
Sakuei Onishi *, Akiyoshi Takahashi †,
Hiromitsu Shiina ‡, Nobuyuki Kobayashi §

Abstract

To support the understanding of programs and understanding of procedures, we think need
to automatically generate comments from source code. As a method, we learn the source
code and comment pair by Encoder–Decoder translation model using LSTM, thereby gener-
ating comments of the source code that was the target of learning. In the Encoder–Decoder
translation model, the source code of a program and its pair of comments are learned. How-
ever, that method does not know the domain of the program being used, so the comments
that can be generated automatically may not be appropriate. In the use of learning, such as
programs and algorithms for the purpose of computational thinking, it is possible to obtain
relate information, such as problem statements and explanations. Therefore, we propose
some methods to improve generated comments by using relate external information, such
as question sentences. Also, we generate comments for each line and each block.

Keywords: Programming learning, Comment Generating, Encoder–Decoder Translation
Model, TF–IDF, Distributed Representation

1 Introduction

With the introduction of new learning guidelines, programming education will become a
compulsory subject in elementary schools and will be implemented in 2020 [1, 2]. This
has led to a great deal of discussion about programming education in elementary and mid-
dle schools. Additionally, with the new learning guidelines, the emphasis will be placed
on computational thinking, rather than programming itself. Many studies on programming
education have been done [3]. As a related study, there is research on programming ed-
ucation for beginners using operation logs [4, 5]. There have been many initiatives made
in programming education, and support systems using Web and card-type learning of pro-
gram processing have been proposed [6]. A rubric has been proposed for the programming

∗ Graduate Shcool of Informatics, Okayama Univerity of Science, Okayama, Japan
† Icom Sytech, Tokyo, Japan
‡ Okayama Univerity of Science, Okayama, Japan
§ Sanyo Gakuen University, Okayama, Japan

International Journal of Smart Computing and Artificial Intelligence
International Institute of Applied Informatics
2020, Vol. 4, No. 2, 39 – 61

Automatic Comment Generation for Source Code Using
External Information by Neural Networks for Computa-
tional Thinking

education curriculum. Furthermore, for computational thinking, the description and assem-
bly procedures, rather than the program itself, are considered important. Shinkai et al. [7]
conducted a study into algorithm learning based on manual procedures.

In this study, the purpose is to assist in the understanding of programs, by automatically
generating procedures from the source code, thus aiding the understanding of programs and
procedures. On the other hand, natural language translation and statement generation are
being introduced with the development of methods using neural networks. In particular, the
Encoder–Decoder translation model [8, 9, 10] using LSTM [11] has been proposed, and
this has improved translation accuracy. The method used in this study involves learning
source code and comment pairs using the Encoder–Decoder translation model, and gener-
ating new source code comments and procedures. However, the generated comments will
not become appropriate simply by applying LSTM to source coding and comment learning.
This is because, in machine learning, the quality and quantity of the learning data affect
the accuracy that follows. In applications with a limited application scope, it is difficult
to secure the quantity of learning data, but there are thought to be innovations that can be
used in terms of quality. In other words, if we assume the use of new networks with light
quantities of data, even if we are unable to acquire a large amount of learning data, we can
take the opposite approach and aim to achieve our objectives using reinforcement of related
data.

In educational area for computing thinking purposes, it is possible to obtain relevant
information such as problem statements and explanations for the use of program under-
standing and learning procedures. Therefore, we are trying to improve generated comments
by using relate external information such as question sentences.

In particular, in regard to the source code and comments used in learning, the description
of comments is considered to be particularly important. When creating comments for the
learning data, we used C language examples and 53 problems used in lectures for first-
year Information Studies students at universities, which have a low level of fluctuation.
Additionally, for the neural network method, we first considered simply partially copying
matching comments to similar areas in other places, but the aim was to generate comments
that reconciled somewhat with the problem statements for the issues.

We propose two methods for the use of external information. Encoder–Decoder transla-
tion model consists of three parts: the part that learns the source code of the input program,
the part that learns the comments that correspond to the source code and the part that gener-
ates the comments. The first method is to increase the probability of generating comments
in the Encoder–Decoder translation model by increasing the probability of generating words
with high TF–IDF values, which are important for words obtained from external informa-
tion. The second method is to fine-tune the data of external information using Word2Vec
[12], which is a distributed representation of the embedded layer created in the part that
learns the comments of the Encoder–Decoder translation model.

Furthermore, when explaining programs at the university lectures covered by this study,
it is thought that the explanation is given in consideration of the subject. Therefore, if
the explanation used in the lecture is used for learning, it is assumed that the generated
comments will be easy to match with target learners. In addition, problems regarding the
covered issues and comment generation using the description of the lecture materials are
considered to be very important.

We were studying to comment generation from C language by LSTM [13]. In addition,
related study has been done to generate comments from Java language [14]. Since this
study does not assume the program domain, it evaluates the score of automatic translation

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking40

evaluation such as BLEU [15], but the target is different from this study which is intended
for educational purposes.

From the perspective of considering the learning target, code simply generated using
LSMT is insufficient, and it is necessary to know about changes in the variables, particularly
at the beginner level. However, with only the source code originally used for learning, there
seems to be a shortage of information about variables, so the flow concerning source code
variables tends to be difficult to understand.

Based on the above, in this study, we attempted to generate comments that were better
and closer to the problem statement, by adding
(1) Processing that applies the influence of important terms in the problem statements for
the issues to generation results, through the use of external information;
(2) Processing that reflects variable information in comment generation.

2 Procedure Learning System

Programming involves several procedures such as declaring variables, inputting values, cal-
culation, and the output of results. We have been developing a system [16] for procedure
learning in programming that converts source code into Japanese procedures and then rear-
ranges the procedures to aid in understanding the concepts of the program. In the developed
system, shown in Figure 1, the problem text is displayed at the top of the screen and the
source code with the procedures described in Japanese is displayed in the center of the
screen as an ellipse. These proceduralized ellipses can be dragged and dropped, and the
problem can be solved by rearranging the steps in the gray area in the center of the screen
in the correct order from the top to the bottom. After the sorting is finished, you can press
the check button to check the order in which the questions are sorted. This test is utilized
for understanding the learning situation in lectures.

For example, when given a foreign currency conversion problem, and told to “create a
program where you can input amounts in yen, and it will convert it to US dollars, pounds,
or euros”, the procedure for solving the problem can be broken down as shown in Figure 2.
In this study, we have developed a system for testing the problem of rearranging this text
(Figure 1).

To create the procedure automatically, it is considered to be created based on the pro-
gram’s source code. Understanding the program requires an understanding of the source
code line-by-line processing and an understanding of the blocks that integrate them into a
somewhat cohesive processing unit. There are two types of block understanding: bottom-
up and top-down. It can be said that we aim to understand bottom-up processing because it
is based on the source code. In this study, we aim to understand programs’ processing by
automatically generating procedures for line-by-line and block-by-block processing.

3 Generating Comments from Source Code Using LSTM

3.1 Overview of source code and comment learning, and comment generation

Encoder–Decoder translation model learning, in relation to comment generation, and the
comment generation itself, consists of the following four processes(Figure 3).

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 41

Figure 1: Sort of procedures in the Quiz

Figure 2: Test of procedure learning

(1) Learning: (1-1) Separates source code and comments from source code with comments.
Case of generating comments for a line of source code, make a line-by-line source code and
comment pair. On the other hand, generating comments for a block of source code makes
a source code and comment pair for each block. (1-2) After processing the source code of
variable names, performs Encoder–Decoder translation model learning of source code and
comment pair.
(2) Comment generation probability: (2-1) Uses the Encoder–Decoder translation model
in relation to the source code without any comments attached and generates the word link
probability with comment generation. (2-2) Changes the important terms in the problem
statements for source code issues without any comments attached to increase the comment
generation word link probability and increase the influence of non-learning data informa-
tion.
(3) Comment correction for the case of generating for each line of source code: (3-1) The
variables in the learning source code are converted to temporary variables as preprocess-
ing and learned. (3-2) The correspondence between variables in the source code without
comments and temporary variables is stored as a list, and after generating comments by
the Encoder-decoder model. The temporary variables are complemented by the original
variables.

3.2 Encoder–Decoder translation model learning and generation

In cases where comments are already attached to the program list, it is possible to generate
procedures using the summary technology in the previous section, but not all program lists

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking42

Figure 3: Comment generation flow

Figure 4: Source and comment learning using the Encoder–Decoder translation model

have comments attached. It is necessary, therefore, to learn from program lists to which
comments are attached and generate comments from program lists without contents. There
is research into the use of the Encoder–Decoder translation model using a deep learning
LSTM to translate from Japanese to English or other languages. In this study, we consider
the translation model as a model to translate from the program list to comments and at-
tempt to generate comments and procedures. Furthermore, there are two kinds of comment
generated. The first is the generation of comments one line at a time from the program
list. The second is the generation of comments related to program block units across multi-
ple lines, such as through if and while constructs. The generation of comments in relation
to the program list is achieved by learning using the Encoder–Decoder translation model
using LSTM on the program list and comment pair discussed in the previous section and
generating comments for programs to which comments are not attached.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 43

essary to perform pre-processing on the learned data, define the Encoder–Decoder trans-
lation model, and learn the data. The overall follow of the comment generation model is
shown in Figure 4.

3.3 Pre-processing of learning data of program code and comments.

To learn the Encoder–Decoder translation model, it is necessary to separate the input pro-
grame souce code and the procedure comments. The LSTM model uses token sequence of
programe source code tokens and word sequrence of procedure comments for input as X =
x1,. . . xi , Actually, the token is converted to the number of the token id. In a similar
manner, the word converts the number of the word id.

3.4 Encoder–decoder translation model using LSTM

With LSTM blocks, the sigmoid layer is used, and the information that should be depended
on and the information that should not be depended on are set to 0 and 1, respectively.
Furthermore, for the translation pair, the error from the data saved in advance is lost. The
loss for each LSTM block is accumulated. Finally, the parameters are learned by performing
the error back propagation method on the loss.
(1) The source code comments are broken down into their respective vocabulary units and
the word linkage relationships are learned. The source code broken down into words is
input into LSTM one word at a time, and while accumulating context information, words
are generated, and these are learned. With the Encoder–Ecoder model αt, normalization of
the degree of similarity is performed for output ht in relation to yt , and hi on the Encoder
side. ct creates context vectors using the degree of similarity obtained with αt and hi.
(2) Comments are generated in relation to new source code based on the learning carried
out in (1). The source code is divided into words and input into LSTM. Once input is
complete, the first word from the comment is output based on context information, and the
next word is then generated based on the output word and the context information. LSTM
output with the Encoder–Decoder translation model, ct and ht are linked to create a vector,
and weight is applied with a linear operator. By applying the activation function tanh to

To actually generate comments using the Encoder–Ddecoder tranlation model, it is nec-

this, the intermediate layer ȟt is output in relation to yt . Finally, a weight is applied with a
linear operator in respect to ȟt , and yt+1 is output with the softmax function.

4 Generation of Comments Using External Information
In the previous section, we performed learning of the program source code and comment
line unit pairs, and generated comments in relation to the new source code. In this case, the
information that can be used is considered to generate comments in relation to similar
source code. However, it is difficult to generate source code comments in relation to issues,
just using this. In a simple Encoder–Decoder translation model, even if the topics do not
match, similar source code comments are copied; thus, the information may be too insuf-
ficient to generate comments that are even slightly related to those you wish to generate.
In this study, to utilize information related to the problem statements of issues in comment
generation, we applied the influence of important terms in the problem statements of is-
sues, as external information, to the generation results (Figure 5). In particular, we used
TF–IDF to extract important terms from the problem statements of issues. The procedure
for generating comments using important terms is as follows.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking44

Figure 5: Relationship between problem statement and comment

The Encoder–Decoder translation model consists of three parts. The part that learns
the source code of the input program, the part that learns the comments that correspond to
the source code, and the part that generates the comments. Of these three processing areas,
information such as teaching materials is related to the comments that are generated, so the
part that learns the comments and the part that generates them are highly related. Therefore,
the following method was used.

(Method 1) The first method is to increase the probability of generating comments with
high TF–IDF values, which are important words obtained from external information.
(Method 2) The second method is to fine-tune the data of external information using Word2Vec,
which is a distributed representation of the embedded layer created in the part that learns
the comments of the Encoder–Decoder translation model.

4.1 Method to tune the probability of sentence generation according to the
important words in TF–IDF.

The TF–IDF is used to extract important words that have a large impact on the problem
sentence. The procedure for generating comments based on important words is described
below.

(1)First, we load the document for the original problem as a whole, and after that, input
the program problem statements, seeking the importance of each term within the problem
statement related to the document as a whole using TF–IDF.
(2) We then input the source code into LSTM, and if there are words that match important
terms within the problem statement when outputting the words, we multiply the generation
probability by α times the TF–IDF, and set the highest of these numbers to the LSTM
output. Table 1 shows the word TF–IDF for the following problem statements covering
problem statements for the 53 issues used in the learning.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 45

Table 1: TF–IDF for words within the problem statement

Word TF–IDF Word TF–IDF
Minimum Maximum
最小

0.45541
最大

0.40027

Store Array
格納

0.38594
配列

0.32545

Numeric SCANF
数値

0.24959
scanf

0.24959

SCANF Subscript
scanf

0.24959
添字

0.24959

Howerver IS
ただし

0.2277
いる

0.2277

IS Use
いる

0.2277
用い

0.16841

Seek Integer
求める

0.16272
整数

0.131

Integer Output
整数

0.131
出力

0.09667

Problem statement� �
“ numerals(integers) in a 5-item array are stored using scanf, and the maximum and
minimum values sought. However, also output the subscript of the array in which the
minimum and maximum values are stored.”
配列 5個の数値 (整数)を，scanfを用いて格納し最大値と最小値を求める．ただ
し，最小値と最大値の格納されている配列の添字も出力せよ．� �

Additionally, Figure 6 shows the image of how the “配列 (array)” with high TF–IDF
values is used in comment generation, when generating comments from the folloing source
code in relation to the above example of problem statements．

Source code to convert into comments� �
#define NUMBER 5� �

4.2 Fine-tuning the distributed representation of the part that learns the com-
ments

In the comment learning part of the Encoder–Decoder translation model, the distributed
representation, which is an embedding layer, is learned. Source code and comment pairs
alone can be difficult to tune when the amount of training data is low or in a particular
domain. In code generation and procedural learning for program learning, which is the
subject of this study, the problem statement of the task is used as external data. It is thought
that distributed representations for words generated from problem sentences can influence
the overlearning of relevant information to be too close to the one-to-one of codes and
comments. The procedure is described below(Figure 7).

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking46

Figure 6: Differences in comment generation by applying TF–IDF

Figure 7: Overview of comment generation using Encoder–Decoder translation model

(1) We learn the Encoder–Decoder translation model from the source code and comment
learning data. Next, we obtain a distributed representation of the embedded layer of the part
that learns the comments.
(2) We use Word2Vec with the CBOW model for the problem sentence, with the distributed
representation as the initial value. After learning, the distributed representation is returned
to the embedding layer of the comment learning part of the Encoder–Decoder translation
model(Figure 8).
(3) The Encoder–Decoder translation model using Word2Vec is used to generate comments
for the test code.

5 Complementing Generated Comments with Variable Infor-
mation

When generating comments from source code, the learning stage should be taken into con-
sideration. At the stage when grammar is learned, it is necessary to understand changes in
variables. However, for normal comments, the description of comments does not contain
changes in variables. For this reason, there often seems to be a shortage of information
about variables, which tends to make it difficult to understand the flow related to program

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 47

Figure 8: Learning external information with Word2Vec

variables. When processing the complements of variable names, variable processing
when learning comments, and processing when generating comments, can be separately
discussed. Note that provision of the variable information is intended for learners in the
grammar learning stage. Therefore, we do not include variable information in the genera-
tion of procedures for each block.

(1) Variable processing when learning comments
(1-1) When processing changes in source code variable names, set the same source code
variables. For example, substitute the variable min with x, and variable vx with temporary
variable x.
(1-2) Add (x) as variable information for the comments corresponding to the source code.
(1-3) Learn the data for which the variable complement processing is carried out in the
Encoder–Decoder translation model.
(2) Processing when generating comments
(2-1) For the source code for which the comments are generated, unify the variables to the
same names as in the learning data, as part of the variable name complement processing.
(2-2) Obtain the variable information from each line of the test data, in order to apply the
variable information when generating comments.
(2-3) Then, generate comments based on the learned Encoder–Decoder translation model．
(2-4) After generating comments, return the temporary variables(x) within the comments to
the variables in the source code．

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking48

6 Evaluation of Generated Comments
The generated comments are evaluated in two types, one for each line and the other for
each processing block. For the evaluation of generated comments, we used a manual ques-
tionnaire and an automatic evaluation by BLUE. A questionnaire was obtained for each
generated comment on a six-point scale ((bad) 1 to 6 (good)) by six students in the labora-
tory.

6.1 Evaluation generated comments for each line

The comments generated by Encoder–Decoder tranlation model(Encoder–Decoder), the
comments generated considering TF–IDF of the words in the problem sentence (+ TF–
IDF), the comments with variable information completion (+ TF–IDF + Var), the examples
generated by Word2Vec and the average rank of each comment are shown in Table 2, 3, 4
and 5. The average of the evaluation by method is shown in Table 6.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 49

Table 2: Comment generation for each line by applying Encoder–Decoder

Li Generate comments by Evaluation
ne

Source code
Encoder–Decoder (1-6)

1 #include <stdio.h> 入出力を行うための宣言 5.667
2 #define NUMBER 5 文字列を表示する 3.167
3 int main (void){ main関数の宣言 5.833
4 int i, j ; 整数型変数の宣言 5.667
5 int min, max; 整数型変数の宣言 5.667
6 int min_loc, max_loc ; 整数型変数の宣言 5.333
7 int vx [NUMBER]; 整数型の配列の宣言 5.333

for(i=0;i<NUMBER;8
i++){

定義づけた回数分ループ
5.000

9 printf("vx [%d]=", i); 内に数値を入力 4.167
10 scanf("%d",&vx [i]); 整数を入力 5.500
11 } そうでない場合 2.833
12 min=vx [0]; minの初期値を vx[0]とする 5.667
13 min_loc =0 ; minのあり場所を 0 3.833
14 max=vx [0]; maxの初期値を vx[0]とする 5.667
15 max_loc=0 ; maxのあり場所を 0 3.833

for(i=1; i<NUMBER ;16
i++){

定義づけた回数分ループ 5.500

17 if(min>vx[i]){ minの方が大きい場合 5.167
18 min=vx[i]; 最小値の値を記憶 4.667
19 min_loc = i; 最小値の場所を記憶 4.667
20 } None 4.833
21 if(max<vx[i]){ maxの方が小さい場合 5.167
22 max=vx[i]; maxはいつも一番大きく 3.167
23 max_loc=i; maxのあり場所を 0 3.167
24 } 行内の繰り返し 2.667
25 } そうでない場合 2.667

printf ("最大値 %d , 添え26
字 %d\n", max, max_loc);

最大値と添え字を表示 5.500

printf ("最小値 %d , 添え27
字 %d\n",min, min_loc);

最小値と添え字を表示 5.500

28 return (0); 関数を終了させる 5.333
29 } そうでない場合 3.167

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking50

Table 3: Comment generation for each line by applying TF–IDF

Li Generate comments by Evaluation
ne

Source code
+TF–IDF (1-6)

1 #include <stdio.h> 入出力を行うための宣言 5.833
2 #define NUMBER 5 配列の大きさを宣言 5.333
3 int main (void){ main関数の宣言 56667
4 int i, j ; 整数型変数の宣言 5.500
5 int min, max; 整数型変数の宣言 5.500
6 int min_loc, max_loc ; 整数型変数の宣言 5.500
7 int vx [NUMBER]; 整数型の配列の宣言 5.500

for(i=0;i<NUMBER; 配列内の添え字すべてに8
i++){ 数値を入力させる

3.500

printf("vx [%d]=", i); 配列のすべての添え字内9
に数値を入力

4.333

10 scanf("%d", 整数を入力 5.500
11 } そうでない場合 3.000
12 min=vx [0]; 最小値の値を記憶 3.333
13 min_loc =0 ; minのあり場所を 0 4.000
14 max=vx [0]; maxの初期値を vx[0]とする 5.833
15 max_loc=0 ; maxのあり場所を 0 4.000

for(i=1; i<NUMBER ; maxのあり場所を 016
i++){

5.500

17 if(min>vx[i]){ minの方が大きい場合 5.167
18 min=vx[i]; 最小値の値を記憶 5.167
19 min_loc = i; 最小値の場所を記憶 5.000
20 } None 5.000
21 if(max<vx[i]){ maxの方が小さい場合 5.167
22 max=vx[i]; 最大値の値を記憶 5.333
23 max_loc=i; 最大値の場所を記憶 5.333
24 } None 5.000
25 } 数値を入力する 1.833

printf ("最大値 %d , 添え 最大値と添え字を表示26
字 %d\n", max, max_loc);

5.667

printf ("最小値 %d,添え 最小値と添え字を表示27
字%d\n",min, min_loc);

5.667

28 return (0); 関数を終了させる 5.500
29 } 数値を入力する 2.000

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 51

Table 4: Comment generation for each line by applying TF–IDF+Var

Li Generate comments by Evaluation
ne

Source code
+TF–IDF+Var (1-6)

1 #include <stdio.h> 入出力を行うための宣言 5.833
2 #define NUMBER 5 配列の大きさを定義づける 5.667
3 int main (void){ main関数の宣言 5.833
4 int i, j ; 整数型変数 (i)(j)の宣言 [’i’,’j’] 5.833
5 int min, max; 整数型変数 (min)(max)の宣言 6.000
6 int min_loc, max_loc ; 整数型変数 (min)の宣言 5.167
7 int vx [NUMBER]; 整数型変数 (vx)の宣言 [’vx’] 4.833

for(i=0;i<NUMBER; 配列内の添え字 (i)8
i++){ すべてに数値を入力 [’i’]

4.000

9 printf("vx [%d]=", i); 配列の表示 [’i’,’vx’] 3.500
10 scanf("%d", 整数を入力 (i)(vx)[’i’,’vx’] 5.333
11 } None 4.500
12 min=vx [0]; 配列の文を表示 [’min’,’vx’] 3.833

min_loc =0 ; 最小値の定義づけ13
[’min’,’min loc’]

3.000

14 max=vx [0]; xの計算 [’max’,’vx’] 2.500
max_loc=0 ; 最大値 (max)の文章を表示15

[’max’,’max loc’]
3.500

for(i=1; i<NUMBER ; 配列内の添え字 (i)すべてに16
i++){ 数値を入力 [’i’]

3.500

if(min>vx[i]){ xの方が大きい場合17
[’i’,’min’,’vx’]

4.333

min=vx[i]; 計算を行う (i)(min)18
[’i’,’min’,’vx’]

3.167

min_loc = i; 最小値の場所 (i)を記憶19
[’i’,’min’,’min loc’]

5.500

20 } None 4.500
if(max<vx[i]){ xの方が小さい場合21

[’i’,’max’,’vx’]
4.333

22 max=vx[i]; 計算を行う (i)(max) 3.8333
max_loc=i; 最小値の場所 (i)を記憶23

[’i’,’max’,’max loc’]
4.000

24 } None 4.333
25 } None 4.833

printf("最大値%d,添え 最大値 (max)と添え字を表示26
字%d\n",max,max_loc); [’max’,’max loc’]

6.000

printf("最小値 %d,添え 最小値 (min)と添え字を表示27
字%d\n,min,min_loc); [’min’,’min loc’]

6.000

28 return (0); 関数を終了させる 5.500
29 } None 4.667

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking52

Table 5: Comment generation for each line by applying Word2Vec

Li Generate comments by Evaluation
ne

Source code
+Word2Vec (1-6)

1 #include <stdio.h> 入出力を行うための宣言 5.833
2 #define NUMBER 5 配列の大きさを定義づける 5.833
3 int main (void){ main関数の宣言 5.833
4 int i, j ; 整数型変数の宣言 5.667
5 int min, max; 整数型変数の宣言 5.667
6 int min_loc,max_loc; 整数型変数の宣言 5.500
7 int vx [NUMBER]; 整数型の配列の宣言 5.333

for(i=0;i<NUMBER; 定義づけた回数分ループ8
i++){

5.000

9 printf("vx[%d]=",i); 配列の添え字内に数値を入力 4.833
10 scanf("%d", 整数を入力 5.333
11 } 変数 2.833
12 min=vx [0]; minの初期値を vx[0]とする 5.833
13 min_loc =0 ; minのあり場所を 0 4.000
14 max=vx [0]; maxの初期値を vx[0]とする 5.833
15 max_loc=0 ; maxのあり場所を 0 4.000

for(i=1; i<NUMBER ; 定義づけた回数分ループ16
i++){

5.500

17 if(min>vx[i]){ minの方が大きい場合 5.000
18 min=vx[i]; 最小値の値を記憶 5.333
19 min_loc = i; 最小値の場所を記憶 5.167
20 } の繰り返し 2.833
21 if(max<vx[i]){ maxの方が小さい場合 5.333
22 max=vx[i]; maxはいつも一番大きく 3.167
23 max_loc=i; 最大値の場所を記憶 5.000
24 } の繰り返し 3.333
25 } None 4.8333

printf("最大値%d,添え 最大値と添え字を表示26
字%d\n",max,max_loc);

5.667

printf("最小値%d,添え 最小値と添え字を表示27
字%d\n",min, min_loc);

5.833

28 return (0); 関数を終了させる 5.500
29 } そうでない場合 2.667

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 53

Table 6: Evaluation distribution for each line by each method

Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Average
Encoder–Decoder 0.1322 0.0345 0.0345 0.1149 0.2356 0.4483

23 6 6 20 41 78
4.6322

+ TF–IDF 0.0862 0.0402 0.0402 0.1264 0.2184 0.4885
15 7 7 22 38 85

4.816

+ TF–IDF + Var 0.1667 0.01149 0.0172 0.1552 0.1437 0.5057
29 2 3 27 25 88

4.6149

+ Wrod2Vec 0.0977 0.0344 0.01149 0.10344 0.2356 0.5172
17 6 2 18 41 90

4.8966

Table 7: Automatic evaluation by BLEU

Methods BLEU
Encoder–Decoder 0.1459

+ TF–IDF 0.6313
+ TF–IDF + Var 0.1376

+ Word2Vec 0.72661

The BLEU is used as a measure of translation performance. The results of each eval-
uatoin are shown in Table 7. The following is a summary of evaluations of generated
comments for each line.

• In the BLEU evaluation, the addition of variable information is scored poorly be-
cause the correct comment that serves as the reference does not include the variable
information. In the manual evaluation, the average of the average rank of each of the
four types of comments was calculated: 4.6322 for Encoder–Decoder only, 4.8161
for TF–IDF, 4.6149 for adding variable information, and 4.8966 for fine-tuning by
Word2Vec. The best assessment was made using the undergraduate information by
Word2Vec. For TF–IDF + var, the score of BLEU is considered to be low because the
variable information is mismatched because the correct answer data does not include
the variable information.

• Fore the 12th line, the Encoder-Decoder transfer model and Wor2Vec receive good
evaluations in manual evaluation by questionnaire. However, authors consider the
results of the TF–IDF to be good, and even the manual evaluation can cause dis-
agreements with authors.

• Fine-tuning in Word2Vec has been rated as good overall. On the other hand, the
addition of variable information was not rated as particularly bad. The result is a split
between good and bad evaluations.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking54

6.2 Evaluation generated comments for each block

The comments generated for block by Encoder–Decoder tranlation model(Encoder–Decoder),
the comments generated considering TF–IDF of the words in the problem sentence (+ TF–
IDF), the examples generated by Word2Vec(+ Word2Vec) and the average rank of each
comment are shown in Table 8, 9 and 10. The average of the evaluation by method is
shown in Table and 11. In addition, the evaluation by BLUE is shown in Table 12 to eval-
uate the comments for each block as a translation. Note that the presentation of variable
information is intended for learners in the grammar learning stage. Therefore, we do not
evaluate the processing of variable information in the generation of procedures for each
block.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 55

Table 8: Comment generation for each block by applying Encoder–Decoder

Bl
Source code

Generate comments by Evaluation
ock Encoder–Decoder (1-6)
0 #include <stdio.h> ヘッダー処理 5.6667
1 #define NUMBER 5 配列の加算 2.3333
2 int main(void) { main関数の宣言 5.8333

3

int i, j;

整数型変数の宣言 4.8333
int min, max;

int min_loc, max_loc;

int vx[NUMBER];

4

for(i=0; i < NUMBER; i++) {

数値の入力 5.0000
printf("vx[%d]=", i);

scanf("%d", &vx[i]);

}

5

min = vx[0];

最小値最大値を探す 5.1667
min_loc = 0;

max = vx[0];

max_loc = 0;

6

for(i=1; i < NUMBER; i++) {

繰り返し処理 5.0000

if(min > vx[i]) {

min = vx[i];

min_loc = i;

}

if(max < vx[i]) {

max = vx[i];

max_loc = i;

}

}

7

printf("最大値%d, 添え

結果の出力 5.5000
字%d\n", min, min_loc);

printf("最小値%d, 添え
字%d\n", max, max_loc);

8
return(0);

関数の終了 6.0000
}

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking56

Table 9: Comment generation for each block by applying TF–IDF

Bl
Source code

Generate comments by Evaluation
ock +TF–IDF (1-6)
0 #include <stdio.h> ヘッダー処理 5.5000
1 #define NUMBER 5 配列の格納 3.0000
2 int main(void) { main関数の宣言 5.5000

3

int i, j;

整数型変数の宣言 5.3333
int min, max;

int min_loc, max_loc;

int vx[NUMBER];

4

for(i=0; i < NUMBER; i++) {

数値の入力 4.8333
printf("vx[%d]=", i);

scanf("%d", &vx[i]);

}

5

min = vx[0];

最小値最大値を探す 5.1667
min_loc = 0;

max = vx[0];

max_loc = 0;

6

for(i=1; i < NUMBER; i++) {

繰り返し処理 4.8333

if(min > vx[i]) {

min = vx[i];

min_loc = i;

}

if(max < vx[i]) {

max = vx[i];

max_loc = i;

}

}

7

printf("最大値%d, 添え

結果の出力 5.5000
字%d\n", min, min_loc);

printf("最小値%d, 添え
字%d\n", max, max_loc);

8
return(0);

関数の終了 6.0000
}

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 57

Table 10: Comment generation for each block by applying Word2Vec

Bl
Source code

Generate comments by Evaluation
ock +Word2Vec (1-6)
0 #include <stdio.h> ヘッダー処理 5.8333
1 #define NUMBER 5 配列の添え字を定義づける 5.0000
2 int main(void) { main関数の宣言 5.3333

3

int i, j;

整数型変数の宣言 4.8333
int min, max;

int min_loc, max_loc;

int vx[NUMBER];

4

for(i=0; i < NUMBER; i++) {

数値の入力 5.3333
printf("vx[%d]=", i);

scanf("%d", &vx[i]);

}

5

min = vx[0];

最小値最大値を探す 5.3333
min_loc = 0;

max = vx[0];

max_loc = 0;

6

for(i=1; i < NUMBER; i++) {

繰り返し処理 5.0000

if(min > vx[i]) {

min = vx[i];

min_loc = i;

}

if(max < vx[i]) {

max = vx[i];

max_loc = i;

}

}

7

printf("最大値%d, 添え

結果の出力 5.3333
字%d\n", min, min_loc);

printf("最小値%d, 添え
字%d\n", max, max_loc);

8
return(0);

関数の終了 6.0000
}

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking58

Table 11: Evaluation distribution for each block by each method

Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Average
Encoder–Decoder 0.0555 0.0185 0.0370 0.1481 0.2037 0.5370

3 1 2 8 11 29
5.0370

+ TF–IDF 0.0185 0.0370 0.0370 0.2037 0.1666 0.5370
1 2 2 11 8 29

5.0741

+ Wrod2Vec 0.0000 0.0000 0.0370 0.2037 0.1481 0.6111
0 0 2 11 8 29

5.3333

Table 12: Automatic evaluation by BLEU

Methods BLEU
Encoder–Decoder 0.6853

+ TF–IDF 0.6853
+ Word2Vec 0.8788

The following is a summary of evaluations of generated comments for each block.

• The processing block with the greatest difference in the questionnaire evaluation was
block 1. Block 1 is a block defining constants that are used to declare the array size.

Encoder-Decoder and TF-IDF generated comments contain the required word “配列
(array)” but incorrectly generate “加算 (addition)” and “格納 (storage).” However,
the method using Word2Vec can correctly generate the word for the operation “定義
(define)” in addition to the target word “配列 (array).” On the average of evaluation
for each block, the method with Word2Vec is also 5.3333, which is about 0.26 or
more improvement compared to the other methods. The ratio of rank 1 and 2 are 0%
and the ratio of rank 6 is more than 60 %.

• We trained up to epoch 74 and generated comments for each block at each epoch
for the training of generated comments for block and compared three different meth-
ods. In epoch 18, the baseline Encoder–Decoder is completely correct and converges.
At epoch 15, which is shown as an example for generating block comments, the
+Word2Vec method is completely correct, and the BLEU is 0.8788, an improvement
of about 0.19. Therefore, it is considered to accelerate the model’s convergence by
adapting the distributed representation on the comment side to the domain of the
problem statement using Word2Vec. Also, since the baseline method was completely
correct in epoch 18, it is considered that this task with a small amount of learning
data and a short comment length is not so difficult.

7 User Evaluation for Procedure Learning System
The proposed procedure learning system was implemented on each line and each block
of source code. Then an open-ended questionnaire was conducted by the students. The
following is a summary of the questionnaire.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 59

• The advantage of the line-based learning system is that it allows us to think deeply
about the process flow because the procedures are written in detail. It also allows
students to learn how to use sequential, branching, and repetition in a sensible way.
However, since the procedure’s unit is subdivided into lines, the amount of reordering
procedures is large and may be confusing when learning.

• The block-based learning systems allow us to imagine the flow of processing in ab-
stract units, which is useful in the early learning stages. A disadvantage of block-
based learning systems is that they are abstract unit procedures, so the concrete pro-
cesses are a too black box. At this stage, it is considered that the block-based proce-
dure cannot handle the nesting of blocks.

8 Summary and Future Tasks

In this study, as learning of the target data occurs as a pair of the source code and com-
ments, procedure generation occurs to understand the algorithm procedure. In particular,
through the use of problem statements of issues as external information, comment gen-
eration is considered to have led to a decrease in the extraction of unrelated information.
In this study, problem statements of issues are used as external information and, by using
information related to lecture materials, etc., it is considered that more appropriate com-
ments can be generated. Future challenges include measurement of structural resemblance
using the distributed representation of parse tree information, generation of comments that
utilizes similar programs and generation of specification forms. In particular, we plan to
develop controls for comment generation for blocks within blocks, which are also noted in
user evaluations of the procedure learning system.

References

[1] Ministry of Education, Culture, Sports, Science and Technology, “Elementary
school programming education guide (2nd edition),” 2018. [Online] Available:
http://www.mext.go.jp/a menu/shotou/zyouhou/detail/1403162.htm, [Accessed May.
5, 2020] (in Japanse).

[2] Ministry of Education, Culture, Sports, Science and Technology. “How to pro-
gramming education at elementary school level (Summary of discussion).” 2016.
[Online] Available: http://www.mext.go.jp/b menu/shingi/chousa/shotou/122/attach/
1372525.htm , [Accessed May. 5, 2029] (In Japanese).

[3] H. Kanamori, T. Tomoto and T. Akakura, “Development of a Computer Program-
ming Learning Support System Based on Reading Computer Program,” Human In-
terface and the Management of Information. Information and Interaction for Learn-
ing, Culture, Collaboration and Business (HIMI) 2013, pp. 63-69, Springer, 2013.
DOI:10.1007/978-3-642-39226-9 8

[4] K. Okimoto, S. Matsumoto, S. Yamagishi and T. Kashima, “Developing a source
code reading tutorial system and analyzing its learning log data with multiple clas-
sification analysis,” Artificial Life and Robotics, Vol 22, No. 7, pp. 227-237, 2017.
DOI:10.1007/s10015-017-0357-2

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Comment Generation for Source Code Using External Information by Neural Networks for Computational Thinking60

[5] S. Matsumoto, K. Okimoto, T. Kashima and S. Yamagishi, “Automatic Generation of
C Source Code for Novice Programming Education, Human-Computer Interaction,”
Theory, Design, Development and Practice 2016, pp. 65-76, 2016. DOI:10.1007/978-
3-319-39510-4 7

[6] S. Matsumoto, Y. Hayashi, T. Hirashima, “Development of a Card Operation-Based
Programming Learning Sytem Focusing on Thinking between the Relations of Parts,”
IEEJ, Transaction on Electronics, Information and Systems, Vol. 138, No.8, pp.999-
1010, 2018. (in Japanese)

[7] J. Shinkai, Y. Hayase, I. Miyaji, “A Trial of Algorithm Education Emphasizing Man-
ual Procedures,” In Proc. Society for Information Technology & Teacher Education
International Conference 2016, pp. 113-118, 2016. (in Japanese)

[8] I. Sutskever, O. Vinyals and Q. Le, “Sequence to Sequence Learning with Neural
Networks,” Advances in Neural Information Processing Systems 27 (NIPS 2014), pp.
3104-3112, 2014.

[9] M. Luong, H. Pham and D. Manning, “Effective Approaches to Attention-based Neu-
ral Machine Translation,” arXiv preprint arXiv:1508.04025v5, 2015.

[10] A. Rush, S. Chopra and C. Weston, “A Neural Attention Model for Sentence Sum-
marization,” In Proc. EMNLP 2015: Conference on Empirical Methods in Natural
Language Processing, pp. 379-389, 2015.

[11] K. Greff, et al., “LSTM: A Search Space Odyssey,” IEEE Transactions on Neural
Networks and Learning Systems, Vol. 28, Issue10, pp. 2222-2232, 2017.

[12] T. Mikolov, et al., “Efficient estimation of word representations in vector space,”,
arXiv preprint arXiv:1301.3781, pp. 1–12, 2013.

[13] A. Takahashi, H. Shiina, N. Kobayashi, “Comment Generation System for Program
Procedure Learning”, In Proc. International Conference on Advanced Applied Infor-
matics 2018, pp.38–42, 2018.

[14] X. Hu, G. Li, D. Lo, Z. Jin, “Deep Code Comment Generation,” IN Proc. ICPC ’18,
pp. 200–210, 2018.

[15] K. Papineni, S. Roukos, T. Ward, W. Zhu, “BLEU: amethod for Automatic Evalua-
tion of Machine Translation”, In Proc. 40th Annual Meeting of the Association for
Computational Linguistics, pp. 311318, 2002.

[16] K. Sakane, N. Kobayashi, H. Shiina and F. Kitagawa, “Kanji Learning and Program-
ming Support System which conjoined with a Lecture,” IEICE Technical Report,
ET2014–86, Vol. 114, No. 513, pp. 7–12, 2015.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, A. Takahashi, H. Shiina, N. Kobayashi 61

