
International Journal of Smart Computing and Artificial Intelligence
International Institute of Applied Informatics
2022, Vol. 6, No. 1, IJSCAI645

Sakuei Onishi
∗

, Fumihiro Yukimoto
†
, Hiromitsu Shiina

‡

∗ Graduate School of Informatics, Okayama University of Science, Okayama, Japan
† Benesse InfoShell, Okayama, Japan
‡ AFaculty of Informatics, Okayama University of Science, Okayama, Japan

Program Comment Generation with Improved Distributed
Representation by Seq2seq Model Using Parse Tree Infor-
mation

Abstract

Comments in a program’s source code are important for understanding the program. Un-

derstanding the logical flow and overall procedure of the programs is important as the next

step especially for beginners learning programming language, and it is inferred that appro-

priate comments on the source code can support it. In this study, we generate comments for

source code using a distributed representation of line dependencies constructed with

Word2Vec and using parse tree information obtained from the source code as input. Also,

we generate comments not only for each line of source code but also for blocks, which are

the logical units of processing.

Keywords: Programming learning, Comment Generating, Seq2seq Model, Encoder-

Decoder Translation Model, Distributed Representation, Parse Tree

1 Introduction

To have an in-depth understanding of information technology, which is the core fourth

industrial revolution, programming education will be introduced in Japanese elementary

schools from 2020[1][2]. Following the introduction of programming education, interest in

its teaching materials and support is increasing. Programming education for beginners is

also provided at various universities[3]. As a related study, there is research on program-

ming education for beginners using operation logs [4][5].

Understanding the logical flow and overall procedure of programs is considered to be

important for learning the program. Appropriate comments in the source code are particu-

larly helpful in learning a programming language. Thus, presenting appropriate comments

for each procedure and using them for learning is important. Moreover, during code review

in program development or collaborative learning, an explanation of the source code is

conducted, and it is considered to be effective for nurturing the ability to think logically for

programming. It is important to properly explain the segmentation and integration of

programming procedures in a natural language during the idea phase. In other words,

support in linguistic performance is important. A learning system is being developed that
enables the swapping of algorithm procedures for tablet PCs to aid in the understanding of
the procedure to solve this problem. However, the generation of procedures has problems
such as vibration in representation, generation of a large number of procedures, and adjust-
ment of representation level, and until now, studies on generating comments directly from
the source code have been conducted. This study generates program comments by using
parse tree information. Encoder–Decoder translation model, which is one of the Seq2seq
models[6], is used to learn the parse tree information and comment pairs corresponding
to the source code, and comments are generated for the new source code. Also, interde-
pendency across lines of source code is deeply involved in the generation of comments in
program source code. This study attempts to generate comments that capture the interde-
pendency by using a distributed representation built-in advance through Word2Vec[7] for
the input into LSTM[8] on the Encoder side and directly inputting the parse tree of the pro-
gram source code to obtain the deep relationship between source codes. We also proposed
a model that incorporates LSTM for the construction of Word2Vec to consider the order
and dependency of the source code in the input. Also, it generates comments not only for
each line of source code but also for blocks, which are the logical units of processing. To
evaluate the generated comments, we use C language programs and their comments from
the first programming class at the university as learning data. The comments are evaluated
using a questionnaire, automatic machine translation evaluation index, and BLEU[9].

2 Relate Works

There are many studies on programming education for beginners, including proposals for
online support systems or using card-type learning to teach program processing [10]. A
rubric has been proposed for the curriculum of programming education. Shinkai et al[11].
have been conducting manual algorithm learning because the description and composition
of the procedure are considered to be more important for nurturing programmatic thinking
than programs themselves. Moreover, as previously mentioned, a learning system based
on the method of swapping process procedures on tablet PCs is being developed[12]. In
the field of software engineering research, there is research on the generation of nouns for
programming comment generation [13].

The Encoder–Decoder model is used to automatically generate comments from the
source code to understand the processing procedure proposed in this study[14]. The au-
tomatic generation of program comments using the pair of source code and comments by
LSTM and the automatic generation of program comments using the external information
are two examples provided so far[15]. To improve the accuracy of generating comments
from the source code, variable information was extracted from the question sentence as ex-
ternal information and used during the generation of comments. Moreover, existing studies
on comment generation using parse tree information includes a proposal on comment gen-
eration through learning of the substructure of Java programs[16]. The difference between
this proposed method and existing methods is that the existing Encoder–Decoder model
learned the pair of source code token and its comment, whereas this method improved the
performance of comment automatic generation by changing it to a distributed representation
that takes interdependency into account using parse tree information of the source code.

S. Onishi, F. Yukimoto, H. Shiina2

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Figure 2: Corresponding source code

3 Data Used

For this study, 30 programs in C language used in university lectures were utilized. For the
line-by-line comment generation, 30 programs are used, and the total number of lines of
source code is 426. Comments are added for each line of the source code. In the block-
based comment generation, 51 programs are used and the total number of blocks is 352
blocks. Comments are added corresponding to each block of source code.

4 Procedure Learning System

Programming involves a number of procedures such as declaring variables, inputting val-
ues, calculation, and the output of results. We have been developing a system for program-
ming procedures that converts source code into Japanese procedures and then rearranges
the procedures to aid in understanding the concepts of the program. In the developed sys-
tem, shown in Figure 1, the problem text displayed at the top of the screen and the source
code with the procedures described in Japanese is displayed as an ellipse in the center of

3

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Program Comment Generation with Improved Distributed Representation by Seq2seq Model Using Parse Tree Information

Figure 1: Procedure Learning System

4 S. Onishi, F. Yukimoto, H. Shiina

the screen. These ellipses can be dragged and dropped, and the problem can be solved by
rearranging the steps in the gray area in the center of the screen from top to bottom. After
the sorting is complete, you can press the check button to check the order the questions
are sorted. This test is utilized for understanding the learning situation in lectures. For
example, when given a foreign currency conversion problem, and told to “create a program
where you can input amounts in yen, and it will convert it to US dollars, pounds, or euros,”
the procedure for solving the problem can be broken down as shown in Figure 2. In this
study, we have developed a system for testing the problem of rearranging this text (Figure
1). The procedure is considered to be created automatically based on the program’s source
code. Understanding the program requires an understanding of the source code’s line-by-
line processing and the blocks that integrate them into a somewhat cohesive processing unit.
There are two types of block understanding: bottom-up and top-down. Because bottom-up
processing is based on source code, there is a need to understand it. In this study, we aim to
understand programs’ processing by automatically generating procedures for line-by-line
and block-by-block processing.

5 Comment Generation from Parse Tree Information by LSTM

When using the Encoder–Decoder model, input and output word sequences are used for
learning. The pair of two superficial character sequences (string) is directly used, and
it is considered common to learn the pair of the token sequence of the source code and
comment of neural machine translation when generating comments corresponding to the
program source code. However, in this study, the LSTM input on the Encoder side was
changed from the token sequence of the source code to the node sequence of the parse tree,
and the pair of the node sequence that corresponds to the line of the source code and the
comment corresponding to that source code was learned. Moreover, while each token of
the token sequence is input into the LSTM layer by converting it from a word ID to dis-
tributed representation through a 1hot vector, this proposed method inputs into the LSTM
layer by separating each node of the parse tree and the pair of its external and internal in-
formation, and converting the same into a distributed representation that learned series and
interdependency. The construction method of distributed representation from the parse tree
is discussed in the following section.

5.1 Construction of distributed representation of parse tree information by
Word2Vec

5.1.1 Acquisition of source code parse tree information through pycparser

Pycparser[17], which is the library of Python, was used to analyze the syntax of the source
code in C language. The parse tree information inside and outside the node can be obtained
by tracing the generated parse tree information. Figure 3 shows an example of the parse
tree of a source code generated through pycparser. In the tree shown in Figure 3, the left
side subtree of “While” corresponds to the conditional sentence, and the right side subtree
corresponds to the processing inside the block.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Figure 3: Construction of distributed representation of parse tree information by Word2Vec

Figure 4: Word2Vec embedded

5.1.2 Construction of distributed representation

In this study, CBOW model of Word2Vec is used to construct the distributed representation
of each node from the generated parse tree. The CBOW model uses a natural language
corpus, such as Wikipedia, to learn the task of inferring the central word from preced-
ing/following n-words, using each word in the corpus as the center.

However, its task was changed to infer the central node from the internal and external
subtree, with each node of the parse tree as the center, and the parse tree generated from
the source code as the source. The significant difference is that the preceding/following n-
words in the normal CBOW model were changed to the internal and external subtree
consisting of nodes whose edge number is less than hops. Note that Figure 3 shows an
example of the internal and external subtree of “While” when hops=2.

5

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Program Comment Generation with Improved Distributed Representation by Seq2seq Model Using Parse Tree Information

Figure 5: Word2Vec embedded with LSTM Figure 5: Word2Vec embedded with LSTM

5.1.3 Construction of distributed representation through learning of Word2Vec

Parse tree information of the inner and outer subtrees of the processing nodes described in
Section 5.1.2, and the processing nodes were input to the CBOW model of Word2Vec for
training. The structure of Word2Vec is shown in Figure 4. First, the nodes of the outer
and inner subtrees of “While” are converted into distributed representations by the Embed-
ding layer. Next, the distributed representations of all the nodes are summed. Since it is
summing, the order relation of the parse tree is not taken into account. Finally, through
the Linear layer, Loss is calculated by cross-entropy, and from Loss, back propagation
is conducted to update the distributed representation. By repeating this process, the dis-
tributed representation of the nodes in the parse tree is constructed. Also, we construct
a distributed representation that captures the structure of the program by considering the
proximity (hops) of nodes in the parse tree.

5.2 Construction of distributed representation by learning Word2Vec using
LSTM

The difference from Section 5.1.3 is that we consider the order relation in the parse tree;
the structure of Word2Vec using LSTM is shown in Figure 5. First, we order the outer
and inner subtrees of “While” by tracing them in the preorder traversal. Each order is
indicated by a number as shown in Figure 5. Next, the nodes of the outer and inner subtrees
of “While” are transformed into distributed representations by the Embedding layer. The

transformed distributed representations of the nodes are input into the LSTM in the order of
their numbers, and the LSTM converts them into ordered distributed representations for the
outer and inner subtrees, respectively. Finally, the distributed representations of the outer
and inner subtrees are summed.

5.3 Comment generation by Encoder–Decoder translation model

On the Encoder side, the Encoder–Decoder translation model converts the input into a dis-
tributed representation at the Embed layer and inputs it into the LSTM layer. At the Embed

S. Onishi, F. Yukimoto, H. Shiina6

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Figure 6: Encoder–Decoder translation model using learned distributed representation

layer, the Decoder side continues its learning based on distributed representation to
generate correct comment input, sets the inputs as the source code or parse tree information,
and uses the initial state of one–hot vector, Word2Vec, or Word2Vec embedded with
LSTM for the conversion into a distributed representation. Figure 6 shows a translation
model wherein the node sequence that traced the parse tree corresponding to the source
code in the order of its route input to the LSTM on the Encoder side. The distributed
representation constructed by Word2Vec, as discussed in Section 5.4 (Model 4), is used for
the distributed representation of each node to be input into LSTM on the Encoder side. By
using the trained distributed representation, which takes the nearness of nodes (hops) in
the parse tree into account, comment generation that understands the program structure
evaluates its possibility. Moreover, the comment generation that understands the order
relation of the program evaluates the possibility by using the trained distributed
representation that takes the order relation of the parse tree into account through
Word2Vec embedded with the LSTM.

5.4 Comparison of distributed representations input to the LSTM on the En-
coder side

To improve the comment generation of the program, the distributed representation, which
is the input to the LSTM on the Encoder side of the Encoder–Decoder translation model, is
changed for each model. There are two types of input: source code and parse tree. Also,
there are three methods of constructing the distributed representation: initializing it with
random numbers, learning the distributed representation in advance using Word2Vec, and
learning it with Word2Vec incorporating LSTM. The differences in the input distributed
representation for the models in the previous study and the three models proposed in this
study will be discussed.
(Model1) Distributed representation initialized with random numbers of source code
tokens (Figure 7(a)): To construct a distributed representation of a token in a sequence of
tokens shared with the source code, the distributed representation is initialized with a
random number for each token in the sequence.
(Model2) Distributed representation of nodes of parse tree information initialized with ran-

7

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Program Comment Generation with Improved Distributed Representation by Seq2seq Model Using Parse Tree Information

Figure 7: Comparison of distributed representation input to LSTM on Encoder side

dom numbers (Figure 7(b)): Distributed representation of nodes is constructed by initial-
izing the distributed representation with random numbers for each node in the sequence of
nodes of parse tree information corresponding to the source code.
(Model 3) Learned distributed representation constructed from parse tree information using
Word2Vec (Figure 7(c)): By considering the proximity of nodes in the parse tree as de-
scribed in Section 5.1.3, we can use a distributed representation that captures the structure
of the program. This distributed representation is constructed by learning Word2Vec with
the CBOW model (Figure 4), where each node in the parse tree is a processing node, and
the task is to infer the processing node from its outer and inner subtrees. Model2 uses the
initially distributed representation before learning with Word2Vec, while Model3 uses the
learned Word2Vec.
(Model4) Learned distributed representation constructed with Word2Vec incorporating
LSTM from parse tree information (Figure 7(d)): As in Model 3, a distributed
representation is constructed by learning Word2Vec (Figure 5) with the CBOW model
incorporating LSTM for the task of inferring the processing node from its outer and
inner subtrees, with each node of the parse tree acting as a processing node. However,
since the existing CBOW model Word2Vec (Figure 4) does not consider the order
relation of inputs, we use a dis- tributed representation that considers the order relation
in Word2Vec (Figure 5), which incorporates LSTM in the inference process.

6 Evaluation of Generated Comments for Each Line Using
Parse Tree Information

6.1 Experimental environment for each line

As learning data, we used 30 programs written in C language used in the lectures of the
University’s Department of Computer Science. The model was trained in 25 programs,
and the remaining 5 programs were tested. We evaluate the four models mentioned in
Section 5.4. An open test is used to evaluate the generated comments. For the five different

S. Onishi, F. Yukimoto, H. Shiina8

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Table 1: Overall evaluation of generated line comment

programs, the evaluation method was based on a six-point scale from 1 to 6 by six fourth-
year university students. Also, each comment of the program was evaluated using BLEU,
which is an automatic machine translation index. The BLEU evaluation is based on the
degree of agreement between the generated comments and correct comments and is rated in
the range of 0 to 1. The closer they are to one, the higher the degree of agreement between
the comments. We evaluate the comments for each program separately because the BLEU
evaluation is not suitable for evaluating short sentences such as line–by–line comments.

6.2 Evaluation of generated comments for each line

6.2.1 Outline of Generated comments evaluation for each line

The questionnaire and BLEU evaluation for each program are shown in Table 1. The
questionnaire evaluations are the average of the line-by-line evaluations for each program,
whereas the BLEU evaluations in parentheses are the evaluations for each program. First,
comparing Model1 with Models 2, 3, and 4, Models 2, 3, and 4, have higher evaluations
because they use the node sequence of the parse tree as the input of LSTM on the Encoder
side. There is a possibility that the way the parse tree is traced has affected the evaluation,
and the order in which the parse tree is traversed, rather than the order from the beginning
of the source code, may be effective in generating comments. Next, comparing Model2
and Model3, Model3 outperformed in the questionnaire evaluation and BLEU evaluations,
indicating that dependencies beyond the source code line are important in comment gen-
eration. Finally, Model3 and Model4 use learned distributed representations of nodes, but
Model4, which inputs a distributed representation that captures the ordering relationships
of nodes in Word2Vec using LSTM, is rated higher. It was confirmed that considering the
order relation of the nodes when constructing the distributed representation is effective.

6.2.2 Evaluation of each line

Figure 8 shows the generated examples, and evaluations of the programs of P4 in Table 1.
Lines 3, 4, 5, and 12 show Model2, 3, and 4, which use distributed representations of parse
trees as input to Encoder’s LSTM, have higher evaluations than Model1 in the source code.

9

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Program Comment Generation with Improved Distributed Representation by Seq2seq Model Using Parse Tree Information

Program Model 1 Model 2 Model 3 Model 4

P1
2.2121 3.2273 4.3939 4.1212

(0.1185) (0.4809) (0.6083) (0.6154)

P2
4.2632 5.2018 4.2281 5.0175

(0.5115) (0.7598) (0.5976) (0.7741)

P3
3.7361 2.4306 4.0833 3.8333

(0.2427) (0.1234) (0.3813) (0.3984)

P4
3.3214 4.5952 4.7738 5.4286

(0.3440) (0.6093) (0.7749) (0.8658)

P5
4.2917 3.9688 3.7083 4.4063

(0.4952) (0.4681) (0.5563) (0.5455)
Average 3.5649 3.8847 4.2375 4.5614
(BLEU) (0.3424) (0.4883) (0.5837) (0.6398)

Furthermore, Model2, which uses random numbers as the initial values of the distributed
representation of the parse tree, generates understandable comments in lines 7 and 11. In
the average evaluation, Model 3, which uses a distributed representation of a learned parse
tree, generates an irrelevant comment, a declaration of an integer variable, which is only
0.17 better than Model 2. However, Model 4, which uses a distributed representation of
a parse tree constructed with Word2Vec with LSTM, generates more accurate comments,
with an average evaluation of 0.83 better than Model 2. This improvement is thought to
be the result of taking into account the order of the parse tree and the dependency between
nodes.

Figure 8: Examples of generated comments and evaluation for each line in program (P4)

7 Comment Generation for Each Block by LSTM Using
Parse Tree Information and Its Evaluation

7.1 Overview of per-block comment generation

The process of comment generation in block units is the same as that of comment
generation in line units, except that the unit of input/output is changed from line units to
block units. The illustration of comment generation using Encoder-Decoder translation
model is shown in Figure 6, and the overview of the differences in the process of
generating comments per block and per line is shown in Figure 9. The input source code

S. Onishi, F. Yukimoto, H. Shiina10

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Figure 9: Differences in the process of comment generation for each block and each line

for the line–by–line comment generation in Figure 9(a) is one line, but in the case of
block-by-block, four lines are input as one block in the example of Figure 9(b). The parse
tree for each block corresponding to the source code input for each block is input into the
Encoder–Decoder translation model. A block-wise comment such as “processing of sums”
corresponding to the block is generated. The only difference between the two companies
can be found in the scope of the parse tree information.

7.2 Experimental environment for each block

We used 51 programs in C language used in lectures of the university’s Department of
Information Science as training data. We trained the model on 45 of the programs and
tested it on the remaining 6. Four different models, as well as line-by-line comment gen-
eration, were evaluated. The generated comments were evaluated by open testing. For the
evaluation method, six different programs were evaluated on a six-point scale from 1 to 6
by six fourth-year university students. Furthermore, the comments of each program were
evaluated using BLEU, an automatic machine translation index.

7.3 Outline of comment evaluation

Table 2 shows the questionnaire and BLEU ratings for each program in terms of block-by-
block comment generation. Model 1 had the lowest rating in both the questionnaire and
BLEU evaluations, while Model 2 had the highest rating in both. Model 4 had a slightly
lower rating than Model 2 in the line-by-line comment generation. Model 3 was rated
higher than Model 1, which used source code as input, but lower than Model 2, which did
not use the learned distributed representation. The input is the same as the parse tree when
using the learned distributed representation, but the evaluation is a little lower. The reason
for using a distributed representation of the parse tree is to capture dependencies across
lines of source code. In block-by-block comment generation, the input parse tree is block-
by-block, and since the input is in rough units of processing, we were able to sufficiently
capture dependencies beyond lines from the block-by-block input compared to line-by-line
comment generation. Also, the improvement in the evaluation of Model 4 compared to
Model 3 is due to the consideration of the ordering relationship of nodes.

11

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Program Comment Generation with Improved Distributed Representation by Seq2seq Model Using Parse Tree Information

Table 2: Overall evaluation of generated block comment

7.4 Evaluation of each block

Figure 10 shows the generated examples and evaluations for the program (P4) in Table
2. In the third block, Models 2, 3, and 4, which use a parse tree as input, can correctly
generate the type of the variable, “Declaration of a floating-point variable.” In the fifth
block, Model 1 generates an inaccurate comment, “Output of condition,” and Model 3
fails to generate the process of being output, “Conditional judgment.” However, Model2
and Model4 were able to generate a process called “condition judgment and output,” which
judges the conditions and outputs according to the conditions. The questionnaire evaluation
results showed that Models 2 and 4 were highly rated. For the other lines, there is no
difference in the generated block comments, and there is no significant difference in the
questionnaire evaluation. Model 1 has the lowest average rating because it has the lowest
ratings in two blocks, 3 and 5. Model 2 and Model 4 have the same average rating of
0.8456 by BLEU because the generated block comments are the same, but Model 2 has a
slightly higher rating of 5.61111 in the questionnaire evaluation. As with the evaluations
for each program, there was a significant difference between the evaluations based on the
source code and the type of input to the parse tree, confirming the effectiveness of the
parse tree.

8 Summary and Future Tasks

In this study, instead of pairs of source code and comments, pairs of parse trees and com-
ments were trained as bilingual data, and program procedures were generated to understand
the necessary processes and procedures for programs. In addition, by using Word2Vec to
construct a distributed representation of parse tree information and using the distributed
representation as input to the LSTM on the Encoder side, we attempted to generate com-
ments that capture the structure of the program. It was confirmed that the evaluation was
higher when the parse tree information was generated and input to the LSTM than when the
source code was input directly to the encoder. The evaluation of the model using distributed
representation that captured dependencies across lines of source code did not improve with

S. Onishi, F. Yukimoto, H. Shiina12

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Program Model 1 Model 2 Model 3 Model 4

P1
5.3056 5.2500 4.9722 4.9722

(0.4104) (0.4475) (0.4028) (0.3150)

P2
4.8810 4.8095 4.8571 5.1190

(0.4074) (0.4632) (0.4632) (0.4632)

P3
5.0952 5.1905 5.2143 5.3095

(0.3826) (0.3821) (0.3826) (0.3876)

P4
5.1667 5.6111 5.4444 5.5556

(0.4110) (0.8456) (0.6923) (0.8456)

P5
4.9762 5.3571 4.9524 5.0952

(0.5811) (0.5900) (0.5499) (0.6469)

P6
4.3750 4.9583 4.7083 4.8333

(0.3917) (0.3938) (0.3790) (0.3765)
Average 4.9666 5.1961 5.0248 5.1475
(BLEU) (0.4307) (0.5204) (0.4783) (0.5058)

Figure 10: Examples of generated comments and evaluation for each block in program (P4)

block-wise comment generation, but it did improve with line-wise comment generation.
We believe this is due to the fact that block-wise comment generation can capture cross-
row dependencies from block-wise input. In addition to cross-row dependencies, the
model using distributed representation, which takes into account the ordering relationship
of parse tree information, received the highest rating for per-row comment generation. In
the future, we would like to investigate methods to improve the evaluation in block-wise
comment generation. We believe that there may be a way to fully utilize parse tree
information, such as a way to input node types and values separately.

References

13

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Program Comment Generation with Improved Distributed Representation by Seq2seq Model Using Parse Tree Information

[1] Ministry of Education, Culture, Sports, Science and Technology, “Elementary school

programming education guide (2nd edition),” https://www.mext.go.jp/a_

menu/shotou/zyouhou/detail/1403162.htm, 2018, accessed May. 5, 2020 (in

Japanse).

[2] Ministry of Education, Culture, Sports, Science and Technology, “How to pro-

gramming education at elementary school level (summary of discussion),” https:

//www.mext.go.jp/b menu/shingi/chousa/shotou/122/attach/1372525.htm, 2016, ac-

cessed May. 5, 2020 (in Japanse).

[3] H. Kanamori, T. Tomoto, and T. Akakura, “Development of a computer

programming learning support system based on reading computer program,” in

Human Interface and the Management of Information. Information and Interaction

for Learning, Culture, Collaboration and Business, S. Yamamoto, Ed. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 63–69.

http://www.mext.go.jp/a
http://www.mext.go.jp/a
http://www.mext.go.jp/b

S. Onishi, F. Yukimoto, H. Shiina14

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

[4] K. Okimoto, S. Matsumoto, S. Yamagishi, and T. Kashima, “Developing a source

code reading tutorial system and analyzing its learning log data with multiple

classification analysis,” Artificial Life and Robotics, vol. 22, no. 2, pp. 227–237, apr

2017. [Online]. Available: https://doi.org/10.1007%2Fs10015-017-0357-2

[5] S. Matsumoto, K. Okimoto, T. Kashima, and S. Yamagishi, “Automatic

generation of c source code for novice programming education,” in Human-

Computer Interaction. Theory, Design, Development and Practice, M. Kurosu, Ed.

Cham: Springer International Publishing, 2016, pp. 65–76. [Online]. Available:

https://doi.org/10.1007/978-3-319-39510-4 7

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” in Advances in Neural Information Processing Systems 27 (NIPS 2014),

2014, pp. 3104–3112.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” in 1st International Conference on Learning

Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop

Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2013. [Online]. Available:

http://arxiv.org/abs/1301.3781

[8] K. Greff, R. K. Srivastava, J. Koutn´ık, B. R. Steunebrink, and J. Schmidhuber,

“Lstm: A search space odyssey,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2016.

[9] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic

evaluation of machine translation,” in Proceedings of the 40th Annual Meeting

of the Association for Computational Linguistics. Philadelphia, Pennsylvania,

USA: Association for Computational Linguistics, Jul. 2002, pp. 311–318. [Online].

Available: https://www.aclweb.org/anthology/P02-1040

[10] S. Matsumoto, Y. Hayashi, and T. Hirashima, “Development of a card operation-

based programming learning system focusing on thinking between the relations of

parts,” IEEJ Transactions on Electronics, Information and Systems, vol. 138, pp.

999–1010, 08 2018.

[11] J. Shinkai, Y. Hayase, and I. Miyaji, “A trial of algorithm education emphasizing

manual procedures,” in Proceedings of Society for Information Technology &

Teacher Education International Conference 2016, G. Chamblee and L. Langub,

Eds. Savannah, GA, United States: Association for the Advancement of

Computing in Education (AACE), March 2016, pp. 113–118. [Online]. Available:

https://www.learntechlib.org/p/171656

[12] K. Sakane, N. Kobayashi, H. Shiina, and F. Kitagawa, “Kanji learning and program-

ming support system which conjoined with a lecture,” in IEICE Technical Report, ser.

ET2014–86, vol. 114, no. 513, 2015, pp. 7–12.

[13] T. Fujiki, Y. Hayase, and K. Inoue, “Generating descriptions of nouns in software

from program comments,” in IEICE, vol. 110, no. 169, 2010, pp. 65–69.

http://arxiv.org/abs/1301.3781
http://www.aclweb.org/anthology/P02-1040
http://www.learntechlib.org/p/171656
http://www.learntechlib.org/p/171656

15

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Program Comment Generation with Improved Distributed Representation by Seq2seq Model Using Parse Tree Information

[14] A. Takahashi, H. Shiina, R. Ito, and N. Kobayashi, “Procedure generation for algo-

rithm learning system using comment synthesis and lstm,” International Journal of

Service and Knowledge Management(IJSKM), vol. 3, no. 2, pp. 48–61, 11 2019.

[15] S. Onishi, A. Takahashi, H. Shiina, and N. Kobayashi, “Automatic comment gen-

eration for source code using external information by neural networks for compu-

tational thinking,” International Journal of Smart Computing and Artificial Intelli-

gence(IJSCAI), vol. 4, no. 2, pp. 39–61, 12 2020.

[16] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation with

hybrid lexical and syntactical information,” Empirical Software Engineering, vol. 25,

no. 3, pp. 2179–2217, jun 2019. [Online]. Available: https://doi.org/10.1007%

2Fs10664-019-09730-9

[17] E. Bendersky, “Github – eliben/pycparser: Complete c99 parser in pure python,”
https://github.com/eliben/pycparser, 2019, accessed Jul. 15, 2019.

	1 Introduction
	2 Relate Works
	3 Data Used
	4 Procedure Learning System
	5 Comment Generation From Parse Tree Information by LSTM
	5.1 Construction of distributed representation of parse tree information by Word2Vec
	5.1.1 Acquisition of source code parse tree information through pycparser
	5.1.2 Construction of distributed representation
	5.1.3 Construction of distributed representation through learning of Word2Vec

	5.2 Construction of distributed representation by learning Word2Vec using LSTM
	5.3 Comment generation by Encoder–Decoder translation model
	5.4 Comparison of distributed representations input to the LSTM on the En- coder side

	6 Evaluation of Generated Comments for Each Line Using Parse Tree Information
	6.1 Experimental environment for each line
	6.2 Evaluation of generated comments for each line
	6.2.1 Outline of Generated comments evaluation for each line
	6.2.2 Evaluation of each line

	7 Comment Generation for Each Block by LSTM Using Parse Tree Information and Its Evaluation
	7.1 Overview of per-block comment generation
	7.2 Experimental environment for each block
	7.3 Outline of comment evaluation
	7.4 Evaluation of each block

	8 Summary and Future Tasks
	References

