International Journal of Smart Computing and Avrtificial Intelligence
International Institute of Applied Informatics
2023, Vol. 7, No. 2, IJSCAI793

An Extension of Particle Swarm Optimization to lIdentify
Multiple Peaks using Re-diversification in Static and
Dynamic Environments

Stephen Raharja *, Toshiharu Sugawara *

Abstract

We propose an extension of the particle swarm optimization (PSO) algorithm for each
particle to store multiple global optima internally for identifying multiple (top-k) peaks in
static and dynamic environments. We then applied this technique to search and rescue
problems of rescuing potential survivors urgently in life-threatening disaster scenarios.
With the rapid development of robotics and computer technology, aerial drones can be
programmed to implement search algorithms that locate potential survivors and relay their
positions to rescue teams. We model an environment of a disaster area with potential
survivors using randomized bivariate normal distributions. We extended the Clerk-
Kennedy PSO algorithm as top-k PSO by considering individual drones as particles, where
each particle remembers a set of global optima to identify the top-k peaks. By comparing
several other algorithms, including the canonical PSO, Clerk-Kennedy PSO, and
NichePSO, we evaluated our proposed algorithm in static and dynamic environments. The
experimental results show that the proposed algorithm was able to identify the top-k
peaks (optima) with a higher success rate than the baseline methods, although the rate
gradually decreased with increasing movement speed of the peaks in dynamic
environments.

Keywords: Meta-heuristic algorithm, Particle swarm optimization, Top-k multiple peaks,
Search and rescue in disasters, Multiple optima

1 Introduction

As part of an integrated emergency response to disasters such as earthquakes, search teams
must find and rescue survivors as soon as humanly possible, because their lives are typically
in danger, i.e., survival rates decline within three days after a disaster. In particular, the
first few hours after an incident are the most important time period [32]. In this context,
autonomous aerial drones or robots can be applied to locate such survivors by searching
the areas impacted by the disaster. For example, three types of aerial drones were developed
during a project undertaken by Japanese universities and national research institutes. One
type was designed to transmit local communication, one to perform early reconnaissance of
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the area, and another to locate survivors [25]. Such tasks are suitable for autonomous drones
because they are not hindered by many types of obstacles such as rubble or debris that
may be present after a disaster [1]. The aforementioned problem is called urban search and
rescue (USAR).

Drones sufficiently sophisticated to perform such tasks are precise and expensive
equipment, and a variety of technicians are required to operate and maintain them.
Nonetheless, multiple drones must be ready at all times, because disaster or emergency
situations may occur suddenly, with little or no warning. Furthermore, they should be
deployed redundantly, because some units could be destroyed or rendered inoperable by the
disaster. Therefore, less expensive and simpler drones should be developed that can be
easily deployed in larger quantities to locate survivors with performance equivalent to or
better than conventional advanced drones.

The movements of a group of cooperative drones are often modeled on schools of fish
and foraging behaviors of insects such as those of honeybees in exploring an area to find
locations with more food. This pattern of behavior is modeled by the particle swarm
optimization (PSO) algorithm [17] [16]. PSO and its variants have been studied extensively
for a long time and seem well suited for environments with a unitary optimal solution [31];
they have also shown good performance in static environments [26]. However, because of
the cascading propagation of information in particle networks constructed by the generic
PSO algorithm, its performance may not suffice in environments with multiple
simultaneous solutions, such as the USAR problem with multiple rescue locations [7].
Moreover, the particles may converge prematurely and fail to find the true optimum in the
environment, which is known as the local optima trap problem [22]. Thus, a simple and
effective PSO algorithm capable of identifying multiple optimal values in an environment
iS needed.

In research on PSO, many studies have attempted to identify multiple optimal
solutions using niching techniques [6] [19] [27]. Brits et al. [6], for example, proposed the
NichePSO algorithm to exploit the guaranteed convergence PSO (GCPSO) algorithm [33]
[34] to locate multiple or all optimal values (peaks) in an environment. However, neither of
these methods are sufficiently simple for application in real robot swarms, nor are the
probabilities of finding the required number of optimal solutions sufficiently high.

The proposed algorithm is a simple extension of the Clerk-Kennedy PSO [8], in which
each particle stores a set of globally optimal values instead of a single globally optimal
value. Particularly, using a set of globally optimal solutions, each particle randomly
selects a convergence direction from a weighted set of alternatives, and information about
the updated expected peak is communicated to other particles within a specified distance
to retain diversity among particles in the swarm. If no improvement is achieved after a
certain amount of time, a re-diversification strategy is introduced to re-randomize the
positions of the particles. This method enables the diversification of the swarm and
improved exploration of the environment. Once the terminal condition is reached, the
swarm merges and processes all the values identified by all the particles and outputs the
top k peaks, which correspond to the best k optimal solutions in the environment.

First, for a given environment, we model the problem using a mixed bivariate
normal distribution with the means randomized. Based on this model, we conducted
experiments to locate multiple peaks in a simulated environment with multiple static or
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dynamically moving peaks. Then, we compared these results with three baseline methods,
including NichePSO, Clerk-Kennedy PSO, and the canonical PSO. The experimental
results show that the proposed algorithm enables particles to find the top-k peaks
effectively with probability higher than the baseline methods in static environments and
in dynamic environments although the rate of findings gradually decreased according to
the increase of movement speed. Last, we discuss the strengths and weaknesses of our
proposed method.

2 Related Work

The basic problem solved by PSO algorithms is that of identifying a single global op-
timum/solution in an environment. During that process, the swarm may encounter the local
optimal trap problem, which has been studied extensively [35] [2] [28]. One of many
approaches to solve the local trap problem is to use a collection of various PSO algorithms,
as proposed by Engelbrecht in heterogeneous PSO (HPSO) [12]. At the initialization stage,
each particle randomly chooses a PSO algorithm from a collection of PSO models, such
as barebones PSO, modified barebones PSO [15], a social-only model [14], and a
cognitive-only model. In the former, if the local optimum of particles have not been
updated for some time, the particles would randomly rotate to a different algorithm from
the given collection. In the latter, algorithms chosen by each particle remain unchanged.
HPSO was also extended to handle dynamic environments [18].

In an optimization problem using genetic algorithms (GA), niching techniques have
been studied extensively to identify multiple solutions, and the same tech- niques have
also been applied in PSO algorithms to identify multiple optima. This approach was
called NichePSO [6], in which a cognitive-only model is used by the main particles to
locate initial optima in an environment, and multiple GCPSO sub-swarms [33, 34] are
then formed around individual optima. If a particle or a sub-swarm moves within the
radius of another sub-swarm, it is absorbed by the latter. Despite its performance,
NichePSO has been shown to lose its diversity over time because all sub-swarms may
eventually fuse into a single large swarm [10]. In contrast, comparing NichePSO, our
proposed method top-k PSO retains the communication network within the swarm, which
enables enhanced exploration of the environment.

In addition to niching techniques, many other approaches to identifying multiple optima
in an environment have been developed, such as galactic swarm optimization (GSO) [24],
and its extension using whale optimization algorithm (WOA) [13]. Exploration and
exploitation of the environment in GSO is balanced by dividing the swarm into two levels,
super-swarm and sub-swarm. During the first phase, each sub-swarm finds its global
optimal value by performing exploration in the environment using the canonical PSO.
Next, in the second phase, the super-swarm exploits the environment by using each global
optimal value from the sub-swarms as seed values, which are then input to a separate
canonical PSO algorithm. No- tably, the GSO algorithm is reported to be flexible, and any
swarm-based algorithm can replace the canonical PSO used in the experiments.

Applying PSO to a dynamic environment has proven challenging due to many
problems such as moving peaks, outdated memory, and loss of swarm diversity [4].
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The dynamic multi-swarm fractional-best particle swarm optimization (DMSFPSO)[11]
approach was developed to solve multi-model problems, and implemented both adaptive sub-
swarm count and multi-swarm techniques. Moreover, when a change in the environment is
detected, particle velocities are re-initialized to deal with the outdated memory problem.
Furthermore, to retain diversity, sub-swarms repel each other. In contrast, considering that
multiple optima might exist in a small area, we did not implement a repelling action in
particles of the top-k PSO swarm. However, our proposed approach does implement a re-
diversification method to reduce the probability of being affected by the local trap problem.
Moreover, in contrast to both GSO and DMSFPSO, the objective of top-k PSO is to identify
only a subset of all optima in the environment.

Finally, although we previously reported an extended PSO to find multiple peaks [29],
we also demonstrate that the proposed method can find multiple peaks in a dynamic
environment where some peaks gradually move over time.

3 Background and Problem Description

3.1 Clerk-Kennedy PSO

Here, we briefly explain the basis of our proposed method, which is the Clerk- Kennedy
PSO algorithms [9] [37]. Clerk-Kennedy PSO is different from the canon- ical PSO in that
instead of using acceleration constants, it uses a constriction rate to gradually convert
particles from the task of exploration to exploitation, which is the same for both global
and local attractors.

In Clerk-Kennedy PSO, the update formulas for the position xi(t + 1) €V of
particle pi and for its velocity vi(t + 1) are defined by Eq. 2 and 1, respectively.

Xi(t+ 1) =x(t) + vi(t+ 1) and, QD
vi(t+1) =a(c - rit)(yi(t) —xi(t)) + ¢ - r2(t)(g(t) — xi(t))), ()

where g(t) is the global best position, yi(t) is pi’s local best position, Xi(t) iS pi’s current
position, 0 < ry(t), r2(t) < 1 are random numbers at t, « is the constant of the constriction
rate and c is the acceleration constant. Both constants, « and c, are positive with
limitation of 0 <a < 1andc > 0.

3.2 Model of Environment

We modeled a disaster area as a simulated environment with the assumption that all
locations in the environment were equally important, because the potential num- ber of
survivors is typically not known beforehand. Moreover, prior works have shown that
survivors tend to move toward important locations from a social view- point after a
disaster [21]. Tracking people’s movement is also possible, such as by using mobile
phone signals [3] or cellular base stations [8]. Assuming that viable methodologies are
available to detect survivors, an aerial drone can sort areas based on their respective
probability of containing survivors. Thus, the modeled problem is a two-dimensional
(bivariate) normal distribution expressing the probability of finding a survivor within a
certain area. Each of the center points in concentrated areas of survivors is represented as
a mean P and the probability of existence of each peak is the value of the density function
fi(n). Its covariance matrix X expresses the density or the spread of each concentrated
area. We describe it in more detail below.
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Figure 1: Top view of an environment with three peaks [29]

In our model, time is considered as discrete and calculated in unit of ticks. Let P be the
n particles of the PSO swarm, i.e., the set of particles, where n is a positive integer. Each
tick, a particle p; € P in the PSO swarm moves within the environment to find peaks that
correspond to the optimal solutions, by exchanging information with surrounding particles
pj € P . A finite, square-shaped, two-dimensional space V C R? (where R is the set of real
numbers) is used to represent the environment, with the length of the sides of the
environment being 2 - E. Thus, any point x € V can be represented as x = (z1, z) such that
—E <z, z, < E for a positive number E € R. N different Gaussian distributions N (p;, Z;)
fori=1,..., N are used to represent N peaks in V . For each peak, the center location of i-
th peak is represented as vector u; = (U1, M2i) (€ V), and covariance between the x-axis
and y-axis for i-th peak is represented by the 2 x2 diagonal matrix X, the elements of which
are in the closed interval of [0, 1]. Thus, the utility value of any location x = (z;, z;) € V to
the i-th peak, or the probable number of survivors, can be formulated as

1 _ 1 FlTHLliN2  (F27H2,02
¢ HEREHEZEON 3)

fi(z) =

27‘(’0’1’@'0'271‘

where o1 ; and o, ; are the standard deviations of two variables. The utility value of a single
i-th peak can be calculated by fi(y;).

Adding all distribution functions yields the utility value of the mixed distribution
functions r(x) of x € V, which is defined as

N
r(z)=>_mi- fi(x) (4)
=1

where fi(x) is the distribution function of the i-th value and m; > 0 denotes its
expected area importance; this represents special situations such as the urgency of a
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Figure 2: Visualization of areas in an environment with E =5 and E'= 4.

Figure 3: One-dimensional representation of utility values with four peaks [29]
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given rescue or the expected number of survivors. If data regarding area importance in the
environment are unavailable, all m; are equalized. Fig. 1 shows a top view of a sample
environment (Fig. 2) with 3 peaks, and a simplified visualization of the utility values in
one-dimensional environment is shown in Fig. 3.

We introduce static and dynamic environments with the following natural as-
sumptions to evaluate our proposed method.

e |P|.> N, i.e., the number of particles is greater than the number of peaks in the
environment.

e The peak generation area is smaller than the environment area and there is a margin
between the boundaries of the environment and the peak generation area. This
margin size is specified by E' (<E) as shown in Fig. 2.

e There is no/negligible communication overhead when particles propagate in-
formation to other particles within the swarm.

Note that the peak generation area is defined as the area where all peaks exist. The first
assumption is intuitive given USAR is the target application. It is certainly plausible that
our proposed algorithm would perform reasonably well without this assumption, but to
simplify our experiment we decided to add this assumption because it would be difficult
to find the minimum number of particles that would still guarantee good performance in
any environment [20].

The second assumption was introduced to allow all peaks to be explored from all
directions, because exploring a peak only a limited direction is difficult for par- ticles in a
swarm, in all PSO algorithms, although reducing the margin between the two areas can
increase the area that can be explored in the environment. Further discussion is provided
in Section 5.3. The third assumption holds because in the premise of our proposed
method, aerial drones would use wireless communication technologies to exchange
information within the swarm. Considering that the infor- mation payload is small and the
number of particles is not large, it is safe to assume that information overhead is
negligible.

3.2.1 Static Environment

In static environments, the locations ; and peak values fi(u;) of all peaks are
considered to remain constant.

3.2.2 Dynamic Environment

In dynamic environments, only the peak values fi (1) of all peaks remain constant. The
position of a peak at time t can be defined as p; (t) = (U1, 1, H2i) (€ V). After each tick,
each peak moves a random distance in random direction; the movement of the peaks is
represented as a vector ¢; with randomized elements in the range (—E/w, E/w), where o >
0 is the movement speed factor to determine the movement speed of peaks. Thus, the next
position of a peak can be given by (t + 1) = pi(t) + ¢i.

We adopt a fully randomized movement of peaks in the environment to simulate
the chaotic movements of survivors after a disaster, and the upper and lower bound of peak
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movements are applied because survivors can only move up to a certain distance within a
given time frame. However, the position of each peak must be within the boundary of the
peak generation area of the environment —E <, i, Mz, i <E'to ensure the margin E —E">0.

Given that the peaks move randomly, although the mean values f (u;(t)) of each peak i at
time t will always remain constant, the total utility value r(x) that can be calculated in a
position x will fluctuate unpredictably throughout the experiment. This could happen as two
groups of survivors encounter each other, producing an area with higher probability of finding
survivors within the join boundary for drones to identify. Even if those two groups of survivors
merge into a larger one, the problem would be reduced to finding top-k peaks from N—1 peaks,
and our proposed method would still be applicable.

3.3  Problem Formulation

Given that the main priority of USAR teams is to rescue as many people as possible without
considering their social importance or other status, USAR teams need to quickly explore
areas indicated by the aerial drones as having the highest probable concentrations of survivors.
However, USAR teams may be forced to prioritize areas with the greatest probability of
finding survivors owing to limited resources.

Let L ={ui, ..., Un} be aset sorted in descending order based on the utility value r(y;).
For the purpose of our problem, the first k (< N) peaks from L need to be identified. A
successful identification of a peak p; at x &V by a particle pi requires these two conditions:
(1) the difference in utility value between an optimum found by pi at x and p; must satisfy

and (2) the Euclidean distance must be small; to be precise, dist (1; , X) < du. Both
parameters 8, >0 and dq > 0 represents threshold of closeness, and both are small positive
numbers. The current location of pi is represented as x(pi).

4 Proposed Method

To solve the USAR problem, we extend the Clerk-Kennedy PSO to create a novel
method top-k PSO. Clerk-Kennedy PSO is the basis of our method because it al-
ready includes a pair of constants known to be effective [9], which obviated the
necessity of conducting additional experiments to find optimal constants. Instead of
storing a single global optimal (peak) as in the canonical PSO, particle pi € P in top-
k PSO keeps the set of positions of possible global peaks, Gi = {gi1, Gi2, . . ., Gik}
where gi = (z1, z2) and the utility values of peaks in G; are obtained by r(gi). Algorithm
1 describes the top-k PSO algorithm in pseudo-code. The main modifications in top-k
PSO are the global optima value step (Lines 23-28) and the re-diversification
method(Lines30-34)usedtoreduce susceptibility to the local trap problem. As top-k
PSO is based on Clerk-Kennedy PSO, Lines 12-22 are almost identical to the
base method.Exploration oftheenvironment continues until t = Ty is satisfied,
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Algorithm 1 Top-k PSO Algorithm

: /I Initializing swarms

1
2: for each particle pi P do
3: X current location;

4. yi local peaks location;

5. Randomize initial position x; and velocity v;;

6:  Calculate r(xi);

7 Yi = Xi;

8. Gi={yi}; /] Set of (current) global peaks in p;;
9:  gi=YVi: chosen global attractor;

10: end for

11: // Exploration

12: while t <T: // Until reaching terminal condition do

13:  for each particle pi P do

14: Calculate next velocity vi(t + 1) using Eq. 2;
15: Update position xi(t + 1) using Eq. 1;
16: if r(yi) < r(x(t+ 1)) then
17: yi = Xi(t + 1);
18: end if
19: if r(gi) < r(yi) then
20: Substitute gi in G; for yi.
21 Setgi=y;
22: end if
23: if Particle pi has no improvement in last y; ticks then
24 Announce G;j to surrounding particles;
25: Gi < G-update(pi) in Alg. 2;
26: 0i < an element in G; selected with probability distribution defined by
Eq. 5 as new direction;
27 Randomize next velocity vi(t + 1);
28: end if
29:  end for
30: if All pi €P have no improvements of y; in last y, ticks then
31 for each particle pi €P do
32: Randomize xi(t + 1) and vi(t + 1);
33: end for
34 endif
35 t=t+1;// Also move each peak ; in dynamic environment.
36: end while

37: Output top k peaks using function Merging in Alg. 3;
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where Ts is the maximum time of the simulation and Tr > 0, which is a positive integer.

To ensure that the swarm can identify multiple peaks, we modified the global optimal
value update step. Depending on difference in velocity compared to the previous step,
v(t + 1) — v(t), a particle may not exactly match with the center of the target peak M.
Hence, particle convergence is assumed only after y1 ticks with no improvement; then,
particle p; propagates G to its surrounding local particles (Line 23). Additionally, the
requirement of convergence before propagating Gi is to prevent premature announcement
of its current location x;; premature announce- ment would attract surrounding local
particles to a sub-optimal location. After propagation, a new exploration direction is
selected by particle pi (Line 26). In contrast to the canonical and Clerk-Kennedy PSOs, in
our proposed top-k PSO the propagation of candidate peak values G; is limited to
nearby particles (particles the Euclidean distance of which is < 2 - E/k?). Limiting the
Gi propagation area reduces the loss of swarm diversity and reduces the influence of distant
peaks, which improve particles’ ability to explore local areas.

There is a possibility that two peaks g, ¢ € Gj and g & ¢, but dist (g, g) is
negligible. Thus, we consider two peaks g and g as virtually identical, which is
expressed by g ~g/, if these conditions |r(g) — r(g)| <deq and dist(g, 9) < deq
are fulfilled, where Jeqv is a small positive number determining the resolution of
exploration and we set Jeqy = 10~* in our experiment below. Therefore, to maintain unique
elements in set G;, when g ~g/, one of these elements is removed from set Gi and G in
Algs. 1, 2, and 3.

Algorithm 2 Function G-update(pi)

Let G be the list of global peaks G; from close particles;
: Gi — (Gi Uses G) Uy
. Sort Gj in descending order of r(gi).
if |Gi| > k then
Gj « the first k elements in Gj;

end if
return G;j

Noa A Ny B

Algorithm 3 Function Merging()
1: G= UL G;; Il Retrieve all global peaks from all pi.
2: Sort G in descending order of r(g) for g €G;;

3: R «the first k elements in G;
4: Return R;

In top-k PSO, a particle p; must identify the top k locations that are indistinguishable to the
first k peaks in the sorted set L. During information propagation, a particle p; receives
potential global peaks G; locations from surrounding close particles and merges them to
update Gi; G; is transmitted by converged particles p;within a distance of 2 - E/k? to particle p;
with i~ j using function G-update(pi) in Alg. 2 (Line 25 in Alg. 1). Next, a global peak
candidate gi € Gj is randomly selected by particle p; as a new global attractor, which would
substitute g(t) in Eq. 2. The process of selecting a new global attractor gi € Gi is randomized
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Table 1: Experimental Setup.
Case n (=|P)) N k Env. size Peak area size

1 30 3 3 E=5 E=4
2 50 10 3 E=7 E'=55
3 50 15 5 E=10 E'=8

using the following probability function p(gi).

'T(Qi)
g~ plgs) = i) )

(gjuxi)

where x; is the location of particle p;.

Selecting a new global attractor g; for particle pi would also randomize its next velocity
v(t+1) to remove the influence of the previous global attractor. To improve exploration of the
environment, a re-diversification mechanism is implemented to cause the swarm to
randomize the next positions x(t + 1) and velocities v(t + 1) of all particles if no particles
were able to locate better positions in the last y. ticks (Lines 30-34). However, this process
does not randomize global peak positions G; and local peak position yi.

Positive integer parameters y; and y. in Line 23 and Line 30 denote the sensitivity of
particles in detecting a convergence; lower values are preferred when peaks in an environment
tend to be separated from each other. For the following experiments, values of y1 =y, = 5 are
used because they were deemed suitable.

The exploration continues until the termination condition of t = T¢, and then the
candidate global peak set G; of all particles are merged and duplicated values are removed;
thus, the set of all candidate global peaks is G =Gy U - - U Gy Then, based on the utility
value r(gi) of each element in the set G, elements are sorted in descending order. Finally, the
top k values in the sorted set G are the top-k peaks in a given environment that are identified
by the swarm (Line 37 in Alg. 1).

5 Experimental Evaluation and Discussion

5.1 Experimental Setup

Three experiments were conducted in both static and dynamic environments to evaluate the
effectiveness of top-k PSO against several algorithms, including the NichePSO, canonical
PSO, and Clerk-Kennedy PSO. We list the values of environmental parameters for each case
(Cases 1, 2 and 3) in Table 1, where (2E >)2E > 0 is the length of the side of peak generation
area, i.e., initial position of peak i is defined by p; = (U1, M2,), and must satisfy —E' < p; <
E’. In the initialization phase, all peaks are randomly generated inside the peak generation
area of each experimental run. To insert a margin between the environment area and the
peak generation area, E" was approximately 20% to 25% smaller than E. The value of area
importance of each peak was set to m; = 1 to represent all peaks having equal priority.
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Table 2: Case 1 Experimental Result (in %)

Algorithm 1st Peak 2nd Peak 3rd Peak
top-k 645+411  67.9+422  71.1+37.2
Canonical 204+303 27.1+190 17.9+136
Clerk-Kennedy  31.3+30.3 2574170 183+156
Niche 623+326 134+212 1.0+24

Table 3: Case 2 Experimental Result (in %)

Algorithm 1st Peak 2nd Peak 3rd Peak
top-k 585+27.7 67.3+290 68.6+325
Canonical 2551249 274 +£195 17.6+£12.3
Clerk-Kennedy = 255+259  26.3+18.6 17.8+155
Niche 655+269  264%255 25+56

The threshold for closeness was the parameters d, >0 and dq > 0, which are small positive
numbers. For our experiments, we used the values d, = 0.05, d4 = 0.1, deqy = 107* and T;
= 50, 000. For each experiment case, a total of 30 different environments were randomly
generated, and 50 independent runs were executed. Experiment results are shown in tables
with numbers denoting the means and their standard deviations of successfully identified
peaks across the 30 randomly generated environments.

The experiments in dynamic environments used the same parameters as experiments in
static environments, with only the randomized constant movement of peaks differing during
the experiments, with a movement speed factor of @ = 50000. A large constant was
chosen to show notable but not drastic differences between static and dynamic
environments, as a small movement speed factor such as @ = 100 resulted in all
algorithms failing to identify any peaks at all due to quick peak movements.

For the baseline method of canonical PSO, we set both local and global acceleration
constants to ¢; = 2 and ¢; = 2. For top-k PSO and its base method Clerk-Kennedy PSO,
we used two values from the original study [9], including a constriction rate of a =
0.729843788 and an acceleration constant of ¢ = 2.05. For NichePSO, a partitioning
threshold of 102 and a merging distance for sub-swarms with swarm radius of D = 0 of
104 was adopted. As for the underlying GCPSO in NichePSO, the same constants as
canonical PSO were used and the initial scaling factor was set to p(t) = 0.1. A detailed
description of NichePSO and its base method are described in these references [6, 33, 34].

To show the performances of baseline methods, NichePSO, canonical PSO, and Clerk-
Kennedy PSO in identifying top-k peaks, in each of those algorithms, an additional step of
function Merging in Alg. 3 was added. Due to incompatibility when applying function
Merging to the algorithms used for comparison, in canonical and Clerk-Kennedy PSO,

Line 1 of Alg. 3 was replaced by G = UL, y;, whereas in
NichePSO G= UL, g;.
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Table 4: Case 3 Experimental Result (in %)

Algorithm 1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak
top-k 51.2+322 648+301 623+354 657+336 70.7+328
Canonical 8.9+10.3 154+137 11.8+104 12.7+100 9.6+88
Clerk-Kennedy  9.3+9.8 16.3+159 129+116 125+119 12.1+89
Niche 437+254 331+252 119+144 63+131 2951

5.2 Experimental Results in Static Environment

Tables 2 to 4 show the results of the first experiment, i.e., the probabilities of identifying
top-k peaks in Cases 1 to 3. These figures indicate that in identifying top-k peaks using
these 4 algorithms, top-k PSO was the most successful with the exception of identifying
the first peak compared to NichePSO in some cases.

In Case 1, the objective of the swarm was to identify all 3 peaks in the environment.
Table 2 shows that top-k PSO was able to identify all of the 3 peaks with a probability
greater than 0.5, while both the canonical and Clerk-Kennedy PSOs were only able to
identify them with probability less than 0.4. In contrast, NichePSO was the second most
successful at identifying the highest peak, but was also unable to identify the second and
third peaks, with probabilities even lower than both canonical and Clerk-Kennedy PSOs.
This issue is discussed further in Section 5.5.

Table 3 shows the experimental results of Case 2, which were similar to Case 1 but
with N = 10 and n = 50, i.e., a swarm of fifty particles searching for the top 3 out
of 10 peaks. This figure indicates that among the 4 algorithms used, top-k PSO was able
to identify the top three peaks with the greatest probability. Particularly, top-k PSO was
the only algorithm able to identify the third peak with an acceptable rate; the baseline
methods exhibited lower probabilities in identifying peaks, especially the third peak, and
NichePSO showed the lowest probability to identify the third one in the first experiment.
However, NichePSO was the most successful in identifying the first peaks with the
highest probability.

We conducted further experiment in a more complicated case with larger envi-
ronments in Case 3, where 50 particles were used to identify the top 5 peaks from 15 peaks
in the environment. The result of the experiment are shown in Table 4. This figure shows
that similar to the previous two cases, top-k PSO was able to identify all peaks with high
probabilities, and identified the all peaks at higher probabilities than baseline methods.
However, unlike Case 2, top-k PSO outperformed NichePSO in identifying the first peak.
However, repeating the experiment sometimes resulted in NichePSO performing better in
identifying the first peak compared to top-k PSO by a small margin, vice versa. For more
experimental results in static environments, please refer to our conference paper [29].

As for the standard deviation of results from all Cases, as shown in Tables 2 to 4,
there was no notable difference between top-k PSO and the baseline methods, and each
standard deviation of each experiment result for each k-th peak is relative to its mean.
However, NichePSO did produce slightly smaller deviation compared to top-k PSO at
identifying the first peak.
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Table 5: Comparison of different peak area sizes (E = 10, in %)

E' 1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak

60.1+315 826+27.4 79.3+275 73.3+395  56.9+430
71.3+324 789+228  824+269 66.9 +40.0 65.0 +38.6
64.4 £28.7 63.0 +32.3 61.0+331 78.9+245  69.8+34.2
50.7+323  60.7+349 575+364 67.7+331 56.4+36.1
32.3+347  40.8+35.8 51.9+418 543+388  67.6+39.6

10 41.1+382 375%39.8 45.0+428 40.3 £37.3 49.6 £41.0

O© 0o ~NOo o

Table 6: Case 1 Dynamic Experimental Result (in %)

Algorithm 1st Peak 2nd Peak 3rd Peak
top-k 51.3+38.1 51.5+405 419+343
Canonical 30.1+£235 186150 5752
Clerk-Kennedy  30.3+25.1 178+168 51174
Niche 499 +22.7 1411149 1.4+52

5.3  Effect of Peaks Near Edges of Environments

During the experiment, we discovered that peaks would sometimes be initialized near the
edges of the environments, which negatively affected all algorithms on successfully
identifying peaks. This was the basis for applying a margin of E — E' between the edge of
the environment and the edge of the peak generation area in our experiment. To examine this
further, we performed six cases of the experiment with environmental sizes of 20 (E = 10)
with varying margin sizes, i.e., E' =5, 6, 7, 8, 9, 10. For other experimental settings, we
used parameters from Case 3.

Table 5 shows the result of this comparison experiment.

From Table 5, it may be observed that when margin E — E' of 20% (i.e., E' <8) or
greater, top-k PSO was able to find the top five peaks with approximately equal
probability. However, the success rate noticeably decreased when the peak generation area
size was E'= 9 and E' = 10. To improve the experimental result, we inserted a margin of
about 20% in all Cases 1 to 3. Regardless, our proposed method top-k PSO produced better
result with any margin, as shown in Table 5, than those by the baseline methods with E'= 8
(20% margin) in Table 4.

Table 7: Case 2 Dynamic Experimental Result (in %)

Algorithm 1st Peak 2nd Peak 3rd Peak
top-k 30.7+255 321+247 32.8+298
Canonical 143+142 11.6+124 78+84
Clerk-Kennedy  12.8+9.2 10.3+9.6 6.6+7.7
Niche 349+240  134+140 3757
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Table 8: Case 3 Dynamic Experimental Result (in %)

Algorithm 1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak
top-k 17.5+161 26.8+229  222+143 329218 3291243
Canonical 57+83 57+5.9 6.6 £5.7 4.1+56 25134
Clerk-Kennedy  5.9+8.0 7.6+8.1 56+75 47154 35+56
Niche 143+115 7079 2.7+4.0 23154 0.7+14

Table 9: Comparison of different movement speed factors (w, in %)

0 1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak
10000 14+22 1.5+2.0 1.5+22 1.7+31 1.5+3.0
20000 7.3+10.0 6.6+7.8 3.4+50 5.7+6.1 6.7 +8.8
30000 9.3+9.0 9.3+9.2 13.3+115 13.2+149 10.7+12.0
40000 145+16.0 2374217 255+22.6 19.7+179 153+17.6
50000 175+16.1 26.8+229 22.2+143 329+218 329+243
60000 22.2+225 36.3+27.1 34.0+28.3 30.3+27.6 345 +28.7

oo (Static) 51.2+322 64.8+30.1 62.3 £354 65.7+336  70.7+32.8

5.4  Experimental Results in a Dynamic Environment

We conducted the second experiment in dynamic environments with the movement speed
factor w = 50, 000 to confirm whether our method can locate the moving top-k peaks. The
results are shown in Tables 6, 7 and 8. In these experiments, we could observe the similar
trends in Cases 1, 2, and 3 as of the static environments, that is, top-k PSO was the most
successful in identifying all k peaks compared to other algorithms, although NichePSO
showed better result in identifying only the first peak by a small margin in Case 2.

These results shown in Tables 6, 7 and 8 indicate that the probability of finding top-k
peaks were slightly lower than those in the first experiment for all algorithms, although top-
k PSO exhibited the acceptable probabilities of finding peaks. As for the standard
deviation relative to its mean, we were not able to find noticeable difference with the
experiments in static environment. These results suggested that the moving speed of peaks
affect the performance of identifying top-k peaks.

Therefore, we investigated how moving speed affect the performance of top-k PSO
by changing the movement speed factor to = 10000, 20000, 30000, 40000, 50000, 60000,
and oo. Note that w = oo corresponds to the static environment. This result is shown in
Table 9. This graph indicates that the performance of top-k
PSO degraded if the movement was faster, i.e., the lower . We do not show the results,
but we conducted the same experiments using the baseline methods and the results
exhibited the same tendency, although their performance more quickly degrades than top-
k PSO. This suggests that there is the trade of between moving speed and the frequency of
calculation of particles, but frequent calculation requires more computational cost. This
means that top-k PSO can reduce the required computational cost if the peaks are moving.

Slower peak movement minimizes impacts on performance because of one condition
for positively identifying a peak, more precisely, the difference in Euclidean distance is
less than 0.1. The higher the limit of peak movements, the higher the probability of the
distance between the particle and its targeted peak being more than 0.1 in the last tick,
which is reflected in the result in Table 9. This discussion also indicates the trade of
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between moving speed and the frequency of calculation of particles. Note that even if @
= 50000 is fixed, the frequency of calculation can be increased by shortening the time
length per unit for the simulated environment of moving particles.

5.5 Discussion
5.5.1 Static Environment

Our proposed method top-k PSO produced the best results in our experiments. The re-
diversification introduced in our proposed method was the main component that supported
this performance, because it makes particles in the swarm less susceptible to the local trap
problem compared to the baseline methods.

Both the canonical and Clerk-Kennedy PSO algorithms exhibited a lower success
rate in the simpler case of Case 1 with k = 3 and N = 3 (Table 2) was caused
partially by gradually vanishing velocity update in both algorithms. In the canonical PSO,
as a particle approached an optimum, the next velocity decreases, and eventually, the
successive convergence would take infeasible amounts of time. A similar phenomenon
was also observed in Clerk-Kennedy PSO; it is due to the constriction rate causing
successive velocity updates to always be smaller than the previous velocity.

NichePSO could identify the first peak with similar probability compared top-k PSO,
but due to the long simulation time, the sub-swarms of NichePSO exhibited a high
probability of coalescing, causing the swarm to lose multiple tracked op- tima [10], and
making the behavior of the swarm closer to that of the canonical PSO. In multi-modal
problems such as in our case, this phenomenon is problematic, as shown in Tables 2 to 4,
where NichePSO performed worse than both baseline methods when identifying second
and subsequent peaks.

Comparing the result of Case 1 (Table 2) with that of Case 2 (Table 3), there was a
significant decrease in the probability of identifying the top k peaks in the environment.
This was most likely caused by the local trap problem, as number of available peaks N
were much larger in Case 2 than in Case 1. Although Case 2 employed a larger number of
particles n, the algorithms failed to overcome the local trap problem. An even larger
number of particles may be required to obtain a similar result.

Then, comparing the result of Case 2 (Table 3) with that of Case 3 (Table 4), top-k PSO
identified the top k peaks with a success rate similar to that of Case 2, despite more
difficult parameters; Case 3 had a greater target peak count k and peak count N while using
the same particle count n. One possible reason for this result is that information
propagation is limited to particles within Euclidean distance of 2 - E/k?; higher k results in
more localized communications. Shorter communication distances causes the behavior of
particles to be closer to that of a cognition-only model, which is suited for exploring local
areas and thus identifying individual peaks. Due to the completely randomized generation
of peaks in the environment, a peak could be generated very close to another peak with a
small difference between their utility values. This phenomenon results in a tendency of
particles to move toward peaks with higher utility values, reducing success rates for later
peaks. This was observed in Case 1 and Case 2, in which probability rates fell the lower
the position of the targeted peak is across all algorithms. However, this was not noticeable
in Case 3 (Table 4) due to the larger k, because particles would be less affected by peaks
identified by other particles.

Copyright © by I1Al. Unauthorized reproduction of this article is prohibited.



An Extension of Particle Swarm Optimization to Identify Multiple Peaks using Re-diversification in Static and Dynamic Environments 17

Even at this current state, top-k PSO still requires many improvements for its
convergence performance, including its re-diversification mechanism. For example,
NichePSO identified the first peak better than top-k PSO across Case 1 to Case 3, which
is mainly attributed to its base method of GCPSO [34]. In GCPSO, only the best
particle (i.e., argmaxy, p r(x(pi))) continues exploration of the environment while other

particles update their positions using canonical PSO, reducing the susceptibility of its
particles to the local trap problem. NichePSO has a tendency to coalesce [10] causing the
swarm to behave more like GCPSO, which limits its ability to find multiple peaks. In
contrast, although a re-diversification strategy is included in top-k PSO at the swarm level,
a single converging particle suffices to pre- vent its activation. Considering the slowing
velocity update rate of the underlying Clerk-Kennedy PSO, the probability of re-
diversification mechanism being activated fell as time progressed. To improve both
convergence accuracy and speed of top- k PSO, additional technologies should be
implemented such as deep reinforcement learning [36], which remains as a possible topic
for future research.

5.5.2 Dynamic Environment

In the dynamic environment of the second experiment, peaks moved randomly as time
progressed, and thus, the utility value r(x) at coordinate x at time t may differ attimet+1,
which would cause a problem of stale values stored in particles. All the algorithms used in
the experiment, including our proposed top-k PSO, are unable to track time elapsed since
utility values were calculated and thus, they could not perform at acceptable levels in
dynamic environments. Moreover, as time progresses, swarms would eventually lose
diversity, which is another serious issue when exploring dynamic environments [5].

Two main concerns in exploring dynamic environments were evident from the
experimental results of Case 1 to Case 3, as shown in Tables 6 to 8. Compared to their
counterparts in the static version, all algorithms in Case 1 to Case 3 produced lower
successful identification rate of top k peaks. This was mainly due to the loss of diversity,
because the swarms tended to converge over time, which rendered them unable to
continuously explore the environment and thus caused them to lose track of the peak points.
However, the relative trend in the results achieved by top-k PSO compared with those of
other algorithms remained; top-k PSO was better at identifying second and later peaks
than other algorithms, while similar of slightly worse than NichePSO at identifying the
first peak.

Furthermore, the reduction in probability of identifying peaks between the dynamic
and its static counterpart of Case 3 was larger than Case 1. This may be attributed to limit
of peak movements calculated using the side length of the environment E; the greater the
range of the movement, the more likely that a tracked peak may move outside the
Euclidean distance limit of dq from the particle, causing the particle to be unable to
identify the peak successfully. However, the opposite may also occur, albeit at lower
probability, when a peak further than d4 from a particle moves to within dq, enabling the
particle to successfully identify the peak. To confirm this observation, we also
experimented using Case 3 in dynamic environment but with different movement speed
factors w for the peaks, as shown in Table 9. The results of this experiment showed that the
slower the movement of the peaks in the environment (higher w), the higher the
probabilities of identifying the top k peaks in the environment. Even though top-k PSO
includes a re-diversification mechanism which should reduce the decrease in
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performance when tracking faster moving peaks, the mechanism is triggered only when the
particle remains converged after y:;. Considering that peaks move constantly, this
mechanism may be triggered far less often in faster environments. Further research would
be required to refine this condition to allow top-k PSO to identify optimal points better
in dynamic environments, especially with fast-moving peaks.

6 Conclusion

In this study, we modeled the problem of identifying areas with higher probability of
survivors after a disaster as a two-dimensional environment, using a bivariate normal
distribution to simulate areas with different concentrations of survivors. To solve this
problem, we extended a PSO algorithm to develop our proposed top- k PSO, which is
designed to identify top-k locations among all possible locations where survivors would
be more likely to be found. After multiple experiments with different variables in a static
environment and a comparison with several other algorithms, we found that top-k PSO
was more effective in identifying a single peak (optimum) in most cases and in almost all
cases when identifying top-k peaks. The re-diversification method that we introduced
improved the convergence performance and also maintained swarm variation throughout
the simulation.

When top-k PSO was tested in a dynamic environment, it was still able to identify the
top-k locations at a satisfactory rate. Notably, our proposed algorithm was less affected in
dynamic environments compared to the other algorithms compared. However, the
performance of top-k PSO degrades quickly the faster the targets in the environment
move.

From these experiments, we were able to identify several weak points that can be
developed further; an example would be to enable top-k PSO to explore an environment
with fewer particles than the number of peaks in the environment, mimicking the real-life
situation of a limited number of aerial drones. The other weak point is that although we
performed simulations in dynamic environments, a study on the aftermath of the 2010
Haiti earthquake showed that the movement of survivors is highly predictable [21], which
suggests that our simplified model of randomized movements might not be fully
applicable in the real world. Hence, a more accurate model of the problem is required to
fully evaluate the effectiveness of our proposed algorithm in real applications.
Furthermore, the performance of top-k PSO in dynamic environment is highly influenced
by the movement speed of the dynamic peaks, and further research is required to enable
top-k PSO to identify and track faster-moving peaks and peaks with changing utility
values.

In addition to the need for additional investigation to realize application of top-k PSO in real
world, collisions between unmanned aerial vehicles (UAVS) must also be avoided if top-k
PSO were applied to actually search for potential survivors in a disaster area. Many
different approaches can be applied to prevent collisions, such as using PSO [23] or using
deep reinforcing learning [30]; combining top-k PSO with these methods could provide
another potential direction for future research.
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