
International Journal of Smart Computing and Artificial Intelligence 
International Institute of Applied Informatics
2019, Vol. 3, No. 2, 95 – 108

 The effect of speculative computation on combinatorial 
optimization problems

Yasuki Iizuka *, Akira Hamada *, Yosuke Suzuki *

Abstract

In recent years, multicore or many-core processors have gained significant attention as 
they enable computation with a large degree of parallelism on desktop computers. 
However, conventional parallel processing methods often cannot easily achieve parallel 
effects due to various factors. In this study, we evaluated the effect of applying MultiStart-
based speculative parallel computation to combinatorial optimization problems. Using 
probability theory, we performed theoretical verification to determine whether speculative 
computation is more effective than conventional parallel computation methods. In 
addition, we conducted experiments and compared the result with those of conventional 
parallel processing. In this paper, we report the results of the theoretical verification and 
experiments, and we show that speculative computation is more effective than conventional 
parallel processing.
Keywords: speculative computing, parallel processing, molecular simulation

1 Introduction

In recent years, CPU performance has been greatly improved. With the miniaturization of 
the CPU manufacturing process, the CPU is changing from the Multi-core to the Many-
core era. At the same time, the demands for software complexity are also increasing. 
Parallel processing can effectively accelerate the computation of problems with large 
complexity. However, even if m parallel processes (or threads) are executed, the execution 
time will not be reduced to 1/m because (i) only some parts of the program can be 
parallelized, (ii) the process generates overhead, and (iii) some processes must be 
synchronized. Therefore, the capacity factor of parallel computing resources will not be 
100%.

Parallelization can also be performed using speculative computation. Speculative 
computation is to pre-execute computations that may not use computation results in the 
future. For example, Multilisp[1] or MultiStart [2] executes speculative computation 
simultaneously (or in pseudo parallel). The purpose of this research is to investigate the 
effect of speculative computation on combinatorial optimization problems and to develop 
algorithms that use parallel computing resources efficiently. In order to use parallel 
computing for combinatorial optimization problems, the algorithm itself must be 

* Graduate School of Science, Tokai University Hiratsuka, Japan



considered, and it is not easy. In this paper, we analyze the effect of simply executing one 
algorithm independently using multiple parallel threads with a different random number 
seed or different initial value, and select the best solution. Such speculative computation can 
realize parallel computation without changing existing algorithms. The speculative method 
uses a stochastic algorithm, such as the SA algorithm or Tabu search, as the base program.

We show the results of advanced theoretical estimations using probability theory. In 
addition, we performed an experiment to computationally solve an actual problem using the 
speculative method. We have been studying the effect of speculative computation by 
theoretical investigation and pseudo-parallel experiments [3, 4]. In this paper, we report the 
experimental results of its effect with a many-core processor. The results demonstrate that 
speculative computation is more effective than conventional parallel computing.

2 Parallel Processing

Many parallel programs are developed from sequential programs to reduce computation 
time, i.e., some parts of sequential programs can be parallelized. An image of the iterative 
improvement algorithm for the combinatorial optimization problem is shown in Fig.1． 
Continue to improve the solution while repeating the loop of line 3 to line 9. Suppose that 
the loop of lines 5 to 7 can be parallelized in this program. Note that parallelizable parts do 
not necessarily exist in the program of combinatorial optimization problem. Fig.2 shows an 
example of a parallelized program. Such programs incur process generation and 
synchronization overheads. When synchronization is required, completed processes must 
wait for running processes (line 17). Processing cannot continue during this waiting state; 
thus, computational resources are not used efficiently. Increasing the number of processes 
does not always increase processing speed. For example, if a part of a program is executed 
using 10 processes, the execution time does not necessarily increase by a factor of 10.

1: Algorithm II
2: Initialize();
3: while(condition) {
4: ...
5: for(){
6: ...
7: }
8: ...
9: }
10: return minimumValue;

Figure 1. An image of iterative
improvement algorithm

11: Algorithm CPP
12: Initialize();
13: while(condition) {
14: ...
15: parallel-for(){
16: ...
17: }
18: ...
19: }
20: return minimumValue;

Figure 2. An example of conventional
parallel processing

The ratio of the part of a program that can be parallelized relative to the entire program 
(line 5 - 7 in Fig.1) is assumed to be α (0 ≤ α ≤ 1). When this part is parallelized by m 
processes (or threads), the computation time tp is expressed using α as follows:

tp = (α/m + (1 − α))ts + β, (1)

where β is the process generation time and synchronization wait time, ts is the computation 
time by sequential processing. This formula is based on Amdahl’s argument (Amdahl’s 
low) [5] about the limit of parallelism. When α is sufficiently close to 1, the computation

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

Y. Iizuka, A. Hamada, Y. Suzuki96



time decreases to ts/m + β. In many cases, α does not attain such an ideal value. Therefore, 
even if m is increased, the effect of parallelization is limited. In addition, there are also two 
upper limits of m, CPU resources and data parallelism.

Studies reporting the process to parallelize SA [6, 7] and Tabu search [8] were 
published more than 20 years ago. However, in these studies, synchronization was required 
in all iterations. This means that these have a large β.

In speculative parallel computation, a MultiStart [2] procedure executes several 
computations speculatively and simultaneously, including computations that may not be 
used. In theoretical analyses using the state transition matrix of the Markov process, it has 
been suggested that MultiStart can realize superlinearity [9, 10]. However, in these 
analyses, superlinearity was evaluated using theoretical comparisons based on a simple 
random search. To the best of our knowledge, experiments targeting practical problems 
other than benchmarks have not been performed. Note that it is difficult to realize 
superlinearity by comparing efficient algorithms using various heuristics.

Therefore, various speculative computation methods have been proposed [11, 12, 13]. 
The line-up competition algorithm (LCA) [14] is a speculative parallel computation 
algorithm that attempts to obtain the best result after executing many programs. LCA 
compares solutions among process groups, which are referred to as a family, at every 
iteration that yields an improvement and modifies the program parameters that are 
dynamically based on a comparison of the results. In LCA, this comparison is performed 
after each iteration; consequently, frequent synchronization is required. The 
synchronization cost of the speculative computation method used in our experiment is 
nearly zero; moreover, it can parallelize the existing algorithm without modification. In 
addition, wait time is not required; thus, nearly 100% of the computational resources can 
be used.

The algorithm portfolio method has also been proposed [15] as a type of promising 
speculative computation method for difficult problems. In the algorithm portfolio, some 
(one or more) algorithms are executed simultaneously; then, the algorithm with the best 
performance is selected. In our study, only one algorithm was executed in parallel; this 
may be a precise analysis of a special example of an algorithm portfolio. However, 
assuming only one algorithm, theoretical calculation of the expected value becomes 
possible. Furthermore, in molecular simulations, multiple algorithms cannot be used and 
parallel execution of a homogeneous algorithm is required to maintain the validity of the 
simulation.

In previous studies, the effect of speculative computation was theoretically analyzed 
using the state-transition matrix eigenvalues of the Markov process [9, 10]. However, in an 
actual problem, it is difficult to obtain an accurate state-transition matrix. Therefore, only 
the lower or upper bound can be considered. In this study, we attempt to analyze the effect 
of the speculative method as a simple probability problem without using a state-transition 
matrix and derive parameters that can be observed experimentally; i.e., we attempt to 
analyze the application of this method to a practical problem.

3   Effect of Speculative Computation

3.1 Algorithm
Various successful metaheuristics such as SA, Tabu search, and genetic algorithms (GA) 
have been proposed for combinatorial optimization problems. Such metaheuristics use 
the stochastic iterative improvement algorithm as the base. In the case of minimization 
problems, when the algorithm is run, the average value of the obtained solutions decreases

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

The effect of speculative computation on combinatorial optimization problems 97



�

�

��

��

��

��

��

��

��

� � � � � ��

�
	


�
�




�
�
��
�
��
�

	
�
��


�

���������

Figure 3. Relation between calculation time and obtained solution, and its approximate curve.

rapidly, but it becomes moderate immediately. If these algorithms run for a very long time, 
the obtained solution will approach the global optimal solution [16]. Fig.3 is an example of 
this situation, which is part of the experimental results in section 4. The horizontal axis is 
time, and the vertical axis is the obtained solution. The approximate curve is added to the 
figure in the form of Eq.(2).

µ = a · t−b + ϵ . (2)

Here, let µ denote the average of obtained solution, t denote the time, ϵ denote the optimal 
solution, and a and b denote constants.

Since the Eq.(2) can be approximated better than polynomial approximation or 
log approximation in our experiment, we decided to use this approximation in this 
study. However, note that Eq.(2) is just an approximation because there is no 
mathematical proof.

In this study, we attempt to analyze the effect of the speculative computation method as 
a probability problem.

When the results of a trial S conform to a specific probability distribution, if the trial is 
repeated and the minimum value of the repeated trials is selected as trial M , the latter 
conforms to a probability distribution that differs from trial S. For example, if the scores 
are determined by a dice roll, the probability distribution becomes 1/6 each of X = {1, 
2, 3, 4, 5, 6} with an expected value of 3.5 for µs. If m dice are thrown simultaneously and 
the scores resulting from the minimum value are considered to be trial M , the probability 
distribution will be nonuniform; moreover, as the value of m increases, the expected 
value µm will become closer to 1.

This is the principle of speculative computation. In other words, if a stochastic 
algorithm is simultaneously executed m-parallel and the minimum value is selected as 
the result, it may be possible to obtain better computational performance.

21: Algorithm SSpeC
22: parallel-for(0 ≤ th < m) {
23: ret[th] = S();
24: }
25: return selectBest(ret);

Figure 4. An example of simple speculative computing algorithm

    In this study, a stochastic algorithm is used as the base and the following extremely 
simple speculative method is adopted. The algorithm is shown in Fig.4. A stochastic

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

Y. Iizuka, A. Hamada, Y. Suzuki98



algorithm is executed independently using multiple parallel processes (or threads), where a 
different initial value or different random number seed is used for each process (line 
22-24). All parallel executions are terminated after a fixed time or fixed number of
iterations, then, the best solution is selected from the obtained solutions (line 25).

The solution obtained by this method varies stochastically with parameter m. 
This method represents a simple Multi-Start, which we refer to as Stochastic 
Speculative Computation (SSpeC). SSpeC has the following features.

1. Process generation is performed once, and the process generation cost is low.
2. Synchronization is performed once, and the wait time is short.
3. The program utilizes nearly 100% of the available computational resources.
4. The program can be parallelized without modifying the original program.

3.2   Effect of improving a solution
It is assumed that the solution to a stochastic algorithm S follows the probability 
distribution of the distribution function Fs(y) and the probability density function fs(y), 
where the minimum solution (or the optimal solution) is denoted as ϵ. S is executed in an 
m-parallel manner speculatively, and the minimum solution is selected from the obtained
solutions. Note that m-parallel execution is assumed to be independent trial. In this case,
the probability that solution y can be obtained via m-parallel execution follows the
minimum value distribution of the original probability distribution according to the
extreme value theory. The probability distribution function Fm(y) and probability density
function fm(y) are expressed as follows:

Fm(y) = 1 − (1 − Fs(y))m, (3)
fm(y) = m(1 − Fs(y))(m−1) fs(y). (4)

To analyze the effect of speculative computation, we would like to express the expected 
value of this probability distribution as a function of m. Eq.(4) is an extreme value 
distribution with a lower limit (optimal solution). Therefore, when the approximation is 
performed using the type 3 asymptotic minimum value distribution, the probability 
distribution becomes the Weibull distribution and the expected value can be expressed as 
follows[3, 17].

µm(m) = E(Ym) = ϵ +
δ

m1/k Γ(1 +
1
k
). (5)

Where ϵ is the minimum value, that is, the optimal solution, Γ( ) is a gamma function and δ 
and k are parameters that depend on the shape of the original probability distribution fs(y). 
If the expected values of the probability distribution S is µs, since µm(1) = µs, we simplify 
Eq.(5) as follows.

µs = ϵ +
δ

1(1/k)
Γ(1 + 1

k
)

µs − ϵ = δΓ(1 + 1
k
). (6)

We then substitute this into Eq.(5), and substitute 1/k for h (h = 1/k) to obtain the following: 

µm(m) = ϵ + m−h(µs − ϵ). (7)

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

The effect of speculative computation on combinatorial optimization problems 99



2
mSimilarly, the distribution σ (m) is expressed as follows:

σ2
m(m) = m−2hσ2

s . (8)

Here, h is an index of the speculative computation effects, and a greater value of h 
results in greater speculative computation effects. From Eq.(7), the effects of speculative 
computation can be expressed as m−h (the power function of m). The index of the effects of 
the speculative computation h is the inverse of k; therefore, the distribution will follow the 
shape of the original probability distribution. When the parallel number is m → ∞, the 
expected value µm approaches ϵ asymptotically.

The results of our numerical analysis indicate that when the original probability 
distribution is a bell curve (similar to a normal distribution), h is in the range 0 < h < 1. 
When the original probability distribution has a long tail (similar to geometric or 
exponential distributions), h > 1 may be observed. If h > 1, the effect of speculative 
computation is superlinear. In other words, h becomes large when the distribution of the 
original probability distributions is large. If the original probability distribution Fs(x) is 
distributed uniformly, the distribution Fm(x) of the speculative computation becomes a beta 
distribution and h = 1.

Generally, when a problem is difficult, the distribution of the solution of a stochastic 
algorithm becomes large, i.e., the effect of speculative computation is significant for 
difficult problems. Further, it is important that h, an index of the effect of speculative 
computation, is observable from experimental results.

3.3   Effect of reducing the execution time
When using a stochastic algorithm, it is assumed that the expected value of the 
computation time and solutions have a relation as that described in Eq.(2). In 
conventional parallel computing, it is assumed that computation time is reduced by 
Eq.(1). With the same computation time t0, the conventional parallel computing is 
possible to calculate for a time longer by ts/tp times than non-parallel computing. 
Therefore, by substituting this into Eq.(2), the expected value of a solution can be 
expressed as follows:

µp = a ·
(

ts
tp

· t0

)−b
+ ϵ . (9)

On the other hand, with SSpeC, the expected value µm (Eq.(7)) of a solution is obtained 
using the same computation time t0. For speculative computation to be more effective than 
the conventional parallelization method, µm must be smaller than µp.

a ·
(

ts
tp

· t0

)−b
+ ϵ > ϵ + m−h(µs − ϵ). (10)

a ·

By substituting Eq.(1) and Eq.(2),(
ts · t0

(α/m + 1 − α)ts + β

)−b
+ ϵ > ϵ + m−h((a · t−b0 + ϵ) − ϵ). (11)

We assume that conventional parallelization can be parallelized in an ideal state. In other 
words, all parts can be parallelized and the overhead is 0. Under ideal conditions, α = 1 ,

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

Y. Iizuka, A. Hamada, Y. Suzuki100



β = 0, and ϵ = 0 for simplicity, Eq.(11) can be transformed as follows:

a · (mt)−b > a · t−b · m−h . (12)

Thus, the required condition is

b < h. (13)

When Eq.(13) is satisfied, it is expected that the speculative computation result will be 
better than that obtained with conventional parallel computing. Note that b and h depend 
on the problem and algorithm combinations. However, b and h can be easily observed 
experimentally.

4 Experiment with a Combinatorial Optimization Problem

4.1 Experiment of comparison with conventional parallel processing

To quantify the effect of the speculative computation, we conducted experiments 
comparing the results with those of conventional parallel processing. We used the 
weighted constraint satisfaction problem (cost minimization), which is a kind of graph 
coloring problem. When nodes connected by constraints are assigned the same color, the 
weight of the constraint is added as a cost. It is a problem of searching for color 
assignment that minimizes the total cost. Here, the topology of the graph is random, the 
number of nodes is 100, the number of edges is 300, the weight is 1∼5, and the number of 
colors is 3.

31: Algorithm S1
32: foreach(vp[i]) { vp[i] = randomInitialValue() }
33: minimumCost = eval(vp);
34: for(N times) {
35: foreach(v[i]){ /* parallelizable */
36: cv = localEval(i,vp[i], vp);
37: x = newValue();
38: if(cv > 0 ){
39: if(((localEval(i,x, vp) < cv) && p(p1)) || p(p2)){
40: vn[i] = x
41: }
42: }
43: }
44: nowcost = eval(vn);
45: if(nowcost < minimumCost){
46: minimumCost = nowcost; memory(vn);
47: }
48: vp = vn.clone()
49: }
50: return (minimumCost, restore()))

Figure 5. Simple parallel iterative improvement algorithm S1

The base algorithm we used in the first experiment is shown in Fig.5. Basically it is an 
iterative improvement algorithm. Variable assignments are stored in array vp (line 2). This 
algorithm improves each variables independently (line 35-43). The function localEval(i, x,

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

The effect of speculative computation on combinatorial optimization problems 101



�

��

��

��

��

��

��

��

� � � � � � �

�
	


��




�
�
��
��
�
�
	
�
��


�

����� ��!" �#�����$ 

%$ &� ��$ !" '!(!""�" �#�����$ 

����)(�!*�

�'���"!��&� �#�����$ ����)(�!*�

���������

Figure 6. Comparison between conventional parallel processing and speculative computing

The experiment results are shown in Fig.6. The horizontal axis of this figure is the time 
and the vertical axis is the obtained solution values. The figure shows the results of 
sequential execution, conventional parallel execution with 20 thread, and speculative 
execution with 20 thread. Since this is a minimization problem, it is better that the curve is 
located downward in the figure. These results of Fig.6 confirm that, in this case, 
speculative computing produces better results than conventional parallel processing.

By CPU time analysis using a program profiler, α of the Eq.(1) is 0.65, when the 
number of N (line 34) is set to 100, 000.

Next, we calculate parameters h and b from the experimental results. Since the Eq.(7) 
for the parameter h is the relationship between the number of threads m and the obtained 
solution, h can be calculated by observing this relationship. Fig.7 shows the result of 
observing this relationship at the fixed N = 1000 iteration point. The parameter h = 0.268 
in Eq.(7) was obtained from the approximate curve shown in Fig.7 by least squares method

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

vp) (line 36) calculates the local cost around the i-th variable, under the conditions that the 
variable assignment is vp and the value of the i-th variable is x. The function newValue() 
returns a new assignment with a random number (line 37). The function p(x) is true with 
probability x. If i-th variable has a constraint violation (line 38), and it is improved with 
the new assignment, change the value with the probability p1 (line 39-41). Or if this 
variable has a constraint violation (line 38), change its value with the probability p2 (line 
39-41). In this experiment, we used p1 = 0.3 and p2 = 0.02. When the minimum value of
the evaluation result is updated, the minimum value and the assignment at that time are
stored (line 45 -47), finally return its minimum value and assignment (line 50). The
changed value is saved in array vn, copying vn to vp for each iteration (line 48), makes it
possible to execute the loop of lines 35 - 43 in parallel. This algorithm will be referred to
as S1.

In the speculative computation, simply execute the base algorithm S1 in parallel 
as shown in Fig.4, and select the best value. In conventional parallel processing, the 
loop of lines 35 - 43 of Fig.5 was executed in parallel.

The CPU used for this experiment is Intel Core i9 processor, 10 core 20 thread 
(Hyper threading). In the case of conventional parallel processing, the upper limit of the 
parallel number is logically the number of variables (= 100). However, in this experiment, 
the upper limit is 20 from the processing capacity of the processor.

Y. Iizuka, A. Hamada, Y. Suzuki102



�

�

�

�

�

��

��

��

��

��

� � �� �� �� ��

�
�
	

�
�
	


�
��
��
�
�
�
�
��
	

��� ������ �� ����� !

Figure 7. Relationship between degree of 
parallelism and solution in speculative 
computation

�

�

��

��

��

��

��

� � �� �� �� ��

�
�
�
�
	

�

�
�



�
�
�
��
�
�
�

��� ������ �� ������ 

Figure 8. Relationship between parallel 
degree and computation time in speculative 
computation

(r2 = 0.9534). Since the parameter b in Eq.(2) is the relationship between the calculation 
time and the obtained solution when executing with a single thread, it can be obtained 
from the result of the Fig.6. From Fig.6, b = 0.260 (r2 = 0.9922) was obtained. In this 
experimental result, b ≒ h. The reason why the speculative computation was better than the 
conventional parallel processing, as shown in Fig.6, although it is not b < h (Eq.(13)), is 
that α and β were not ideal conditions.

In the above, we were paying attention to the effect of improving the solution obtained 
with the same calculation time. Next, we investigated the effect of shortening the time until 
the target solution was obtained. We set the solution target to 15, executed the program and 
stopped the execution when the solution x : x ≤ 15 is obtained, then checked the 
computation time up to that point. The result is shown in Fig.8. The horizontal axis is the 
parallel number, and the vertical axis is the calculation time. From this curve, h = 0.892 
was obtained. As for the time reduction, its effect was very great, but super linear was not 
realized.

�

��

���

���

���

���

���

���

���

���

���

� � � � � ����������������������������������������������

�	


�
�




�
�

���������

�������������

�������������

������������ �� �����

Figure 9. Distribution of computation time

     Similarly, Fig.9 shows the distribution of the computation time until the target solution 
15 is obtained. The horizontal axis is the computation time and the vertical axis is the

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

The effect of speculative computation on combinatorial optimization problems 103



61: Algorithm S2
62: foreach(v[i]) { v[i] = randomInitialValue() }
63: prevcost = mincost = eval(v); /* partially parallelizable */
64: for(N times) {
65: i = randomSelect()
66: old = v[i];
67: v[i] = newValue();
68: nowcost = eval(v); /* partially parallelizable */
69: if((nowcost < prevcost) || p(p2) ){
70: prevcost = nowcost;
71: if(nowcost < mincost){
72: mincost = nowcost; memory(v);
73: }
71: }
72: else { v[i] = old }
73: }
74: return (mincost, restore())

Figure 10. Another simple iterative improvement algorithm S2

This algorithm randomly selects one variable (line 65), change the value (line 67) if 
the evaluation is improved, restore it if it is not improved (line 72). Also change the value 
with probability p2 (line 69) even if evaluation is not improved. This algorithm is widely 
used as the basis of the iterative improvement algorithm. The algorithm for Monte Carlo 
molecular simulation that we will deal with in the later section is also close to this 
algorithm. This algorithm will be referred to as S2. The S2 algorithm has few parallel 
executable parts by conventional parallelization. The function eval() (line 63, 68) is 
the only part that is parallelizable.

Experimental results using this algorithm are shown in Fig.11. In this experiment, 
if parallel execution is performed by conventional parallelization, the computation 
time becomes longer than sequential execution.
      α of this algorithm is 0.74 (when N = 1, 000, 000). This is bigger than the S1 algorithm. 
If α is large, it will be advantageous for conventional parallel processing. However, such

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

frequency. In conventional parallelization, the distribution has a long tail, on the other hand 
in speculative computation, increasing the degree of parallelism reduces the variance. This 
is the effect of Eq.(8).

In this experiment, although sufficient effect was not obtained by conventional 
parallelization, the effect of parallel execution was confirmed in speculative computation. 
These results are considered to depend on the performance of the base algorithm. 
Therefore, these results are just one example. However, it can be said that speculative 
computation can improve performance even for base algorithms with poor performance.

4.2   Difference in effect by algorithm

The effect of parallelization depends on the algorithm. Next, we conducted an experiment 
with an algorithm with fewer parallelizing elements. The base algorithm is shown in Fig.10.

Y. Iizuka, A. Hamada, Y. Suzuki104



�

��

��

��

��

��

��

� � � � �

�
�
	

�
�
	


�
��
��
�
�
�
�
��
	

���������

����� !"#$ %&'(�))" *

+' ,� !"' #$ %#&#$$�$ %&'(�))" * -./!0&�#12

�%�(�$#!",� ('3%�!#!"' -./!0&�#12

Figure 11. Comparison between conventional parallel processing and speculative 
computation using another algorithm

results were not obtained. Since this algorithm is simple, the ratio of the parallelizable part 
is relatively large. However, since the granularity of parallel execution is small, the 
overhead becomes relatively large, and the parallel effect seems to be reduced. A better 
solution was obtained by using speculative computation, even with such an algorithm．

4.3 Experiment of speculative computation using GPU

�

��

��

��

��

��

��

��

	�


�

���

� � � � 	 ��

�
�
�
��
�
�
��
	

�
�

	
�
��
�

�
�
�

���������

	
����
����������

�
����
����������

	
������������������������

�
����
��
���
��������������������


	
����
��
���
��������������������


�
����������������������

	
�������������������������

Figure 12. Effect of speculative
computation using GPU

� � �� �� �� �� �� ��

���������	
��
�����������
�

���������	
��
��������
�

�������
������
	��
�
		�	

��������	������
�

���������	
��
����������
�

�������
������
	��
�
		�	

��������	������
�

Figure 13. Comparison of solutions 
obtained at 4 seconds for each method

The GPU has many computation cores and can execute numerical calculations with 
high degree of parallelism. In this experiment, we tried speculative computation by 
placing the S1 algorithm on each core of the GPU.

For this experiment, we used NVIDIA GeForce 1080Ti GPU with Core i7-3770 (4 core 
8 thread) CPU. In the experiment, we compared CPU sequential execution, CPU speculative 
8 thread execution, single thread execution using just GPU 1 core, GPU speculative 100 
threads execution and 8192 thread execution, and conventional parallel processing using 
CPU (8 thread) and GPU (100 thread), Although the constraints from the number of 

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

The effect of speculative computation on combinatorial optimization problems 105



computation cores have been relaxed by using GPU, the degree of parallelism for 
conventional parallel processing is limited to 100 due to data parallelism constraint. 
From the number of CPU cores, the maximum number of CPU threads is limited to 8.

The result is shown in Fig.12. Fig.13 is a comparison of the obtained solutions at 4 
seconds by each method read from Fig.12, smaller is better. From these figures, it is 
confirmed that computation of only one core of GPU is much slower than CPU, and it is 
not suitable for general purpose calculations like this. From this result, in conventional 
parallel processing, it was better to use GPU than to use only CPU. Probably because it 
was able to use GPU numerical computation and threads effectively. Compared to this, 
speculative computation was more efficient when 8 threads were executed on the CPU 
than 100 threads on the GPU. This is because speculative computation performed general 
calculations other than numerical calculations on the GPU. By fully using GPU computing 
resources and executing 8192 threads, we finally exceeded the 8-thread speculative 
computation on the CPU.

However, when using many threads, we must pay attention to memory usage. In 
speculative computation, each thread is independent, and synchronization is not needed. It 
also means that each thread needs an independent memory space. In the case of algorithms 
with large memory usage, limits may occur in the memory space rather than in the number 
of computational cores. Because this experiment used a simple program, the number of 
threads could be increased to 8192. In actual problems, it may be impossible to increase 
the number of threads to such a size. GPU core is fast for numerical calculations but slow 
for general calculations. In order to use it for the combinatorial optimization problem, that 
is our target, it is necessary to choose an algorithm carefully. If there are memory 
constraints, the effect of simple speculative computation using the GPU will be limited.

5 Conclusion

In previous studies [9, 10], the effect of speculative computation was calculated 
theoretically using the state-transition matrix of the Markov process. However, in practical 
problems, it is difficult to accurately obtain the state-transition matrix. Thus, in this paper, 
we investigated the effect of the speculative computation method theoretically based on 
probability theory. And we conducted experiments and compared the results with those of 
conventional parallel processing. We also performed experiments on GPU. In this 
experiment, we were able to confirm the existence of the case that the speculative 
computation is more effective than the conventional parallel processing. Conventional 
parallel processing has limitations on elements α and β in Eq.(1), and there are also 
limitations on number of data parallelism. It is difficult to prove these upper or lower 
bounds. Therefore, this experimental result does not prove the superiority of speculative 
computation. However, it can be said that it is easier to tune speculative computation than 
tuning conventional parallel processing. Tuning speculative computation is just increasing 
the number of threads to the limit of computational resources. Speculative computation 
should be reexamined now that many-core processors are becoming common in desktop 
computing. In the future, we would like to proceed with research on speculative algorithms 
that use CPU and GPU cooperatively based on this result.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

Y. Iizuka, A. Hamada, Y. Suzuki106



References

[1] R. B. Osborne, Speculative computation in multilisp, pp. 103–137. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1990.

[2] R. Martí, Multi-Start Methods, pp. 355–368. Boston, MA: Springer US, 2003.

[3] Y. Iizuka, A. Hamada, and Y. Suzuki, “Stochastic speculative computation method
and its application to monte carlo molecular simulation,” in Proceedings of Hawaii
International Conference on System Sciences 2018, pp. 1660–1668, 2018.

[4] Y. Suzuki, A. Hamada, and Y. Iizuka, “Stochastic speculative computation method on
general purpose graphics processing units,” in 2017 6th IIAI International Congress
on Advanced Applied Informatics (IIAI-AAI), pp. 1049–1050, July 2017.

[5] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), (New York, NY, USA), pp.
483–485, ACM, 1967.

[6] A. Sohn, Z. Wu, and X. Jin, “Parallel simulated annealing by generalized speculative
computation,” in Parallel and Distributed Processing, 1993. Proceedings of the Fifth
IEEE Symposium on, pp. 416–419, Dec 1993.

[7] K. L. Wong and A. G. Constantinides, “Speculative parallel simulated annealing with
acceptance prediction,” IEE Proceedings - Computers and Digital Techniques, vol.
143, pp. 219–223, Jul 1996.

[8] I. D. Falco, R. D. Balio, E. Tarantino, and R. Vaccaro, “Improving search by
incorporating evolution principles in parallel tabu search,” in 1994 IEEE Conference
on Evolutionary Computation, pp. 823–828, 1994.

[9] R. Shonkwiler and E. Van Vleck, “Parallel speed-up of monte carlo methods for global
optimization,” Journal of Complexity, vol. 10, no. 1, pp. 64–95, 1994.

[10] X. Hu, R. Shonkwiler, and M. C. Spruill, Random restarts in global optimization.
Georgia Institute of Technology, 2009.

[11] M. Samadi, A. Hormati, J. Lee, and S. Mahlke, “Paragon: Collaborative speculative
loop execution on gpu and cpu,” in Proceedings of the 5th Annual Workshop on
General Purpose Processing with Graphics Processing Units, GPGPU-5, (New York,
NY, USA), pp. 64–73, ACM, 2012.

[12] V. Krishnan and J. Torrellas, “Hardware and software support for speculative
execution of sequential binaries on a chip-multiprocessor,” in Proceedings of
the 12th International Conference on Supercomputing, ICS ’98, (New York, NY,
USA), pp. 85–92, ACM, 1998.

[13] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai, “A cost-driven
compilation framework for speculative parallelization of sequential programs,”
SIGPLAN Not., vol. 39, pp. 71–81, June 2004.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

The effect of speculative computation on combinatorial optimization problems 107



[14] L. Yan, “Solving combinatorial optimization problems with line-up competition
algorithm,” Computers & Chemical Engineering, vol. 27, no. 2, pp. 251 – 258, 2003.

[15] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artif. Intell., vol. 126, pp. 43–62,
2001.

[16] E. Aarts and J. Korst, Simulated annealing and boltzmann machines. New York, NY;
John Wiley and Sons Inc., Jan 1988.

[17] W. Weibull et al., “A statistical distribution function of wide applicability,” Journal of
applied mechanics, vol. 18, no. 3, pp. 293–297, 1951.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

Y. Iizuka, A. Hamada, Y. Suzuki108




