
A Constrained Recursion Algorithm for Tree-structured 
LSTM with Mini-batch SGD

Ruo Ando *,  Yoshiyasu Takefuji †

Abstract

Tree-structured LSTM (Long Short-Term Memory) is a promising concept to consider
long-distance interaction over hierarchies with syntactic information. Besides, compared
with chain-structured one, tree-structured LSTM has better modularity of learning pro-
cess. However, there still remains the challenge concerning hyperparameter tuning in tree-
structured LSTM. Mainly, hyperparameter of mini-batch SGD (Stochastic Gradient De-
scent) is one of the most important factors which decides the quality of the prediction of
LSTM. For more sophisticated hyperparameter tuning of mini-batch SGD, we propose a
constrained recursion algorithm of tree-structured LSTM. Our algorithm enables the pro-
gram to generate an LSTM tree for each batch. By doing this, we can evaluate the tuning
of hyperparameter of mini-batch size more correctly compared with chain-structured one.
Besides, our constrained recursion algorithm can traverse the LSTM and update the weights
over several LSTM tree with a breadth-first search. In the experiment, we have measured
the validation loss and elapsed time in changing the size of mini-batch. We have succeeded
in measuring the learning process’s stability with small batch size and the instability of
overfitting with large batch size more precisely than chain-structured LSTM.

Keywords: Constrained recursion, hyperparameter tuning, tree-structured LSTM, mini-
batch SGD.

1 Introduction

There two main problems still remains unsolved despite recent advances in training RNN
(Recurrent Neural Network) - vanishing gradient and scalability. First, RNN suffers the
difficulty of training by gradient-based optimization procedures. Second, capturing long-
term dependencies is still a fundamental challenge for RNN. Unfortunately, Many proposals
leveraging backpropagation are difficult to scale to long-term dependencies.

As the solution to the difficulties of coping with the long sequences, LSTM (Long
Short-Term Memory) has been proposed for providing the resilience to gradient problems.
Although there have been many successes by adopting chain-structured LSTM, many other

∗ National Institute of Informatics, Tokyo, Japan
† Musashino University, Tokyo, Japan

International Journal of Smart Computing and Artificial Intelligence 
I nternational Institute of Applied Informatics 
20 23, Vol. 7, No. 1, IJSCAI669



essential domains are inherently associated with input structures, which are more compli-
cated than the input sequence itself. For example, it is pointed out that sentences in natural
languages are believed to be carried by not merely a linear series of words; instead, se-
mantics and their meaning are thought to be nonlinear structures. Zhu et al. [9] propose
a new method for adopting memory blocks in recursive structures. It is called S-LSTM
of which model utilizes the structures and performs better than chain-structured LSTM,
ignoring such priori structures.

SGD (Stochastic gradient descent) is a method for interactively optimizing an objective
function. SDG takes advantage of achieving smoothness properties for both differentiable
and subdifferentiable. Mini-batch SGD is also regarded as a stochastic approximation of
gradient descent optimization. Because mini-batch SDG replaces the actual gradient figured
out from the entire data set by some parts of the whole estimation, which is calculated from
a randomly picked up subset of data. Mini-batch SGD reduces the computational burden
with faster iterations instead of a lower convergence rate, especially in high-dimensional
optimization problems. Figure 1 depicts mini-batch SDG. Mini-batch SDG figures out the
gradients on a few random sets of instances, which is described as mini-batches. As shown
on the right side of Figure 1, the noise (nonlinearity) is added to the path of gradient descent.
In some cases, mini-batches can provide the regularizing effect.

At each step, mini-batch SGD calculates the gradients on small random sets of instances
while SGD computes the based on the full training set.

When we compute two gradients for the two data instances with each mini-batch, we
need to divide them by two to obtain the gradient average over the mini-batches.

θ j = θ j− ε
1
n

(k+1)∗n

∑
i=n∗k

5∗θ j ∗DIFF(ŷi− yi) (1)

In equation (1), n is the batch size, and k is the number of batches. Mini-batch SGD has
some advantages as follows:

1. Computational Efficiency: In terms of computational efficiency, this technique lies
between the two previously introduced techniques.

2. Stable Convergence: Another advantage is the more stable converge towards the
global minimum since we calculate an average gradient over n samples that results in
less noise.

3. Faster Learning: As we perform weight updates more often than with stochastic gra-
dient descent, in this case, we achieve a much faster learning process.

The algorithm’s progress in parameter space is less erratic than with SGD, especially
with fairly large mini-batches. As a result, mini-batch GD will end up walking around a bit
to the minimum than SGD. But, on the other hand, it may be harder for it to escape from
local minima.

Our hypothesis in this paper is as follows:

Hypothesis 1 (H2). Our tree-structured LSTM makes it possible to evaluate the tuning
of hyperparameter of mini-batch size more correctly compared with conventional chain-
structured one.

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

R. Ando, Y. Takefuji2



Figure 1: Mini-batch SGD. It figures out the gradients on a few random sets of instances,
which is described as mini-batches.

Hypothesis 2 (H2). Our tree-structured LSTM takes advantage in measuring learning pro-
cess’s stability with small batch size the instability of overfitting with large batch size more
precisely than chain-structured LSTM.

Besides, one of the most important mathematical challenge of recurrent networks is
long term dependencies.

Definition 1. The basic problem of long-term dependencies is that gradients propagated
across many layers tend to either vanish or explode.

The thrust of recursive neural network over recurrent network is that for every sequence
with the same length τ , the depth, which is the number of compositions of nonlinear oper-
ations can be radically reduced from reduced from τ to O(logτ). In this case, a recursive
neural network might help deal with long-term dependencies.

Figure 2: A recursive neural network as a generalization of the recurrent network from a
chain to tree.

Figure 2 depicts a recursive neural network.
This is a computational graph that generalizes that of the recurrent network from a

chain to a tree. In recurrent network, a variable-size sequence x(1),x(2), ...,x(t) is mapped to

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

A Constrained Recursion Algorithm for Tree-structured LSTM with Mini-batch SGD 3



a fixed-size representation (the output o), with a fixed set of parameters (the weight matrices 
U, V, W). The figure illustrates a supervised learning case in which some target y is provided 
that is associated with the whole sequence.

2 Related Work

Recurrent neural networks [1], or RNNs are feedforward neural networks for processing 
sequential data by extending with incorporating edges that span adjacent time steps. In 
general, RNNs suffer the difficulty of training by gradient-based optimization procedures. 
Local numerical optimization includes stochastic gradient descent or second-order methods, 
which causes the exploding and the vanishing gradient problems[13][14][15]. Werbos et al.
[11] propose the backpropagation through time (BPTT), which is a training algorithm for 
RNN. BPTT is derived from the popular backpropagation training algorithm used in MLPN 
training [12]. Derivatives of errors are computed with backpropagation over structures [6].

Recursive neural networks are yet another representation of recurrent networks’ gen-
eralization with a different kind of computation graph. The computation graph adopted 
in recursive neural networks is a deep tree, instead of the chain-like structure of RNNs. 
Pollack [2] proposes recursive neural networks. Bottou [3] discuss the potential use of re-
cursive neural network in learning to reason. In [4] and [5], recursive neural networks are 
more effective in performing on different problems such as semantic analysis in natural 
language processing and image segmentation.

There is a long line of research efforts on extending the standard LSTM [7] in order to 
adopt more complex structures. Tai et al [8] and Zhu et al. [9] extended chain-like structured 
LSTMs to tree-structured LSTMs by adopting branching factors. They demonstrated that 
such extensions outperform competitive LSTM baselines on several tasks such as semantic 
relatedness prediction and sentiment classification. F urthermore, Li e t a l. [10] show the 
effectiveness of tree-structured LSTM on various tasks and situations in which tree-like 
structure is effective.

Truncated BPTT [17] is one of the most popular variants of BPTT. In [17], the accu-
mulation stops after a fixed number of t ime s teps. Truncated BPTT performs well i f the 
truncated chains are effective to learn the target recursive functions. Saon et al. [18] im-
proved the original truncated BPTT with batch decoding. In [18], the number of context 
frames in batch decoding equals the number of unrolled steps before truncation.

Practical recurrent networks are combined of BPTT, batch decoding, and consecutive 
prediction [19] [20] for speeding up training. Besides, the hidden vectors are sometimes 
cached in [18]. These techniques sometimes cause a situation of mismatching between 
training and testing. So far, this mismatch has not been addressed. However, in [21], the 
distinction between online and batch decoding under running BPTT is explored.

3 Methogology

3.1 Truncated Backpropagation Through Time

Backpropagation Through Time, or BPTT, is a specific application of backpropagation in 
neural networks applied to sequence data like a time series. A recurrent neural network is 
shown one input each time step and predicts one output. Conceptually, BPTT works by 
unrolling all input time steps, as shown in Figure 2. Each time step has one input time step,

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

R. Ando, Y. Takefuji4



one copy of the network st , and one output ot . Errors are then calculated and accumulated
for each time step with w. Figure 3 has outputs at each time step. The network is rolled
back up, and the weights are updated. BPTT would be impractical in an online manner
because its memory footprint grows linearly with time.

Figure 3: Back Propagation Through Time. It works by unrolling all input time steps.

Truncated Backpropagation Through Time (TBPTT), which is an online version of
BPTT is proposed in [17]. TBPTT works analogously to BPTT, but the sequence is pro-
cessed one time step at a time and periodically. The BPTT update is performed back for
a fixed number of time steps. In [17], the accumulation stops after a fixed number of time
steps. Truncated BPTT performs well if the truncated chains are effective in learning the
recursive target functions.

3.2 LSTM

Long short-term memory (LSTM) [7] is a family of recurrent neural networks. Like other
recurrent neural networks, LSTM has feedback connections. Concerning the memory cell
itself, it is controlled with a forget gate, which can reset the memory. unit with a sigmoid
function. In detail, given a sequence data x1, ...,xT we have the gate definition as follows:

ft = σ(Wf hht−1 +Wf xxt +Pf ∗ ct−1 ∗b f ) (2)

it = σ(Wixt +Uiht−1 +Pi ∗ ct−1 ∗bi) (3)

gt = tanh(Wgxt +Ught−1 +bg) (4)

ct = itΘgt + ftΘct−1 (5)

ot = σ(Woxt +Uoht−1 +Po ∗ ct +bo) (6)

ht = otΘtanh(ct) (7)

where ft is forget gate, it input gate, ot output gate and gt input modulation gate. Partic-
ularly Pf ,PiPo indicates the peephole weights for the forget gate. The peephole connections

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

A Constrained Recursion Algorithm for Tree-structured LSTM with Mini-batch SGD 5



introduced in [30] enables the LSTM cell to inspect its current internal states. Then, the
backpropagation of the LSTM at the current time step t is as follows:

δot = tanh(ct)δht (8)

δct = (1− tanh(ct)
2)otδht (9)

δ ft = ct−1δct (10)

δct−1 = ftθδct (11)

δ it = gtδct (12)

δgt = itδct (13)

3.3 Implementation of Mini-batch SGD

In mini-batch SGD, we apply a batch of a fixed number of training data set which is smaller 
than the actual dataset. After generating the mini-batches of fixed size, we proceed to the 
following step in each epoch. Implementation of mini-batch SGD is as follows:

1. Pick a mini-batch

2. Feed it to Neural Network

3. Calculate the mean gradient of the mini-batch

4. Use the mean gradient we calculated in step 3 to update the weights

5. Repeat steps 1-4 for the mini-batches we created

The average cost over the epochs in mini-batch SGD changes because we are averaging 
the number of examples at once.

In general, mini-batch SGD is faster than SGD. Besides, mini-batch SGD has a smaller 
risk when measured in terms of CPU elapsed time.

4 Proposal Method

4.1 Tree-structured LSTM

The Tree-structured LSTM is a generalization of long short-term memory (LSTM) net-
works to tree-structured network topologies, introduced in [9]. Here, the core design con-
cept introduces syntactic information for language tasks by extending the chain-structured 
LSTM to a tree-structured LSTM.

Figure 4 shows the comparison of two kinds of LSTM network structures. The upper 
side of Figure 4 shows a chain-structured LSTM network. The lower side of Figure 4 
depicts a tree-structured LSTM network with an arbitrary branching factor. Tree-structured 
LSTM performs well when the networks need to combine words and phrases in natural 
language processing [8].

Definition 2 . Tree-structured LSTM. Tree-structured LSTM can be represented as a  com-
putation graph that generalized that of the network from chain to a tree. In a recursive 
network, variable-size sequences x(1), x(2), ... x(t) can be mapped to a fixed-size represen-
tation, with a fixed set of parameters of weight.

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

R. Ando, Y. Takefuji6



Figure 4: Tree-structured LSTM with arbitrary branching factor.

Figure 5: Implementation of Linear activation unit by object-oriented programming lan-
guage. The base class of Function has the inheritance of FunctionLinear.

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

A Constrained Recursion Algorithm for Tree-structured LSTM with Mini-batch SGD 7



f (x) = ψ ∗ (
n

∑
i=0

wi ∗ xi +b)

Here, ψ is an activation function such as Tanh and RELU. Class FunctionLinear imple-
nments the function of ∑i=0 wi ∗ xi +b. The notation of *creator is the pointer to the function 

which generates its variable. For example, FunctionLinear outputs r which is equal to

8 R. Ando, Y. Takefuji 

4.2 Reverse-mode Diff 

Autodiff (Automatic differentiation) is the fundamental technology upon which most deep 

learning frameworks are based. Autodiff is one of the gradient-based techniques that deep 

learning models use, and autodiff enables it to calculate gradients, even from enormous and 

complicated models, easily. Reverse-mode autodiff which is implemented in Tensorflow 

[28] is a compelling and accurate technique, especially in the case that there are many inputs 
and few outputs. At the first phase of the reverse-mode diff, the program goes through the 
graph in the forward direction from the input to the output to calculate each mode’s value. 
A second phase program goes through the reverse direction in turn to compute all the partial 
derivatives. Besides, reverse-mode diff can deal with functions defined by arbitrary code.

Figure 5 depicts our implementation of linear activation unit for the reverse-mode au- 

todiff of linear activation. In artificial neural networks, a node’s activation function defines 

the output of that node given an input or set of inputs. Input-output model is defined as 

follows: 

Figure 5 also illustrates the detailed implementation of the inheritance of functions and 

variables of tree-structured LSTM. Inheritance lets us define classes that model relation- 

ships among types, sharing what is common and specializing only that which is inherently 

different. its derived classes inherit members defined by the base c lass. The derived class 

can use, without change, those operations that do not depend on the specifics of the derived 

type. It can redefine those member functions which do depend on its type, specializing the 

function to take into account the peculiarities of the derived type. Finally, a derived class 

may define additional members beyond those it inherits from its base class. 

4.3 Constrained Recursion of Tree-structured LSTM 

As we discussed in section I-B, a tree-structured LSTM graph is generated for each mini- 

batch. Figure 6 depicts the model of a few tree-structured LSTM graphs for mini-batches. 

As usual, a breadth-first search (BFS) is applied for the recursive search of tree structure. 

However, other procedures on our model such as loss, MSE (Mean-Square Error) and Tanh 

should be skipped before the program reaches the LSTM tree, as shown in the lower-left 

side of Figure 6. 

We modify the recursion algorithm as shown in Algorithm 1. Broadly, the breadth-first 

search is an algorithm for the traversal of tree (or graph) data structures. BFS begins at the 

tree root, which is also referred to as a search key. It then explores all of the neighbor nodes 

at the present depth before it goes on to the nodes at the next depth. 

4.4 Deduplication of Multiple Graph Connection 

At the first phase of LSTM, the current input layer x(t) and the previous short-term state 

h(t-1) are fed to four differently connected layers. Four connected layers are g (main gate), 

i (input gate), f (forget gate), and o (output gate). Here, let us call the multiple connections 

n 
 i=0 wi ∗ xi + b and is passed to FunctionTanh. The creator of variable r is FunctionLinear. ∑

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.



Figure 6: Constrained recursion of tree-structured LSTM.

Algorithm 1 Constrained model traversal
1: if v→ lastopt 6= NULL∧→ opt = ∗v→ lastopt then
2: ∗v→ is last backward = true
3: end if
4: if i f (v→ is last backward 6= NULL∧∗v→ is last backward = f alse then
5: return
6: end if
7: back propagation()

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

A Constrained Recursion Algorithm for Tree-structured LSTM with Mini-batch SGD 9



as a branch, as shown in Figure 6. Without any constrain, the propagation between x(t) and
these four layers are duplicated. We have a solution for the problem of this duplication with
Algorithm 2.

In Figure 7, variable X has four branches reaching to g, i, f and o. In the forward
propagation phase, variable x has been allocated four times as x(1), x(2), x(3) and x(4).
The backpropagation from x will be caused four times to fx, gx, ix and ox without any
constraint. To stop this duplicated propagation, we set the condition at line 4 of Algorithm
2.

Figure 7: Deduplication of multiple graph connection. Without any constrain, the propaga-
tion between x(t) and these four layers are duplicated.

Algorithm 2 Deduplication of multiple graph connection
1: if viv→ f orward count > 0 then
2: v→ f orward count−−
3: end if
4: if v→ f orwardcount 6= 0 then
5: reutrn
6: end if
7: back propagation()

5 Experiment

In this section, we describe the experimental results of the training and generating a sine
wave. In the experiment, we use a workstation with Intel(R) Xeon(R) CPU E5-2620 v4
(2.10GHz) and 252G RAM. Open source code for this experiment is available at [38].

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

R. Ando, Y. Takefuji10



We generated a sine wave with a length of 140 to 200 and a period of 4.
We generated the sine wave for training/testing data by C++ program as follows:

int steps_per_cycle = 50;

int number_of_cycles = 100;

void createSinData(float data[],

int steps_per_cycle,

int number_of_cycles){

for (int j=0; j<number_of_cycles; j++){

for (int i=0; i<steps_per_cycle; i++){

float v = std::sin(i * 2 *

std::atan(1) * 4

/ steps_per_cycle);

data[steps_per_cycle * j + i] = v;

}

}

}

Figure 8 shows 12 plots ranging from the interval model reset and batch size. X-axis
is the length of the sine wave. Y represents the value of sin(X) ranging from -1 to 1. We
divided 12 plots into three settings.

I Plot 1-4 has the parameter of interval=40 and batch size=3.

II Plot 5-8 has the parameter of interval=40 and batch size=6.

III Plot 9-12 has the parameter of interval=40 and batch size=10.

In each set I, II, and III, we changed the epoch size from 250 to 1000. It turned out
that as the number of batch size is increasing, the prediction plots are likely to be collapsed.
Specifically, in plot 12, the prediction plot becomes disturbed compared with the previous
plot of 11.

Figures 9, 10, and 11 show the validation loss with epoch=1000 and interval = 40 and
batch size ranging from 3, 6 to 10. In Figure 11 with batch size 3, the validation loss
converges faster than batch size 6 and 10. However, the elapsed time of the processing with
batch size 3 takes a longer time than Figure 9 and 10. As shown in Table I, it takes about
four times (194min/59min) between batch sizes 3 and 10.

Table 1: Elapsed time with epoch 1000
bach size elapsed time
10 3541.25sec(59.0208min)
6 5688.8sec(94.8133min)
3 11686.8sec(194.779min)

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

A Constrained Recursion Algorithm for Tree-structured LSTM with Mini-batch SGD 11



Figure 8: Experimental result of batch sizes 3, 6, and 10. For each batch size, epoch size is
set to 250, 500, 750, and 1,000.

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

R. Ando, Y. Takefuji12



Figure 9: Validation loss with epoch = 1000, interval = 40 and batch size = 6.

Figure 10: Validation loss with epoch = 1000, interval = 40 and batch size = 10.

Figure 11: Validation loss with epoch = 1000, interval = 40 and batch size = 3.

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

A Constrained Recursion Algorithm for Tree-structured LSTM with Mini-batch SGD 13



6 Discussion

6.1 Result of Experiments

As we already know, when we apply mini-batch SGD, an alternative to batch gradient
descent, we will cope with a new hyperparameter - batch size. To make our discussion
more straightforward, we build up a hypothesis concerning the batch size.

Hypothesis 3. Typically, the algorithm speeds up as batch size increases. On the other
hand, an increase in batch size reduces the likelihood of successful convergence, especially
as epochs increases in the long-term learning process.

To test this hypothesis, we discuss the result in section 5 from short-term convergence
(6.1.1) and long-term stability (6.1.2).

6.1.1 Convergence and over-learning (epoch 250, 500, 750).

Figure 8 has 12 subplots. Let us divide 12 subplots into three groups in Figure 8. Our main
findings and insights in these three groups are as follows:

1. batch size = 3. (subplot 1-4): The learning process is slower (subplot 2 of epoch 250)
but stable. (subplot of 4)

2. batch size = 6. (subplot 5-8): Result seems best in subplot 7 (epoch 750).

3. batch size = 10. (subplot 9-10): The learning process is faster (subplot 10 of epoch
250) but unstable (subplots 10 and 11).

Based on the observation of subplots 2, 6, and 10, the plot with batch size 10 seems 
best. However, at the end of subplot 10, the plot rises drastically. As possibly one of the 
guesses, it seems that the over-learning is caused, which is the typical case for long-size 
batches. Hence, we can conclude that the process with a large batch size of 10 tends to be 
more than batches 3 and 6. In addition, when we compare subplots 10 and 11 with batch 
size 10, the learning program gets out of local minima, and the learning process fails (from 
batch size 750 to 1000).

6.1.2 Stability in the long-term learning process (more than 1000 epochs)

There are three categories of GD (gradient descent): batch-GD, SGD (stochastic gradient 
descent), and mini-batch SDG. Three algorithms will converge near the minimum. But 
batch-GD’s path ends up at the minimum, while both stochastic GD and mini-batch SGD 
continue to walk around.

Until it reaches the minima, the cost function of mini-batch SGD bounces up and down 
while one of batch GD gradually decreases until it researches the minima. Mini-batch SGD 
decreases on only average and continues to bounce around forever while batch-GD settles 
down to the minimum. In the long run, the probability of dropping out from the minima 
increases (batch size more than 1000).

Subplots 10, 11, and 12 in Figure 8 shows this tendency. In subplot 10, the program 
seems well on its way to the local minimum. However, the program went out of minima 
and collapsed through subplots 11 and 12. From this result of subplots 10, 11, and 12, we

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

R. Ando, Y. Takefuji14



can conclude that a bigger batch size of more than ten often brings instability in the learning
process compared to batch sizes 3 and 6.

Other interesting results are shown in Figures 9, 10, and 11. Figure 9, 10, and 11
compares the validation loss in the learning process concerning the case of batch size 3, 6,
and 10.

1. batch sie = 10. (Figure 9): validation loss is 0.05 after nine epochs.

2. batch size = 6. (Figure 10): validation loss is 0.05 after nine epochs.

3. batch size = 3. (Figure 11): validation loss is 0.02 after nine epochs.

Curiously, in the long-term learning with epoch 1000, batch size three seems best in
two aspects both convergence speed and stability. One possible reason is that small batches
can offer a regularizing effect [31]. The algorithm’s progress in parameter space with batch
size 3 walks around closer to minima than the case of 6 and 10.

6.2 Advantage

As we noted in the previous section, recursive neural networks use a different kind of com-
putational graph for adopting yet another generalization of recurrent networks. Originally,
Pollack [2] introduces recursive neural networks. Bottou [3] shows the potential use for
learning to reason. So far, what deep learning achieved is the ability to map set X to set Y
using continuous geometric transformation with given large amounts of human-annotated
data. This straightforward geometric morphing from space X to space Y of deep-learning
models do is called as a local generalization. In the future, a necessary transformational de-
velopment in the field of machine learning is to move away from local generalization with
purely pattern recognition towards a model capable of extreme generalization with abstrac-
tion and reasoning. As we already know, a likely appropriate substrate in various situations
is a computer program. Takefuji [32] points out that the importance of modularity and
abstraction for the progress of open-source software such as Keras, chainer, and PyTorch.
With software engineering progress, modularity and abstraction in software development
will become a fundamental sense for achieving higher reusability with being more resilient
against input/output/process interactions.

Our network with batch normalization can be described as a shallow learning network
and similar to a functional link network. Pao and Takefuji [33] propose the functional link
model, which eliminates all layers between input and output by using the single step of
processing, is one way to avoid nonlinear learning. One benefit of a functional link neural
network is flexibility when the learning time is based on the numerous processing elements
necessary for computing.

Since the proposed method in this paper applies recurrent networks, it should be able to
benefit from the above ability to reduce the depth, measured as the number of components
of the nonlinear operation.

7 Conclusion

In this paper, we have proposed the constrained recursion algorithm for tree-structured
LSTM. Our recursion algorithm’s thrust is the ability of tree traversal over mini-batch SDB
based tree structure LSTM. Besides, compared with chain-structured LSTM, tree-structured

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

A Constrained Recursion Algorithm for Tree-structured LSTM with Mini-batch SGD 15



LSTM has suitable for the validation of hyper-parameter tuning. Tree-structured LSTM has
better modularity of the learning process.

Mainly, the hyperparameter of mini-batch SGD (Stochastic Gradient Descent) is one
of the most important factors which decides the quality of the prediction of LSTM. In the
experiment, we have measured 12 parameter tunings of sine curve fitting. It turned out that
among three parameters of (1) epochs, (2) model reset interval, and (3) batch size, batch
size is the most critical parameter for the stability of the learning process.

It turned out that the small batch size (=3) is the best parameter for after 1000 epochs.
On the other hand, the big batch size (=10) seems faster to converge. However, after 750
epochs, the validation loss is increasing drastically. We can conclude that small batches can
yield a regularizing effect. In other words, the noise which batch size 3 adds a regularizing
product to the learning process. Our tree-based LSTM algorithm makes it possible such a
hyperparameter tuning of batch size and provides a new perspective of parameter tuning.
We have succeeded to measure the stability of the learning process with small batch size
and the instability of overfitting with large batch size more precisely compared with chain-
structured LSTM.

Our tree-structured LSTM is based on recursive network. Recursive networks have a
variety of applications: A transformed data into a tree structure, mapping input and correct
answers to individual nodes of that tree. The method proposed in this paper should be
applicable to a variety of applications of recursive networks.

References

[1] Rumelhart, David E.; Hinton, Geoffrey E., Williams, Ronald J., “Learning representa-
tions by back-propagating errors.”, Nature 323 (6088): 1986/10, pp.533-536,

[2] Jordan B. Pollack, “Recursive Distributed Representations”, Artif. Intell. 46(1-2), 1990,
pp.77-105

[3] Leon Bottou, “From Machine Learning to Machine Reasoning”, CoRR abs/1102.1808
(2011)

[4] Socher, Richard, Lin, Cliff C., Ng, Andrew Y., and Manning, Christopher D. Parsing,
“Natural Scenes and Natural Language with Recursive Neural Networks”, In Proceed-
ings of the 26th International Conference on Machine Learning (ICML), 2011.

[5] Socher, Richard, Perelygin, Alex, Wu, Jean Y., Chuang, Jason, Manning, Christopher
D., Ng, Andrew Y., and Potts, Christopher, “Recursive deep models for semantic com-
positionality over a sentiment treebank”, In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP13, Seattle, USA, 2013.

[6] Goller, Christoph and Kohler, Andreas”, Learning task-dependent distributed represen-
tations by backpropagation through structure,” In In Proc. of the ICNN-96, Bochum,
Germany, 1996, pp. 347-352.

[7] Sepp Hochreiter and J.Nurgen Schmidhuber, “Long short-term memory. Neural Com-
putation” 9(8),1997, 1735-1780.

[8] Kai Sheng Tai, Richard Socher, and Christopher D. Manning, “Improved semantic rep-
resentations from tree-structured long short-term memory networks”, In Proceedings of

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

R. Ando, Y. Takefuji16



the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing. ACL, 2015, pp.1556-
1566.

[9] Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo, “Long short-term memory over re-
cursive structures”, In Proceedings of the 32nd International Conference on Machine
Learning. ICML, 2015, pp.1604-1612.

[10] Jiwei Li, Minh-Thang Luong, Dan Jurafsky, and Eduard Holy, “When are tree struc-
tures necessary for deep learning of representations”, In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing. EMNLP, 2015,
pp.2304-2314.

[11] P. J. Werbos, “Backpropagation through time: What does it does and how to do it”, In
Proc. IEEE, vol. 78, no. 10, Oct. 1990, pp. 1550-1560,

[12] P. J.Werbos, “The Roots of Backpropagation: From Ordered Derivatives to Neural
Networks and Political Forecasting”, 1st ed. Hoboken, NJ: Wiley, 1994.

[13] Yoshua Bengio, Patrice Simard, and Paolo Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult”, IEEE transactions on neural networks, 5(2),
1994, pp.157-166.

[14] John F. Kolen and Stefan C. Kremer, “Gradient Flow in Recurrent Nets: The Difficulty
of Learning LongTerm Dependencies”, Wiley-IEEE Press, 2001, pp464-479.

[15] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On the difficulty of training
recurrent neural networks”, In Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28, ICML13,JMLR.org, 2013
pp. III310-III318.

[16] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu, “Advances in
optimizing recurrent networks”, In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2013, pp.8624-8628.

[17] Ronald J. Williams and Jing Peng, “An efficient gradient-based algorithm for online
training of recurrent network trajectories”, In Neural Computation, 1990.

[18] George Saon, Hagen Soltau, Ahmad Enami, and Michael Picheny, “Unfolded recur-
rent neural networks for speech recognition”, In Interspeech, 2014.

[19] Hasim Sak, Andrew Senior, and Francoise Beaufays, “Long short-term memory re-
current neural network architectures for large scale acoustic modeling”, In Interspeech,
2014.

[20] Kai Chen, Zhi-Jie Yan, and Qiang Huo, “Training, deep bidirectional LSTM acoustic
model for LVCSR by a context-sensitive-chunk BPTT approach”, In Interspeech, 2015.

[21] Naoyuki Kanda, Mitsuyoshi Tachimori, Xugang Lu, and Hisashi Kawai, “Training
data pseudo-shuffling and direct decoding framework for recurrent neural network
based acoustic modeling”, In Proc of IEEE Workshop on Automatic Speech Recog-
nition and Understanding (ASRU), 2015.

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

A Constrained Recursion Algorithm for Tree-structured LSTM with Mini-batch SGD 17



[22] Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton, “Speech recognition 
with deep recurrent neural networks”, in Proc of Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013, pp. 6645-6649.

[23] Ilya Sutskever, Oriol Vinyals, and Quoc Le, “Sequence to sequence learning with 
neural networks”, In Advances in Neural Information Processing Systems, 2014, pp. 
3104-3112.

[24] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural machine transla-
tion by jointly learning to align and translate”, arXiv preprint arXiv:1409.0473, 2014.

[25] Tomas Mikolov, ”Statistical language models based on neural networks”, In Presenta-
tion at Google, Mountain View, 2nd April, 2012.

[26] Bergstra, J.S., Barnet, R., Bengio, Y., Kgl, B., 2011. Algorithms for hyper-parameter 
optimization, in: Shawe-Taylor, J., Zemel, R.S.,

[27] Jozefowicz, R., Zaremba, W., Sutskever, I., “An empirical exploration of recurrent 
network architectures”, in: Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, JMLR.org. 2015, 
pp.2342-2350

[28] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, 
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, 
Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, 
Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, Xiaoqiang 
Zheng: “TensorFlow: A System for Large-Scale Machine Learning”. OSDI 2016: 
pp265-283

[29] Sergey Ioffe, Christian Szegedy, “Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift”. CoRR abs/1502.03167 (2015)

[30] Gers, F. A., and Schmidhuber, J., “LSTM recurrent networks learn simple context-free 
and context-sensitive languages”, IEEE Trans. Neural. Netw., 12(6), 2001, 1333-1340.

[31] D. Randall Wilson, Tony R. Martinez: The general inefficiency of batch training for 
gradient descent learning. Neural Networks 16(10): 1429-1451 (2003)

[32] Yoshiyasu Takefuji, “Open source software is indeed based on modularity and ab-
straction”, Science, eLetter, July 24, 2017

[33] Yoh-Han Pao, Yoshiyasu Takefuji, “Functional-Link Net Computing: Theory, System 
Architecture, and Functionalities”, Computer 25(5), 1992, pp76-79

[34] Keras: Deep Learning for humans, https://github.com/keras-team/keras

[35] Chainer: A deep learning framework, https://github.com/chainer/chainer

[36] Tensors and Dynamic neural networks in Python with strong GPU acceleration, 
https://github.com/pytorch/pytorch

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

R. Ando, Y. Takefuji18



[37] Paolo Frasconi, Marco Gori, Alessandro Sperduti, “On the Efficient Classification of
Data Structures by Neural Networks”, IJCAI 1997, pp.1066-1071

[38] LSTM implementation for IJSCAI https://github.com/RuoAndo/LSTM-IJSCAI

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

A Constrained Recursion Algorithm for Tree-structured LSTM with Mini-batch SGD 19




