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Abstract

There exist numerous many-objective real-world optimization problems in various
application domains for which it is difficult or time-consuming to derive Pareto
optimal solutions. In an evolutionary algorithm, variation operators such as re-
combination and mutation are extremely important to obtain an effective solution
search. In this paper, we study a machine learning-enhanced recombination that
incorporates an intelligent variable selection method. The method is based on the
importance of variables with respect to the ranking of solutions in objective space
that express convergence to the Pareto front. We verify the performance of the en-
hanced recombination on benchmark test problems with three or more objectives
using the many-objective evolutionary algorithm AεSεH as a baseline algorithm.
Our experimental analysis reveals that variable importance can effectively enhance
the performance of many-objective evolutionary algorithms.

Keywords: Evolutionary computation, Machine learning, Multi-objective optimiza-
tion, Many-objective optimization, Variable selection, Random forest.

1 Introduction

Multi-objective evolutionary algorithms (MOEAs), such as NSGA-II [1], SPEA2 [2]
or NCGA [3], are able to derive a good approximation of the set of Pareto optimal
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solutions (POS) for two- or three-objective optimization problems. However, it is 
difficult for MOEAs to derive an approximation of the set of POS on many-objective 
optimization problems (MaOPs). Recently, several many-objective evolutionary al-
gorithms (MaOEAs) have been developed, such as MOEA/D [4], NSGA-III [5] or 
Aε Sε H [6]. Such MaOEAs have shown better convergence of the POS approxima-
tion set on many-objective test problems. Thus, it is expected that MaOEAs will 
contribute to solve real-world problems with four and more objectives. In industrial 
applications, there are cases where not all objectives have the same priority. Some-
times it is critical to find good compromises (in terms of Pareto efficiency) between 
a specific subset of all possible objectives. In those situation, the decision maker 
will be interested in speeding up the convergence towards those objectives.

Several methods have been proposed to help optimization algorithms solve diffi-
cult problems by learning the structure of the problem, namely the specific patterns 
of interactions among variables at the time of determining the objective function 
[7]. For example, estimation of distribution algorithms (EDAs) learn the problem 
structure during the solution search [8, 9, 10]. A new modeling approach that 
learns a joint model of objectives and variables, differentiating their role in the net-
work, was proposed in [11] for MO-EDAs to generate new solutions. The method 
can capture not only the relationships between variables but also the relationships 
between objectives and variables, and the relationships between objectives. In ad-
dition, MOEA based on decision variable analysis was proposed in [12] to decom-
pose variables into low dimensional subcomponents. The method estimates the role 
of variables and correlation between variables.

Our aim is to further improve the solution search ability of MaOEAs to find 
solutions faster, with good properties in terms of convergence and diversity. In 
an evolutionary algorithm, variation operators such as recombination and muta-
tion are extremely important for effective solution search in order to solve complex 
optimization problems. In ordinary MOEAs, variables that undergo recombina-
tion or mutation are usually selected uniformly at random with respect to some 
user-defined probability. Thus, variables are not explicitly selected based on their 
contribution to improve the rank of solutions.

In this work, we propose a machine learning-enhanced method to select vari-
ables for recombination. Our method models the relationships between Pareto rank 
in objective space and variables in decision space to estimate important variables. 
This method uses random forest to derive variable importance (VI) according to the 
Pareto rank of solutions. During recombination, the values of VI are used to select 
the variables that should be recombined, aiming to find better solutions in the 
direction that improves their ranking towards the Pareto optimal front. We also in-
vestigate two sources of information for random forest to determine VI. One is the 
instantaneous population and the other one is the archive of solutions visited so far. 
The idea of learning about the problem while optimizing it, in order to improve the 
solution search, is not specific to multi-objective optimization. Instead, it belongs to 
the more general conceptual framework of “intelligent optimization”. Potentially, 
the proposed method could be fruitful in any evolutionary scenario where solutions 
can be ranked according to a score, from which important search directions can
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be derived. Thus, we expect that MaOEAs that adopt such intelligent optimiza-
tion methods could be applied to MaOPs with an increased effectiveness to find 
solutions with good convergence.

In this work, we apply the proposed machine learning-enhanced method to op-
timization problems with up to six objectives. This method uses Pareto ranking 
to score solutions. In many-objective optimization problems, it is well known that 
the number of non-dominated solutions increases exponentially with the number 
of objectives [6]. Thus, a low variety of rankings in the population is expected, 
which could affect the estimation of variable importance. We are interested in as-
sessing the scalability of Pareto ranking as a score to derive variable importance 
on many-objective problems, and verify whether we can improve the performance 
of MaOEAs. We analyze the impact of using the instantaneous population or the 
archive of solutions as a source of information for random forest, correlating with 
some features of multi- and many-objective optimization problems and the variety 
of Pareto rankings used as scores. An initial version of this paper, reporting exper-
imental results applying this method to two-objectives problems, was presented in 
[13]. We use the multi- and many-objective optimizer Aε Sε H as a baseline algo-
rithm. We include the proposed method into Aε Sε H and compare its performance 
with the baseline algorithm and an ideal algorithm, which knows in advance the 
variables related to convergence and selects from them for recombination.

In the remainder, we describe variable importance in Section 2, we introduce the 
considered algorithms in Section 3, we give our experimental setup in Section 4, we 
report our experimental analysis in Section 5, and we conclude in Section 6.

2 Method

We identify variables that affect Pareto improvement based on the value of variable 
importance. Random forest, a machine learning method, can calculate the relative 
importance of variables in predicting the score of solutions. In this work, we use the 
Pareto ranking induced by non-dominated sorting [14] as the score. Then, we apply 
recombination to variables which are identified to affect Pareto improvements. In 
order to calculate the ranking, non-dominated sorting can be applied to the com-
bined current population of parents and offspring or to a sample of the archive of 
solutions visited so far. Figure 1 presents a schematic view of the overall algorithm 
including the proposed methods. The procedures within the shaded area express the 
conventional operations of an Evolutionary Multi-objective Optimization (EMO) 
algorithm and the procedures in the unshaded area the machine-learning related op-
erations for variable selection. In the Construct Data Set procedure, we prepare the 
data to be submitted to random forest, which could be either the current population 
and its offspring or a sample from the archive. Then, the importance of each vari-
able is derived by random forest, and it is used to select variables for 
recombination. This method can be regarded as a variable selection method for 
recombination, and can be easily added to any MOEA.
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Figure 1: Overall concept.

2.1 Extracting Variable Importance
In this work, we use the random forest [15, 16] implementation in R [17] to extract
variable importance. Random forest can use two variable permutation measures to
determine variable importance. One is raw importance and the other one is scaled
importance (z-score). We use the raw importance, as suggested in [18]. Let us
define the number of trees as nt and an index of a tree as t,(t = 1,2, · · · ,nt). We
provide random forest with a sample of solutions and their ranking. We denote
this as original data P. In this work, P could be either the combined population of
parents and offspring or a sample taken from the archive of solutions. In Section 3,
we will describe in detail how the archive is actually sampled. To grow each tree
of the forest, and to compute the variable importance in the tree, we apply the
following procedure.

1. Split randomly the original data P into a learning set (two thirds of the original
data) and a testing set (one third of the original data). Determine the training
data set for growing a tree by randomly sampling from the learning data,
allowing duplication, until picking a set with the same size as original data P.

2. Grow the tree by splitting the nodes. The most discriminative variable among
m randomly-selected candidate variables is used to split a node.

3. Calculate the accuracy of the estimation using the testing data. We submit
the variable values (input value) of the solutions in the testing data set to the
tree and obtain the predicted class (Pareto rank). The learning error of the
tree, denoted as LEt , is calculated by finding the mean squared error (MSE)
between the predicted class and original class in the testing data set.

4. Calculate the prediction error after permutation. For each variable xi,(i =
1,2, · · · ,n), we permute the value of xi among solutions in the testing data
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set, while keeping the other variables x j,(i ̸≡ j) fixed. The solutions with the
permuted values of xi are submitted to the tree to get their predicted class.
Then, we measure the MSE between the predicted class and the original class
in the testing data set. Let us define the MSE as EEt

xi
.

5. Compute variable importance in the tree. Variable importance for each vari-
able V It

xi
of a tree is calculated by the difference between learning error and

prediction error of each variable.

V It
xi
= (EEt

xi
−LEt). (1)

In order to get the overall variable importance on the forest for each variable V Ixi ,
we calculate the average of the variable importance for each variable on all trees [16,
19].

V Ixi =
( 1

nt

nt

∑
t=1

V It
xi

)
. (2)

This is called mean decrease in accuracy (MDA) or permutation importance.

2.2 Guiding Recombination

In general, a recombination operator selects some variables at random to recombine
two parent individuals based on a probability set in advance. In this work, we se-
lect variables for recombination based on importance towards Pareto improvement.
Using the result of deriving variable importance from random forest, we bias the
probability to apply recombination towards the variables that have larger variable
importance. We consider two ways of variable selection for recombination: prob-
abilistic and deterministic. The deterministic approach sorts the variables in the
order of importance and selects the Pcv×n most important ones. On the other hand,
the probabilistic approach selects variables based on a probability that depends on
the value of variable importance given by

P(i)
cv = Pcv

V Ii

∑i
j=1V I j

, (3)

where P(
cv

i) is the crossover probability of the i-th variable, Pcv is the overall crossover 
probability per variable, V Ii is the estimated importance of the i-th variable, and n 
is the total number of variables. In this work, we adopt the deterministic approach.

3 Algorithms

The concept described in the previous section could be potentially adopted by any 
MOEA. In this work, we compare the performance of three algorithms as follows.
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3.1 Baseline Algorithm (orig)

We use the Adaptive ε−Sampling and ε−Hood (AεSεH) [6, 20] as a baseline algo-
rithm. AεSεH is a population-based multi- and many-objective elitist evolutionary
algorithm. It has two important features: the ε−Hood method used to select par-
ents for recombination, and the ε− Sampling method used for survival selection.
We use the SBX crossover [21] as a recombination operator applied with a rate
pc per individual and pcv per variable. The performance of AεSεH is similar or
better than NSGA-II on different MOPs [20], and it shows good performance for
many-objective optimization [6].

3.2 Recombination applied to Convergence-Related Variables
(ideal)

Let us assume that the algorithm is aware of which variables are related to conver-
gence. We modify the baseline algorithm in order to take advantage of this infor-
mation, and apply recombination to the variables that determine the distance to the
Pareto front. This corresponds to a cheating algorithm having a perfect knowledge
of the variables that are important to get closer to the Pareto front. This algorithm
is expected to show the best search ability in terms of convergence. This approach,
denoted ideal, will allow us to appreciate the convergence that can be achieved
with a given recombination operator that perfectly learns variable importance.

Let n be the number of variables for the problem under consideration, nd the
number of distance-related variables, np the number of position-related variables,
and pcv the probability of crossover per variable. If pcv ×n ≤ nd , pcv ×n variables
are selected randomly from the subset of distance-related variables. On the other
hand, if pcv × n > nd , all distance-related variables are selected for crossover and
the remaining pcv × n− nd are selected at random from the subset of np position-
related variables.

3.3 Recombination based on Variable Importance (VI) using In-
stantaneous Population

We include the method that guides recombination into the baseline algorithm Aε Sε 
H, as illustrated in Figure 1, using at each generation the combined population of 
par-ents and offspring to construct the data set to be submitted to random forest. As 
described in Section 2.2, we obtain the estimated variable importance for Pareto 
improvement from the random forest machine learning model, and we select for 
recombination the variables that have higher importance. Constructing the data set 
from the current population allows us to select variables that are important at a given 
particular state of the search process. This could be relevant in problems where 
variables do not have the same importance throughout the generations.
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3.4 Recombination based on Variable Importance using Archive
(VI Arc)

The flow of algorithm VI Arc is mostly similar to VI, shown in Figure 1. The dif-
ference is that in VI Arc we construct the data set to be submitted to random forest
from a sample of solutions taken from the archived populations. In this algorithm,
at each generation, we add the current population to an archive. In order to form the
sample, we select an equal number of solutions from each one of the populations in
the archive. Thus, the history of evolution from the initial to the current generation
is used to train the random forest model. In the following, we describe precisely
how the sample is taken.

Let us define the size of the sample set for random forest as NRF . We select
probabilistically around K =NRF/ j individuals from each population in the archive,
where j is the index of the current generation. The probability of selection from an
archived population is Pselect = NRF/|A j|, where |A j| denotes the archive size at
generation j.

When we pick a solution from an archived population, we select it based on
the median rank R̂ of solutions in order to prevent selecting individuals around
the axis (extreme points). The median individual is calculated for each objective
function. Ranking of individuals is based on the order of the distance from the
median individual. Thus, an individual closer to the median individual is given a
better rank (smaller value). Calculation of median rank for each individual is as
follows.

1. Sort in descending order of objective function fi using index k ≥ 0.

2. Calculate median rank R̂i for the i-th objective fi using the archived popula-
tion size |Pt | at the t-th generation as follows

R̂i =
∣∣∣ |Pt |

2
− (k+1)

∣∣∣. (4)

3. Repeat the above operations for all M objective functions.

4. Aggregate the median rank R̂ over all objective functions.

R̂ =
M

∑
i=1

R̂i. (5)

We select individuals which have a better median rank in order to form the sample 
set. Once the sample is collected, we apply a non-dominated sorting to the selected 
sample set and give each individual a Pareto rank. In this paper, the size of the 
sample set NRF is set to 500. For the first t generations, where the archive size is 
smaller than the sample size, |At | < NRF , we use all solutions in the archive as the 
sample set.
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4 Experimental Setting

4.1 Benchmark Problems
We use the well-known DTLZ1, DTLZ2 and DTLZ3 continuous test functions [22]
to study the performance of the algorithms. These functions are scalable in the
number of objectives M and in the total number of variables n. DTLZ1 has a linear
Pareto-optimal surface, whereas DTLZ2 and DTLZ3 have a non-convex Pareto-
optimal surface that lies inside the first quadrant of the unit hyper-sphere. The ob-
jective functions in DTLZ2 are unimodal, whereas in DTLZ1 and DTLZ3 they are
multimodal. Thus, DTLZ1 and DTLZ3 introduce a large number of local Pareto-
optimal fronts in order to test the convergence ability of the algorithm. A summary
of the main features of each problem is shown in Table 1.

Table 1: Features of DTLZ problems.
Separability Modality Geometry

DTLZ1 S M Linear
DTLZ2 S U Concave
DTLZ3 S M Concave

DTLZ problems have M−1 position-related variables that determine the spread
along the front and n− (M − 1) distance-related variables that affect convergence
towards the Pareto front. We set the number of objectives to M = 3,4,5,6 and the
total number of variables to n = (M − 1)+ 9. The combination of the number of
position-related variables np and distance-related variables nd are set to (np,nd) =
(M − 1,9). In the following we describe in detail first the multimodal problems
DTLZ1 and DTLZ3 and then the unimodal DTLZ2 and a variation of it that we
denote as Modified-DTLZ2.

The DTLZ1 problem can be described as follows.

minimize f1 (x) =
1
2

x1x2 · · ·xM−1(1+g(xM))

minimize f2 (x) =
1
2

x1x2 · · ·(1− xM−1)(1+g(xM))

...
...

minimize fM (x) =
1
2
(1− x1)(1+g(xM)) (6)

0 ≤ xi ≤ 1, for i = 1,2, · · · ,n
where g(xM) = 100[|xM|+ ∑

xi∈xM

(xi −0.5)2 − cos(20π(xi −0.5))]

The DTLZ3 problem can be described as follows. This formulation has (3k −1) 
local Pareto-optimal fronts, and one concave global Pareto-optimal front when xM
= (0.5,0.5, · · · ,0.5)T .
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minimize f1 (x) = (1+g(xM))cos(x1π/2) · · ·cos(xM−1π/2)
minimize f2 (x) = (1+g(xM))cos(x1π/2) · · ·sin(xM−1π/2)

...
...

minimize fM (x) = (1+g(xM))sin(x1π/2) (7)
0 ≤ xi ≤ 1, for i = 1,2, · · · ,n

where g(xM) = 100[|xM|+ ∑
xi∈xM

(xi −0.5)2 − cos(20π(xi −0.5))]

In DTLZ3 and DTLZ1, it is difficult to find global optimal solutions because of
its g function.

The DTLZ2 problem can be described as follows.

minimize f1 (x) = (1+g(xM))cos(x1π/2) · · ·cos(xM−1π/2)
minimize f2 (x) = (1+g(xM))cos(x1π/2) · · ·sin(xM−1π/2)

...
...

minimize fM (x) = (1+g(xM))sin(x1π/2) (8)
0 ≤ xi ≤ 1, for i = 1,2, · · · ,n

where g(xM) = ∑
xi∈xM

(xi −0.5)2

In DTLZ2 it is not difficult to find solutions with good convergence because of
its g function. In this problem, even random solutions are very close to the true POS.
In this work, in addition to the conventional DTLZ2, we use a modified version of
it by replacing function g as follows

g′ (xM) = 1000× ∑
xi∈xM

(xi −0.5)2 . (9)

We denote this problem as Modified-DTLZ2. In this problem non-optimal solu-
tions are further apart in objective space than in the original DTLZ2. The problem, 
however, remains separable and uni-modal.

4.2 Parameter Setting for MOEA
The number of generations in the algorithms is set to 2000, and the population size 
is set to 100 individuals. The distribution exponents are set to ηc = 15 for SBX and 
ηm = 20 for polynomial mutation operator. The crossover probability per individual 
is set to Pc = 1.0 and the crossover probability for each variable is Pcv = 0.5. The 
mutation probability is set to Pm = 1/n. We report results collected from 30 
independent runs.
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4.3 Parameter Setting for Random Forest
In the random forest procedure, we set some parameters based on the values rec-
ommended in [16]. The number of trees to grow is set to 500 and the number of
variables randomly sampled as candidates at each split is set to n/3. We calculate
the raw value of mean decrease in accuracy for variable importance, as mentioned
in Section 2.1.

4.4 Metrics
In order to evaluate the search ability of the algorithms we use an archive that keeps
all non-dominated solutions found through the generations. We calculate Genera-
tional Distance (GD) [23] to evaluate convergence of the population, and Inverted
Generational Distance (IGD) [24] to evaluate diversity. For IGD, we use a reference
set of 100,000 solutions for each problem.

5 Simulation Results
5.1 Recombination based on VI using the Instantaneous Popu-

lation
We applied the three algorithms ideal, orig and VI described in Section 3 to 
DTLZ1, DTLZ3, DTLZ2 and Modified-DTLZ2 using 3, 4, 5 and 6 objective func-
tions.

In the following we first discuss results on the multimodal problems DTLZ3 
and DTLZ1. Figure 2 shows GD (on top) and IGD (at the bottom) values obtained 
by the three algorithms on DTLZ3. In the top of the graphs we indicate the number 
of objectives, number of variables, and the combination of position- and distance-
related variables described above. The algorithms are shown in red, green and blue 
lines and are labeled ideal, orig and VI, respectively. Looking at Figure 2, it can 
be seen that ideal achieves the best GD-values through generations, whatever the 
number of objectives. This is expected because ideal represents an algorithm with 
a perfect model for variables related to convergence. We can see that the method 
VI, which learns online which variables are important to improve convergence and 
emphasizes their recombination, has better GD-values than the baseline algorithm 
orig after 500 generations. At the 2000 generation, VI obtains significantly better 
GD than the orig algorithm. It can also be seen that orig has slightly better or 
nearly equal IGD-values than VI in all objectives.

Figure 3 shows the VI-values of each variables obtained by VI at different gener-
ations. Results are shown for the 5-objectives DTLZ3 problem. We pick snapshots 
after 10, 100, 500, 1000, 15000, 2000 generations. The number of generations is 
shown on the top of each graph. From generations 10 and 100, note that no clear dif-
ference can be seen on the values of VI between distance-related variables x4 ∼ x13
and position-related variables x1 ∼ x4 at the beginning of the search. However af-ter 
500 generations, distance-related variables have larger variable importance than 
position-related variables. This shows that the regression model in random forest
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Figure 2: GD (top) and IGD (bottom) on DTLZ3.
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Figure 3: VI on DTLZ3, 5 objectives.
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Figure 5: GD(top) and IGD(bottom) on DTLZ1.
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Figure 6: VI on DTLZ1, 5 objectives.
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Figure 7: Size of Front 1 (top) and number of fronts (bottom) on DTLZ1.
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Figure 8: GD(top) and IGD(bottom) on DTLZ2.
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Figure 9: VI on DTLZ2, 5 objectives.
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Figure 10: Size of Front 1 (top) and number of fronts (bottom) on DTLZ2.
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Figure 11: GD(top) and IGD(bottom) on modified DTLZ2.
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Figure 12: VI on modified DTLZ2, 5 objectives.
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Figure 13: Size of Front 1 (top) and number of fronts (bottom) on modified
DTLZ2.
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is able to correctly distinguish between distance- and position-related variables. In 
the evolution process of VI algorithm, the variables with a larger VI-values get a 
higher chance to be recombined. Therefore, we can find solutions which have a 
better convergence in the objective space by giving high recombination opportunity 
to distance-related variables. Figure 4 shows the size of the first front and the num-
ber of fronts in the combined population of parents and offspring. This combined 
population is the one submitted to random forest and used for estimation of vari-
able importance. From these figures, we note that the size of the first front in VI 
and ideal are similar and smaller than orig after 500 generations. Likewise, the 
number of fronts in VI and ideal are similar and larger than orig. So VI has at 
least 7 fronts after 500 generation in all cases.

Figure 5 shows GD- and IGD-values obtained by the three algorithms on DTLZ1. 
It can be seen that VI has a better GD-value than orig and almost the same as 
ideal after 1000 generations on all objectives. Figure 6 shows the VI-values of 
each variable obtained by VI. Similar to DTLZ3, distance-related variables have 
larger variable importance than position-related variables after 500 generations, al-
though there are no clear differences on VI-values at the beginning of the search 
process. Looking at Figure 7, we can see that the size of the first front in VI and 
ideal are smaller than orig after 500 generations and the number of fronts in VI 
and ideal are larger than orig.

Let us now focus our discussion on the unimodal problems DTLZ2 and Modified-
DTLZ2. Figure 8 shows the GD- and IGD-values obtained by the three algorithms 
on DTLZ2. We can see that VI has worse or similar GD- and IGD-values than 
orig, but ideal obtained significantly better GD-values. Figure 9 shows the VI-
values of each variable obtained by VI. Note that there is no difference in VI-values 
between position- and distance-variables through all generations. This means that 
VI could not be learned in this problem, and therefore we could not increase the 
chance to apply recombination to distance-variables. Looking at Figure 10, we can 
see that the size of the first front in VI is above 150, and greater than orig since 
early generations. Likewise, the number of fronts in the combined population is 
around 5 in the three-objective problem and around 2 in the six-objective problem, 
similar or smaller than orig. On the other hand, the size of the first front in ideal 
is just above 100, and the number of fronts is significantly larger. We can see that 
the population submitted to random forest has few fronts, and therefore the different 
ranks were too few to accurately estimate variable importance towards the Pareto 
optimal front.

We applied the same algorithms to Modified-DTLZ2, as described in Section 4. 
Figure 11 shows the GD- and IGD-values obtained by the three algorithms. We can 
see that VI has better GD-values than orig after 500 generations, whatever the 
number of objectives, and that it approaches ideal as evolution progresses on 3-, 4-
and 5-objectives problems. On the 6-objective problem, GD-values by VI are better 
than orig but do not approach ideal. Figure 12 shows the VI-value of each vari-
able obtained by VI on the 5-objective Modified-DTLZ2 problem. Note that, after 
500 generations, the VI-value of distance-related variables x5 ∼ x13 is higher than 
position-related variables x1 ∼ x4. Therefore, similar to DTLZ3, distance-related
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Figure 14: GD(top) and IGD(bottom) on modified DTLZ2 comparing with
VI Arc.
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Figure 15: VI on modified DTLZ2, 5 objectives computed by VI Arc.

variables get the chance to be recombined more often, which improves conver-
gence. Figure 13 shows the size of the first front and the number of fronts in the 
combined population. Looking at Figure 13, we can see that the size of the first 
front in VI is around 120, and similar to ideal. Note also that the number of fronts 
by VI on Modified-DTLZ2 is larger than in DTLZ2. In Modified-DTLZ2 there is a 
more clear separation between local fronts than in DTLZ2 and the population con-
tains solutions with a larger variety of rankings. In this case, random forest could 
estimate VI properly and could accurately identify distance-related variables for 
recombination.

Table 2 reports the average GD-values obtained by orig, VI and ideal algo-
rithms on DTLZ1, DTLZ2, modified-DTLZ2 and DTLZ3, computed at the last 
generation of the 30 runs. Standard deviations are shown in parenthesis. We show 
results in bold if there is any significant difference in result between orig and VI, 
based on a Mann-Whitney non-parametric statistical test with a p-value of 0.05.
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Table 2: Comparison of algorithms (org, VI, and ideal) on DTLZ1, DTLZ2,
modified-DTLZ2 and DTLZ3 with respect to generational distance (GD). The first
value is the average indicator-value, the second value in parentheses is the standard
deviation. Any statistical difference between org and VI is shown in bold. (×10−2)

3obj 4obj 5obj 6obj

DTLZ1
orig 0.40 (0.32) 1.5 (1.3) 2.8 (0.49) 20 (19)
VI 0.087 (3.8e-3) 0.53 (0.035) 1.6 (0.060) 3.2 (0.35)
ideal 0.088 (0.011) 0.53 (0.027) 1.7 (0.23) 3.2 (0.13)

DTLZ2
orig 0.16 (5.6e-3) 0.63 (0.020) 1.4 (0.045) 2.5 (0.11)
VI 0.25 (0.018) 0.89 (0.044) 1.4 (0.068) 2.7 (0.12)
ideal 0.037 (1.2e-3) 0.10 (3.4e-3) 0.16 (4.9e-3) 0.19 (6.0e-3)

Modified
-DTLZ2

orig 0.050 (6.5e-3) 0.50 (0.091) 2.2 (0.25) 7.2 (1.9)
VI 9.5e-3 (8.9e-3) 0.16 (0.16) 0.35 (0.10) 0.99 (0.21)
ideal 8.2e-3 (8.4e-4) 0.080 (5.7e-3) 0.22 (0.012) 0.21 (0.030)

DTLZ3
orig 0.26 (0.26) 6.2 (6.0) 21 (17) 42 (26)
VI 0.041 (0.072) 0.38 (0.90) 1.1 (2.2) 2.0 (1.9)
ideal 0.018 (0.015) 0.056 (0.10) 0.15 (0.24) 0.10 (0.12)

5.2 Recombination based on VI using the Archive

With the VI algorithm, the ranking of data passed to random forest was not di-
versified on DTLZ2. We were able to improve the method so that various ranks 
are included in the data for random forest. To do so, we applied the VI Arc al-
gorithm proposed in Section 3.4. It uses the archived populations to construct the 
data provided to random forest. GD and IGD results on DTLZ2 are reported in 
Figure 14. We can see that VI Arc obtains better GD values than orig and VI, and 
gets close to ideal, whatever the number of objectives. Figure 15 shows the VI-
values of each variable for the 5-objective DTLZ2 problem obtained by VI Arc at 
different generations. Note that the VI-value of distance-related variables is higher 
than position-related variables after 500 generations. Since this algorithm was able 
to discriminate between variables, we were able to effectively search the variable 
space related to convergence and could then find solutions with good convergence 
properties.

We also applied VI Arc to multimodal problems DTLZ1 and DTLZ3. In these 
problems, however, GD-values are similar or worse than the orig algorithm. This 
is because the archive allows to increase the rank diversify by keeping information 
from early generations. In multimodal problems, however, this becomes detrimen-
tal since the latest information is more relevant to escape from local optima.

VI and VI Arc are effective for problems with different characteristics. This 
suggests that approaches based on explorative landscape analysis, capturing the 
features of the problem to be solved, could be useful to determine the problem type 
the optimizer has to face. In the future, we plan to investigate such approaches in 
order to adaptively select between these two strategies.
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6 Conclusions

In this work, we investigated the ability of a machine learning-enhanced method
to learn variables that favor Pareto improvements on many-objective optimization
problems. This method uses random forest to perform a regression of the Pareto
ranking over decision variables in order to estimate the importance of variables
at each iteration. We compared the convergence ability of a baseline algorithm
AεSεH, a version enhanced with the method that estimates variable importance,
as well as an ideal version with a perfect knowledge of the variables that are im-
portant for convergence on 3, 4, 5 and 6 objective DTLZ1, DTLZ2 and DTLZ3
test problems. In addition to DTLZ2, we also use Modified-DTLZ2 to better illus-
trate the ability of the proposed method. We were able to show that the machine
learning-enhanced algorithm that uses the instantaneous population to determine
variable importance achieves a significantly better convergence on DTLZ1, DTLZ3
and Modified-DTLZ2. We revealed that the regression model was able to accurately
distinguish between distance- and position-related variables throughout the gener-
ations, based on the estimated variable importance on many-objective problems,
except in the problem where it is easy to converge towards the Pareto front. We
also showed that a variation of the machine learning-enhanced algorithm that uses
a sample of the archived populations to determine variable importance can achieve
better convergence on DTLZ2. Ours results revealed that, in order to correctly dis-
tinguish between distance- and position-related variables, we should pay attention
to the data set that is submitted to random forest for training. If the number of ranks
in the population is too small, the importance of the variable for the rank cannot be
predicted accurately. A possible approach to increase the rank diversity is to use
archived populations from different generations, even if this may have a side effect
for multi-modal problems.

In the future, we would like to explore adaptive algorithms based on landscape
analysis to determine whether the population or the archive should be submitted to
random forest. Also, we plan to apply the machine learning-enhanced algorithm
to problems with many variables, and extend the guiding method for convergence
in order to guide mutation in addition to recombination. The proposed method is
based on Pareto ranking. We would also like to look into alternative ways to rank
the population. At last, we would like to validate the ability of the proposed ap-
proach when applied to other evolutionary algorithms. The methodology discussed
hereby can be easily incorporated into various EAs to assist solution search without
changing the flow of the host algorithm.
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