the strong force for simplification was present in the middle of learning.

5 Conclusion

The present paper aimed to unify potentiality reduction and augmentation in one frame-
work. This unification is urgently needed to extract important information while excluding
unnecessary information to obtain the simplest prototype, hidden in the deepest level of
neural learning. The unification is realized by proposing a new type of potentiality called
“selective potentiality” to flexibly control a group of connection weights whose strength
should be reduced. We applied the selective potentiality to an artificial dataset, imitating
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(d) Beta=10

(c) Beta=7

(b) Beta=6

(a) Conventional

Figure 9: Individual ratio potentialities, when the conventional method was used (a), and 
the structural parameter βstr was increased from 6 (b) and 10 (d).
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the actual bankruptcy dataset, incorporating linear and non-linear inputs. The results con-
firmed that the selective potentiality could be increased, while the structural potentiality
decreased. By increasing the structural parameter, the force to detect the prototype in-
creased gradually. Then, by rotating the potentialities, we could see that both linear and
non-linear inputs were focused on for predicting the outputs. These results mean that the
simplest prototype detection was related to improved interpretation due to the simplicity of
the prototype to be interpreted. The rotation of potentialities showed the importance of the
combination of linear and non-linear inputs for improved generalization.

For future directions, we should mention three points. First, we used a structural param-
eter larger than six because we could obtain better results for those higher values. However,
we need to examine the final results when the structural parameter is relatively small, for
example, less than one. Second, as discussed in the section on the related work, the selec-
tive potentiality is close to selectivity and attention, which has received much attention due
to the success of natural language processing. We need to examine how the selective poten-
tiality can be used to control the attention in neural networks. Finally, we should use larger
and practical datasets for evaluating the final results of our method. We used the artificially
created dataset for clearly showing the performance of our method. However, it is neces-
sary to check whether our method can be applied to real, practical and complicated datasets.
Though much remains to be solved for practical implementation, the selective potentiality
method can certainly contribute to an improved interpretation of neural networks.
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Appendix

A Compressed Network

To confirm the existence of the supposed prototype, we need to compare the prototype
network with some estimated prototypes, extracted from the actual multi-layered networks.
For comparing a supposed prototype network with the corresponding surface network, we
need to compress the surface and multi-layered neural network into the simplest one. We
compress the surface network step-by-step, using a six-layered neural network in Figure
1. For example, we compress the weights from the first layer to the third layer in the first
place. The compressed weights, labeled (1,3), which connect the first to the second (1,2)
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layer and the second to the third layer (2,3), are computed by:

w(1,3)
ik = ∑

j
w(1,2)

i j w(2,3)
jk . (9)

We can repeat this compression for all layers. Assuming that weights labeled (1,5) represent
the compressed weights from the first to the fifth layer, the final compressed weights from
the first to the sixth layer are given by:

w(1,6)
i = ∑

m
w(1,5)

im w(5,6)
m . (10)

This compressed network should then be compared with the corresponding prototype net-
work using the ratio potentiality.

B Structural Potentiality for Compressed Network

Here we explain how to compute the structural potentiality for the compressed network.
The individual potentiality is defined as the absolute value of the corresponding compressed
weights:

u(1,6)i =
∣∣∣w(1,6)

i

∣∣∣ . (11)

Using this individual potentiality, we obtain the relative individual potentiality, computed
by:

g(1,6)i =
u(1,6)i

maxi′ u
(1,6)
i′

. (12)

The final structural potentiality is obtained by summing all individual potentialities:

G(1,6) = ∑
i

str
(

g(1,6)i

)
. (13)

C Ratio Potentiality

In addition, we need to define another potentiality, called “ratio potentiality”, because we
need to compare the compressed network with the corresponding prototype to examine
whether learning can detect the supposed prototype. Then, the ratio of compressed to sup-
posed prototype potentiality is:

v(1,6)i =
g(1,6)i

z(1,2)i

, (14)

where z represents the individual structural potentiality of a supposed prototype. As shown
in Figure 5, the supposed prototype is computed by taking the normalized correlation co-
efficients between inputs and targets of the training data set. For this v, we can obtain the
relative potentiality r by dividing it by the corresponding maximum potentiality. For this
new r, we can compute the ratio potentiality in the form of structural potentiality as follows:

R(1,6) = ∑
i

str
(

r(1,6)i

)
. (15)
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Naturally, the ratio potentiality is bounded in the framework of structural potentiality, and
we compute the normalized ratio potentiality:

R(1,6)
nrm =

R(1,6)

R(1,6)
max

. (16)

This ratio potentiality becomes maximum when all individual ratio potentialities are the
same, and the maximum value is equivalent to the number of weights. Comparison can
be done by using the conventional KL divergence between the supposed and compressed
network, but it is unbounded, preventing us from evaluating similarity or difference between
the supposed and compressed networks appropriately. As shown in Figure 7, the divergence
tended to be much larger, hiding detailed characteristics.
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