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Abstract

In this paper, the authors propose a road-map to bridge theoretical and practi-
cal approaches in the discipline of the elevator operation problem. The theoretical 
approach aims to solve static elevator operation problems, here static denotes all 
information on users of the elevator system is known before scheduling. The prac-
tical approach aims to construct rule-bases for realistic situations, where the user’s 
behavior is not known in detail, but known to obey a certain traffic pattern. The 
authors expect efforts for bridging those approaches to yield a supervised learning 
of rule-bases by using optimal solutions as teaching data.

The proposed road-map is comprised of 5 stages: (1) to obtain an optimal solu-
tion for a problem instance of a static elevator operation problem, (2) to construct 
an identical optimal rule-base from the optimal solution, (3) to construct a similar 
optimal rule-base which is based on some characteristic functions and effective only 
for that problem instance, (4) to construct a rule-base which is effective for a set 
of problem instances, and finally (5) to construct a rule-base which is effective for 
various problem instances. Computational result display current progress in earlier 
stages of the road-map.

Keywords: elevator operation problem, integer linear programming, rule-base, sim-
ulation

1 Introduction

People in cities use elevator systems (ESs)[1] in their everyday life to move vertically 
in buildings. Making ESs effective has a direct benefit for their users; we want to 
reduce waiting times for elevators (cars) as short as possible. An effective ES is also 
beneficial for bosses of tenants in a building, as shorter waiting times for cars will lead 
to (slightly) longer working times of employees and may increase their productivity. 
This kind of significance of the ES is prominent in developing countries, because more 
and more buildings are constructed day by day. Another kind of significance of the 
ES can be found in developed countries. Such a country hardly expects the growth
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of national population, and less and less buildings are required month by month.
But taller and taller buildings will become necessary, because the nation will want
people to crowd into cities so as to suppress social costs on infrastructures. A taller
building inevitably involves a larger ES. Such a ES has a large degree of freedom
in scheduling, so it becomes considerable that the difference between effective and
ineffective car operations. Thus the authors think the significance of the research
on ESs has widely increased, and will last.

One of the authors has conducted researches to realize effective car operations[2].
Here the effectiveness of a car operation is evaluated as the dissatisfaction of users
(passengers) of an ES, as it has been the primary concern of researchers for a long
time[3]. Nowadays another concern has rapidly raised from the standpoint of the
social cost to sustain a society. That concern aims to suppress power consumption of
ESs. However, the authors focus only on the dissatisfaction of passengers, because of
such conjecture that car operations with lower power consumption are obtainable by
extending the objective function which represents the dissatisfaction of passengers.
Thus, in this paper, the elevator operation problem (EOP) is tackled as a problem
of obtaining car operations which minimize the dissatisfaction of passengers.

The authors point out that there are 2 approaches in tackling the EOP. The
one approach is to simplify the EOP as the static optimization problem, then to
solve that problem[2]. This approach will be preferred by academic researchers,
because it yields optimal, ideal solutions. But practitioners will not prefer that
approach, because it is merely applicable to unreal situations. Practitioners will
prefer the other approach of obtaining operations which are essentially applicable
to real ESs and are more effective than existing operations. In this paper, those
approaches are called theoretical and practical, respectively. These approaches have
been proceeded independently in different researches by different researchers. Here,
the authors believe that bridging those 2 approaches is fruitful, and devote this
paper to develop a way for bridging those approaches.

The one of the authors has developed seminal 2 tools for theoretical and practical
approaches. The one tool for the theoretical approach is the trip-based model[4] in
formulating static EOPs as integer linear programming (ILP) problems. In this
formulation, the ES is assumed to be discretized. By using that tool, we can obtain
optimal solutions even for such an innovative ES like multi-car ES [5, 6, 7] in theory.
The other tool for the practical approach is the pragmatic rule design (PRD), which
has been thought out on the assumption that a considered ES is continuous[8]. The
PRD decodes a rule for car allocations as a discrete vector which represents relative
characteristics which distinguish effective cars from others. These 2 tools had made
the authors to conceive such a fruit to construct rule-bases due not to trial-and-errors
but optimal solutions.

Based on aforementioned conjectures and tools, the authors propose a road-map
which deploys optimal solutions of static EOPs to construct rule-bases applicable to
realistic situations. The proposed road-map is comprised of 5 stages: (1) to obtain
an optimal solution for a problem instance of a static EOP, (2) to construct an
identical optimal rule-base from the optimal solution, (3) to construct a similar
optimal rule-base which is based on some characteristic functions and effective only
for that problem instance, (4) to construct a rule-base which is effective for a set of
problem instances, and finally (5) to construct a rule-base which is effective for
various problem instances. The objective of this paper is to describe that road-map

114

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Inamoto, Y. Higami and S. Kobayashi



and to display current progress on its earlier stages.
This paper is organized as follows. Section 2 is devoted to describe the EOP.

In Sections 3 and 4, the trip-based model and the PRD are briefly introduced,
respectively. The proposed road-map is described in Section 5. Computational
results on current progress of that road-map are displayed in Section 6. Section 7
summarizes this paper and displays future works.

2 Elevator Operation Problem

2.1 Difficulties in Operating Elevator Systems

The elevator system (ES) is said a most familiar transportation system for people
to move vertically in buildings. In this paper, the problem of effectively operating
ESs is called the elevator operation problem (EOP), and the most typical ES is
considered. In such ES, each shaft contains one car, and no reverse-run can occur;
that is, a car with passengers can not move toward the direction opposite to which
intended by passengers.

It is analyzed that the EOP has 3 difficulties[4]. The first difficulty is the inde-
terminacy of the ES, as an ES can not sense information on passengers thoroughly
and predict passengers’ behaviors. The second difficulty is that the ES behaves in
so complicated manner that the state transition of the ES is hardly represented as
mathematical equations. This difficulty is called curse of modeling [9]. Even if these
difficulties are solved, the EOP is reduced to a combinatorial optimization problem
which is too difficult to be solved. For example, the size of the solution space in an
EOP with 3 cars and 10 passengers is roughly estimated as 310 · (2 · 10)! ≃ 1.43 · 1023. 
This is the third difficulty. These difficulties seem not unique in the EOP but com-
mon in many scheduling problems. So researches on these difficulties are expected
to have other applications than the EOP.

2.2 Short Overview on the Literature

One of the authors have tackled to the EOP from 2002, and have published a survey
paper in Japanese at 2012 [10]. There are some academic studies [11, 12, 13, 14]
which have treated the EOP as optimization problems. Especially, the optimal
operation rule for the up-peak traffic pattern was displayed in [14], whereas that rule
requires such unavailable information as the arrival rate of passengers. Other studies
have no guarantee to yield optimal solutions, due to the incomplete formulation [12],
the utilization of the receding horizon approach [11], and the utilization of the genetic
algorithm [13]. One of the authors made it possible to yield optimal solutions for
the deterministic and stochastic EOPs by deploying the integer linear programming
[4, 16] and the dynamic programming [15], respectively. However, they are not
applicable to real problems, since the problem size becomes exponentially huge on
the deterministic, and stochastic EOPs according to the number of passengers and
the number of cars, and the number of floors and the number of cars, respectively.

On the other hand, there have been many industrial studies for the EOP. Most
of them deployed such technologies as the fuzzy rule, the genetic algorithm, and
the agent [17]. Especially the fuzzy rule seems dominant [18, 19, 20], although the
number of published papers has decreased. Most of those studies were conducted by
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researchers in industries, and destined applicable to real problems. Those studies 
displayed that their methods had been better than other methods. However, the op-
timality of their methods was not analyzed, since optimal solutions of real problems 
are not available.

This contrast between academic and industrial studies appears not only on the 
legacy ES but also such new ESs as the destination entry ES [17], the double-deck 
ES [21] and the multi-car ES [6]. The authors envisions to integrate academic and 
industrial studies owing to the scalability of the PRD which is roughly described 
at Section 4.2. We can think there are 2 kinds of scalability on a rule-design; 
weak and strong. The weak scalability means that a rule-base for small-scaled 
problem instances is almost optimal for middle-scaled problem instances. As like, 
the strong scalability means that a rule-base for small-scaled problem instances is 
almost optimal for large-scaled problem instances. We speculates it is possible to 
display that the PRD has the weak scalability. If such an expectation is valid that 
a rule design which exhibits the weak scalability also exhibits the strong scalability, 
then we can obtain near-optimal pragmatic rule-bases for large-scaled EOPs by 
solving small-scaled EOPs then constructing those rule-bases. It is quite difficult 
to confirm that expectation. However, the authors think the aforementioned vision 
has a certain value even when that expectation is invalid, since studies to display 
the weak scalability of the PRD contribute to the discipline of the EOP.

2.3 Problem Instance

Passengers of an ES form traffic flows due to their activities. Four typical flows are 
the up-peak, down-peak, two-way, and inter-floor[1]. The up-peak flow is formed by 
passengers who go to their offices, and usually observed in the morning. The down-
peak flow is formed by passengers who return to their homes, and usually observed 
in the evening. The two-way flow is a mixture of the down-peak and up-peak flows, 
where the former is formed by passengers who go to lunch and the latter is formed 
by those who return to their offices. The inter-floor is observed in remainder periods 
and has no notable features. The combination of a traffic flow and an intensity of 
passengers’ arrivals is called traffic pattern in this paper. A noticeable example of 
the traffic pattern is the strong up-peak, which is observed in taller buildings with 
many tenants. It is a necessary condition of an ES to be equipped within a building 
that the ES can convey passengers in the strong up-peak pattern without intolerable 
waiting times[3].

Passengers’ arrivals are appropriately modeled as a Poisson process, so passen-
gers can be sampled by using pseudo random numbers when a certain traffic pattern 
is specified. Given data of information on passengers and initial floors of cars, the 
EOP becomes static in the sense that all information which makes the behavior of 
the ES indeterministic is known before scheduling. A set of those data is called 
problem instance in this paper. By focusing on a certain problem instance, the first 
difficulty at Section 2.1 is dissolved. Static EOP and its optimal solution seem use-
less, since it is impossible to obtain any problem instance in a real ES by nowadays 
technologies. However, an optimal solution can be used as a touchstone of a heuris-
tics by being compared with results by that heuristics. Moreover, we can expect 
that a scheduler which is effective for many problem instances of a certain traffic 
pattern is also effective for other problem instances sampled from the same traffic
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pattern. This paper is essentially based on that expectation.

2.4 Objective Function

For a long time, a “good” car operation for an ES is that minimizes the dissatisfac-
tion of passengers of that ES. Nowadays, such a car operation is also regarded good
from economical and sustainable standpoints that minimizes power consumption.
Therefore we find 2 objectives in the EOP[4]. The latter objective on power con-
sumption can be basically measured in terms of a number of stops and/or a length
of trajectories of cars, so can be integrated into a sole objective function with the
former objective. Thus the authors has judged that it is sufficient to consider only
the objective function to minimize the dissatisfaction of passengers. The integration
of those 2 objectives is out of the scope and one of future works of this paper.

The dissatisfaction of a passenger can be measured in terms of his/her waiting
time, traveling time, and long-wait. The waiting time of a passenger is the duration
from the moment at when he/she arrives to the moment at when he/she rides a car.
As like this measure, the traveling time of a passenger is defined on moments at when
he/she rides and leaves from a car. The long-wait represents that a passenger has
waited longer than a given threshold ∆. Let denote tw

i , t t
i , and hi to aforementioned 3

measures respectively with regard to passenger i ∈P := {1, . . . ,Np}, here Np denotes
the number of passengers who use the ES in a given planning horizon. By denoting
ri, t+i , and t−i to the arriving time, the riding time, and the leaving time of passenger
i, symbols tw

i , t t
i , and hi are defined as follows:

tw
i := t+i − ri, t t

i := t−i − t+i , hi :=

{
1 if tw

i > ∆,
0 otherwise .

(1)

By using these symbols, the objective function in this paper is defined as follows:

∑
i∈P

(
wwtw

i +wtt t
i +wLhi

)
, (2)

here ww,wt, and wL are non-negative scalars which denote the weights of waiting 
time, traveling time, and long-wait of passengers, respectively. The objective of the
static EOP is to obtain car operations which minimize Equation (2).

2.5 Two-index Formulation Model

The static EOP can be handled as a kind of the pickup-and-delivery problem
(PDP)[22], which is a special variation of the vehicle routing problem (VRP)[23]. In
the PDP, decision variables are classified into 2 types. The one type is assignments
of items to vehicles, and the other is sequences of picking-up and delivering items
for each vehicle. This model for formulating also applies to the static EOP, thus its
fundamental decision variables are assignments of passengers to cars, and processing
sequences of passengers for each car.

In the PDP, the processing sequence of items is usually formulated by using
binary variables each of which represents the precedence relation between 2 items.
This formulation is called 2-index formulation model[23], since each binary variable
is indexed by 2 subscripts which correspond to 2 items between which the prece-
dence relation is considered. In the 2-index model, there are n2 binary variables
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if there is n items. Applying this model to the static EOP results into O(|P|2) 
binary variables[16]. They are so numerous that hamper to solve larger problems.
Additionally, the 2-index model often brings such an intuitive inconsistency that it
requires longer computational times to obtain solutions which result into simpler car
trajectories[16]. The one of the authors had conjectured that there must be another
formulation that requires shorter computational times when optimal car trajectories
are simpler.

3 Trip-based Integer Linear Programming Model
for Elevator Operations

3.1 Notion of Trip

It is one of major differences between the EOP and the PDP that they have 1
and 2 dimensions of kinetic planes, respectively. That is, in a usual ES, a car can
not move horizontally and repeats only up-and-down movements. This may bring
the well-known reverse-run constraint; a car should not move toward the direction
opposite to the traveling direction of a passenger contained in that car. There must
be a proper formulation that deploys this reverse-run constraint to shrink the search
space of the EOP. This perspective has been realized by introducing the notion of
trip[13, 4], which denotes in this paper a one-directional movement of a car and
comprises a car trajectory. A sketch of trips is illustrated in Figure 1, in where
one car forms a trajectory which is comprised of 2 trips and conveys 3 passengers.
This sketch also displays that up- and downward trips are numbered odd and even,
respectively. The authors adopt this numbering scheme in formulating the EOP. By
using this notation, the reverse-run is easily prohibited. Without the prohibition of
the reverse-run, any passenger can be assigned to any trip. With that prohibition,
upward/downward passengers can be assigned only to odd/even trips, respectively.
This limitation on assignments reduce the search space.

3.2 Trip-based Formulation Model

The processing sequence of passengers assigned to a same trip can be determined
in a straightforward manner, since a car repeats up-and-down movements and the
reverse-run is prohibited in this paper. For example, passenger i with origin floor f 
should be picked-up before another passenger i′ with origin floor f ′ > f , if they are 
assigned to a same upward trip. Thus, by grounding the EOP on the notion of trip,
we can consider car operations according to assignments of passengers to trips. This
fact leads us to the trip-based model[4] for formulating such assignment problems
as integer linear programming problems.

In the trip-based model, time, positions of cars, and the behavior of the car are
roughly discretized, and all cars are assumed to stay at their initial floors without
any passenger at time 0. Decision variables considered in the model are: the first-
time, first-floor, last-time, and last-floor of trips, the riding time, leaving time of
passengers. They are subsidiary in the sense that, their values are automatically
determined due to constraints for prohibiting the reverse-run and connecting trips
when the objective function value is minimized. So the trip-based model makes
it possible to solve a problem instance with many passengers when fewer trips are
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Floor 3

Floor 2

Floor 1

Car

Floor 4
Passenger

Floor 3

Floor 2

Floor 1

Floor 4
Trip 1

Trip 2

assign passengersto trips 1 and 2
time

This passenger will arrive at oor 2,
then will travel to oor 3.

This upward passenger is conveyed by trip 1,
and can not be conveyed by even trips.

passengers enter into the
elevator at these moments.

Figure 1: A sketch of trips.

sufficient to comprise optimal trajectories. Currently there is no idea to directly 
know the number of sufficient trips. That number is left as a parameter specified 
by a decision-maker. Such a feature of the trip-based model seems a defect that 
the number of trips is a parameter. This is right when the objective is to obtain 
the optimal solution. But if the objective is to obtain an effective solution within 
a limited time, then we can regard that feature as a merit because a solution with 
a certain effectiveness can be rapidly obtained by solving ILP equations generated 
with few trips.

In current utilization of the trip-based model, the number of sufficient trips is 
auxiliary obtained by the incremental procedure[4]. This procedure starts to set 
that number 2; all trajectories of cars can not contain 3 or more trips. We can 
obtain ILP equations with 2 trips, then solve it by applying a mathematical solver. 
If 2 trips are sufficient to represent a feasible solution, we can obtain an optimal 
solution with 2 trips. As like 2 trips, we can obtain an optimal solution with 4 trips. 
Since it is pursued to minimize the objective function, the objective function value 
of the optimal solution with 4 trips is less or equal to that with 2 trips. These 2 
values must coincide if enough trips has been considered. The incremental procedure 
repeats to increase trips and to solve ILP equations until the objective function value 
converges. Thus, the computational time for solving a certain problem instance 
by the incremental procedure is a summation of all repetitions over different trip 
numbers. And the optimal solution of a problem instance is that obtained by solving 
ILP equations with sufficient trips. This incremental procedure is used in this paper.

3.3 Two Contrivances to Decrease Computational Times

Computational resources to solve a static EOP grow exponentially according to the 
scale of the problem. Even a small EOP may require a long computational time 
and a large memory. In order to decrease the computational time, the authors have
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proposed 2 contrivances[4, 24].

The one contrivance is relevant to sole car and used in allocating trips to pas-
sengers. This contrivance is based on the following 2 conjectures: (i) an optimal car
operation is graded in terms of the number of trips in the sense that more trips can
bring more elaborated car trajectories, and (ii) an optimal car trajectory of low-
graded will be similar to that of slightly higher-graded. These conjectures lead to
the procedure which increases but limits the search space by imposing a proximity
condition[4]. The procedure firstly solves a 2-graded problem by applying a math-
ematical solver to ILP equations with 2 trips. Let us assume that we can obtain
a 2-graded solution of the 2-graded problem, and 2-graded allocations of trips to
passengers. Then the procedure solves a 4-graded problem on the proximity condi-
tion that possible allocations of trips in 4-graded problem are not so different from

2-graded allocations. By denoting l(n)i to the trip allocated to passenger i in n-graded
solution, that proximity condition is formulated as follows:

∣∣∣l(n)i − l(n+2)
i

∣∣∣≤ θ , ∀i ∈ P. (3)

Here, θ denotes the threshold parameter. By imposing this condition, the number

of possible values of li
(n+2) 

reduces from ⌈n/2⌉ + 11 to θ + 1, thus the search space 
of (n + 2)-graded problem shrinks especially when n is large. This procedure loses 
optimality. But it has been displayed that the degree of degradation was not harmful 
whereas the computational time was drastically decreased, especially when many 
trips were involved[4].

The other contrivance was devised to cope with multiple cars. This contrivance 
premises that all cars are indistinguishable. This premise is valid when initial floors of 
cars are identical and capacities of cars are also. If m cars are indistinguishable, then 
there are m! optimal solutions which are different in assignments of passengers to cars 
but identical in the objective function value. This symmetry on car is undesirable in 
applying a branch-and-bound procedure, since partial solutions which differ only in 
car allocations have same lower bounds, and none of them is bounded. The 
contrivance mentioned here breaks that symmetry by giving such artificial roles to 
cars that a car with a smaller index has a smaller assignment pattern number of 
passengers (APN)[24]. An APN of a car is a decimal number converted from the 
binary vector which denotes assignments of passengers to that car. This contrivance 
may be not so powerful, but has such a desirable property that not to lose optimality.

In this paper, aforementioned 2 contrivances are always adopted in solving ILP 
equations. So it should be noted that a solution obtained in stage 1 (described in 
Section 5 lately) is not optimal but quasi optimal. It is one of future works to think 
out a contrivance which can decrease computational times without losing optimality.

Decision variables of the trip-based ILP formulation are displayed in the ap-
pendix. Constraints of the formulation are beyond the scope of this paper, thus 
omitted. For more details, please refer [4].

1The figure 2 in the denominator comes from the “reverse-run” constraint.
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4 Elevator Operations by Rule-Bases

4.1 If-then Rule Design

In early days, the ES had contained only one car. The EOP for such ES reduces
to a simple problem of scheduling sequences of passengers. For this sequencing, the
reverse-run constraint gives birth to the famous selective-collective heuristics (SC);
collecting passengers (selectively) with a same direction[1, 11]. The SC is simple
but effective[2]. Therefore it is usual in practice that only the car allocations are in
question and the passenger sequences are determined by the SC.

Let us imagine to schedule car allocations to passengers according to a rule-
base. A typical rule design is the if-then design. An if-then rule ⟨C : A⟩, where C is a 
condition part and A is an action part, designates that “when a passenger pushes a 
button in an ES, car A is allocated to that passenger if the state of the ES matches 
C.”

In order of an if-then rule-base to function well, its members are to be minute.
Therefore, the number of possible if-then rule is enormous, and is roughly propor-
tional to the size of the state space of the ES. The ES in itself is familiar with us, but
its state space is not. The discretized state space of an ES is huge even if its scale
is middle (e.g. 4 cars in a building with 10 floors[8, 9]). The if-then rule space is
also huge, which hampers a simple method like the genetics-based machine learning
(GBML)[25] to obtain effective rule-bases.

4.2 Pragmatic Rule Design

As described in Section 4.1, the size of the rule space is vital for effective car oper-
ations. The first step to decrease the rule space is not to consider direct attributes
of cars and passengers, but to use characteristics such as the expected waiting time
of a passenger for a certain car. However, this step still requires many rules in
representing even simpler heuristics. For example, let us image to represent such
heuristics that “to allocate a car with a shortest expected waiting time,” and the
rule design is ⟨w1,w2 : k⟩. This design designates that “if expected waiting times of 
cars 1 and 2 are respectively w1 and w2, then allocate car k.” If indices of possible 
cars are {0,1} and possible expected waiting times are {0,1,2}, then the follow-
ing 6 rules are necessary to completely represent the aforementioned heuristics:
⟨0,1 : 0⟩ , ⟨1,0 : 1⟩ , ⟨0,2 : 0⟩ , ⟨2,0 : 1⟩ , ⟨1,2 : 0⟩ , ⟨2,1 : 1⟩. As like, the number of 
rules is summed up to |W |Nc · Nc, where W is the set of possible expected waiting 
time and Nc is the number of cars.

The second step for decreasing the rule space is to normalize characteristics be-
tween cars then to discretize them, finally to expel the action part from the rule. The
resultant rule selects an arbitrary car which has relative characteristics specified by
itself. For example, the second step converts the aforementioned heuristics to a com-
pact rule: ⟨0⟩. This rule selects car 0 in the cases of ⟨w1,w2⟩ ∈ {⟨0,1⟩ ,⟨0,2⟩ ,⟨1,2⟩}, 
and car 1 in the cases of ⟨w1,w2⟩ ∈ {⟨1,0⟩ ,⟨2,0⟩ ,⟨2,1⟩}. That rule says “any car is 
OK if it functions well,” thus is called pragmatic. So the rule design is called
pragmatic rule design (PRD) in this paper. A PRD rule for car operation has such an
advantage that its validity is irrelevant to the number of cars[8] and, in probable, the
number of floors. This scalability on the number of cars has been confirmed
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Figure 2: The gap between theoretical and practical approaches, and the image to
bridge those approaches

as rule-bases for an ES with 4 cars were also effective for ESs with 8, 12, and 16
cars[8]. When a PRD rule is used as population, the car allocation becomes more
adaptive by majority voting[25]. The authors think such scalability makes the PRD
a seminal idea for the practical approach.

5 Road-Map to Bridge Theoretical and Practical

Approaches

5.1 Motivation

Using the trip-based model makes it possible to obtain (quasi) optimal solutions for
problem instances. The approach to obtain (quasi) optimal solutions for mathemat-
ically idealized situations is said theoretical. The optimality of those solutions is
obvious but it is also that they are not applicable to real situations. On the other
hand, applying the GBML makes it possible to obtain effective PRD rule-bases.
The approach to obtain applicable solutions for realistic situations is said practical.
The applicability of rule-bases is obvious but their optimality is not, as contrary
to the theoretical approach. These characteristics of the theoretical and practical
approaches indicate a big gap between them as displayed in Figure 2. We can expect
some fruits by filling this gap. This expectation leads to the theme of this paper:
filling that gap.

In bridging the theoretical and practical approaches, it will be necessary to ex-
tend the theoretical approach toward the practical one, and vice versa. The image of
extending both approaches is displayed in Figure 2. The authors think that the trip-
based model is based on the trip, which is a physical feature of car trajecto-ries, so
has the potential to be extended to realistic situations. From the practical approach,
the PRD has unlimited potential to represent any heuristics, although the
realizability of such potential depends on whether proper characteristics are us-able
or not. This means that the practical approach can be extended by devising
appropriate characteristic functions, each of which represents a degree of a certain
effect caused by selecting a car at a certain state. It is expected that extending both
approaches makes such story come true that obtaining (quasi) optimal solutions for
limited EOPs, constructing rule-bases by using optimal solutions as teaching data,
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then applying resultant rule-bases to real EOPs. In this story, the performance of a
constructed rule-base must be worse than that of corresponding optimal solutions.
However, this degree of degradation will lessen as the gap between those approaches
shrinks by extending them.

The final objective of this research is to bridge the theoretical and practical
approaches in the disciple of the EOP. The objective of this paper is to propose a
road-map as a bridgehead of that bridge, and to display current achievements in
earlier stages of the road-map.

5.2 Five Stages of the Road-Map

We can classify the EOP with regard to the scale and the predictability. The scale
is defined on the number of floors in which the considered ES is equipped, the
number of cars of that ES, and the number of passengers who use that ES during
a given planning horizon. The predictability is categorized into static and dynamic.
Static means that arrival times, origin and destination floors of all passengers in the
planning horizon are thoroughly known. Complementary situations are dynamic. By
using these terms, real EOPs are said large in scale and dynamic in predictability.
On contrary, EOPs solvable by the trip-based model are said small in scale and
static in predictability.

We can classify the car operation rule with regard to the effectiveness, the appli-
cability, and the similarity. The effectiveness directly corresponds to the objective
function value. The applicability is categorized into peculiar, narrow, and wide. Pe-
culiar means that a rule is only applicable to a certain problem instance. Here, “a
rule is applicable”means that rule is not so worse than a typical heuristics. Narrow
means that a rule is applicable to some problem instances. At last, wide means that
a rule is applicable to various problem instances, which are usually sampled from a
certain traffic pattern. From the standpoint of this paper’s theme, those terms are
used as: a narrow rule-base is constructed by supervised learning with many (quasi)
optimal solutions, and that rule-base is expected to be wide due to the scalability
of the rule design. The similarity is categorized into identical and similar. Identi-
cal means that a rule is applied on the basis of unique IDs of passengers and cars,
and is valid only for a certain problem instance with static predictability. Similar
means that car operations are determined by using some characteristics, which are
computed on the basis of the instant state of the ES.

Based on the aforementioned 3 properties of the car operation rule, the road-
map to bridge the theoretical and practical approaches is analyzed and divided into
5 stages as shown in Table 1. The goals of those 5 stages are as follows:

Stage 1 To solve larger static problem instances within shorter computational times.

Stage 2 To develop a rule design which determines car operations based on (quasi)
optimal solutions of stage 1.

Stage 3 To develop a rule design which can mimic rules of stage 2 by deploying proper
characteristic functions.

Stage 4 To elaborate a rule design of stage 3 in order not to conflict with each other in
the sense that an effective rule for a certain problem instance is also effective
or inactive for other problem instances.
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Table 1: Proposed road-map comprised of 5 stages.
Stage Predictability Applicability Similarity

1
To obtain (quasi) optimal solutions by solving
many problem instances of static EOPs.

2 static peculiar identical
3 static peculiar similar
4 dynamic narrow similar
5 dynamic wide similar

Stage 5 To generalize a rule design of stage 4 so as to function well for problem in-
stances which are unseen but obey a same traffic pattern, which is behind
problem instances considered in stage 4.

At stages from 2 to 5, car trajectories are produced by using a continuous sim-
ulator like the one used in [8]. In this simulator, most properties of elements in an
ES take continuous values, and the car accelerates and decelerates according to the
specification of that ES. Therefore, the EOP in stage 1 is thoroughly discretized and
can be formulated in the ILP, whereas the EOP is continuous from stage 2 and can
not be formulated in the ILP. Thus, from stage 2, we can not obtain solutions which
are optimal in themselves, but obtain rules which reproduce optimal solutions. The
solutions in stage 1 are used as ideal results in stages from 2 to 4. Those solutions
are also used in stage 5 to investigate the situation when appropriate results are not
obtained. The rules in stage 2 are used as ideal results in stage 3 in the sense that
rules in stage 3 are required to produce same results by rules in stage 2. The rules in
stage 3 are used as a draft version of rules in stage 4. The rules in stage 3 function
well for a certain problem instance, but will not for a set of problem instances. If
rules become to function well for a set of problem instances, then those rules are
outcomes of stage 4. The rules in stage 4 are used as a draft version of rules in stage
5. The rules in stage 4 function well for a certain set of problem instance, but will
not for various sets of problem instances. Here, each set is sampled from the traffic
pattern used to sample problem instances in stage 1. If rules become to function
well for various sets, then those rules are outcomes of stage 5.

The final goal of our research is to fill the gap between stages 1 and 5. That gap is
too wide and can not be filled by a few of studies. Therefore, the road-map is proposed
in order to encourage researchers including us to steadily conduct studies focusing on
a certain gap between succeeding 2 stages. It should be noted each gap is rather
subjective, and a certain gap can be easily filled when a researcher sets its boundaries
closer. However, the easiness in filling a certain gap will make it more difficult to fill
the next gap. Thus, we think it is better not to pursue a certain stage in serial but to
conduct studies on all stages in parallel, thereafter to tackle for filling the entire gap.
This parallel approach takes quite long time, but will help us to avoid local optima.
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objective value optimal solutions forideal passengerssimulations forrealistic passengershighlow
{

objective value optimal solutions forideal passengerssimulations forrealistic passengersby adding constraintsoptimal solution becomes realistic andits objective value becomes worse
Figure 3: A sketch of the influence by adding constraints for worsening optimal
solutions.

5.3 Some Efforts to Fill Gaps

5.3.1 On Gap between Stages 1 and 2

It is necessary to sequentially fill gaps between stages i and i+ 1. The first gap is
between stages 1 and 2. This gap may be caused by the following 4 points: (i) the
difference on the riding behavior of passengers, (ii) the difference on the irritated
behavior of passengers, (iii) the difference on car trajectories, and (iv) the identical
rule.

As to the point (i), in a continuous simulator (used from stage 2), passenger i with
an earlier arrival time is forced to ride ahead of other passenger i′, whose traveling
direction and origin floor are same to those of passenger i, and who has arrived later
than passenger i. This limitation on riding orders of passengers does not exist in
stage 1, as that limitation frequently yields non-optimal solutions. A possible way
to coincide stages 1 and 2 with regard to the point (i) is to worsen solutions in stage
1 by forcing earlier passengers to be assigned for earlier trips. Here, “worsening
solutions”means to add constraints to integer linear programming problems, and to
make it impossible to obtain impractical solutions. This image is sketched in Fig. 3.
By denoting Nl to the number of trips and defining L := {1, . . . ,Nl}, that constraint
is formulated as follows:

∑
l∈L

lx(i)k,l ≤ ∑
l∈L

lx(i
′)

k,l if ∑
l∈L

x(i)k,l = ∑
l∈L

x(i
′)

k,l = 1(
∀i, i′ ∈ P

(
i ̸= i′

)∣∣ri ≤ ri′ ∧ f+i = f+i′ ∧di = di′
)
. (4)

Here, x(i)k,l ∈ {0,1} is a binary variable which denotes passenger i is assigned to trip l of
car k or not. Furthermore, fi

+ and di denote the origin floor and traveling direction 
of passenger i, respectively.

As to the point (ii), passenger i may wait for other passengers forever after he/she 
has ridden into a car in stage 1, whereas such passenger becomes irritated then pushes
close-buttons of doors in stages from 2. A possible way to cope with this difference is
to consider the longest time during when an inside passenger waits for others, then to
limit the temporal length of a trip by using that longest time.
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Table 2: Examined values of T m, T c, and T w.
Parameter Values

T m 7
T c 1, 3, 5
T w 5, 10, 100
θ 2

By denoting T w to such longest time, and T c to the time consumed in passengers’
riding into or leaving from a car, that limitation is forumulated as follows:

t l−
k,l ≤ t l+

k,l +T m
∣∣∣ f l+

k,l − f l−
k,l

∣∣∣+Np (2T c +T w) if ∃i ∈ P
(

x(i)k,l = 1
)

(∀k ∈ {1, . . . ,Nc}; l ∈ L ) . (5)

Here, t l+
k,l and t l−

k,l denote the first and last times of trip l of car k. As like, f l+
k,l and

fk
l
,
−
l denote the first and last floors of that trip. T m denotes the reciprocal of the 

moving speed of a car.
The point (iii) means that the car is modeled to move with a constant speed

without acceleration nor deceleration in stage 1, whereas they are accelerated and
decelerated in stages from 2. To cope with this difference, parameters in the trip-
based model are examined so that car trajectories in stage 1 become similar to those
in stage 2. Those examined parameters are T m, T c, and T w. T m is fixed 7 according 
to an everyday experience, and other parameters are examined as shown in Table 2.

As to the point (iv), it is the most straightforward rule which is comprised of
2 components each of which takes one of {0, . . . ,Nv,#}, here Nv is such a positive 
integer that satisfies Nv ≥ max(Np,Nc) − 1. If an identical rule is ⟨k, p⟩, it means 
that “ ‘allocating car with ID k to passenger with ID p’ is specified in the corre-
sponding (quasi) optimal solution.” The identical rule-base for an optimal solution
is composed of such Np rules, as there are Np passengers. It should be noted that 
the normalization over cars is not conducted, thus an identical rule is not a PRD
rule.

The necessary (but not sufficient) condition for accomplishing stage 2 is that ob-
jective function values of car trajectories resulted by identical rule-bases are always
better than those by any heuristics for car operation. Because an identical rule-base
has to represent a (quasi) optimal solution, which must be better than or equal to all
feasible solutions which contain a solution produced by a certain heuristics. Thus,
we can say that the gap between stages 1 and 2 is not filled if identical rule-bases
are sometimes worse than a heuristics in terms of the objective function value.

5.3.2 On Gap between Stages 2 and 3

It is not known that which characteristics are most suitable for the similar rule in
stage 3. However, it is certain that more and more characteristics a rule has, higher
and higher the probability of accomplishing stage 3. Thus it is rational to devise then
use as many characteristics as possible. For example, 55 characteristic functions are
defined in the aforementioned simulator, and all of them are used in this paper. Their
details are omitted due to the space limitation, whereas 12 of them had displayed in
[8].
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The construction of a similar rule-base (in stage 3) is simple. At first, a problem
instance is given, then its (quasi) optimal solution is obtained in stage 1. At second,
that (quasi) optimal solution is converted to an identical rule-base without any con-
sideration on a simulator. Then, the identical rule-base is deployed with a simulator
like [8]. For each moment when a passenger pushes a hall-call button in simulation,
an identical rule for that passenger is activated, then we can know its resultant car
by the rule and the state of the ES at that moment. By using the resultant car
and the ES’s state, a vector of Ns components is computed by normalizing each of 
Ns characteristic values over Nc cars, discritizing them as integers, then selecting 
Ns integers which corresponds to the selected car. Here, Ns denotes the number of 
characteristics in stage 3. Repeating this procedure converts the identical rule-base
into a similar rule-base of Np rules, each of which has Ns components.

The necessary and sufficient condition for accomplishing stage 3 is that all car
allocations by a similar rule-base are equal to those by its ancestral identical rule-
base. Such concrete verification is not conducted in this paper, and is one of future
works.

6 Computational Results

6.1 Parameter Setting

One of 2 objectives of this paper has been accomplished as displayed in Section 5.
The remain is devoted to display current achievements in earlier stages of the road-
map.

The stage 1 has been partly accomplished by proposing the trip-based formula-
tion model as described in Section 3, and by developing 2 contrivances to decrease
computational times as described in Section 3.3. The stages 2 and 3 have been
partly accomplished by proposing the PRD as described in Section 4.2, and by de-
scribing the identical and similar rule designs in Section 5. This section examines
gaps among those stages in terms of objective function values of 3 groups of car tra-
jectories. Car trajectories in the first and second groups are produced by identical
and similar rule-bases of stages 2 and 3, respectively. Car trajectories in the third
group are produced by a heuristic called CDSC. Here the CDSC selects a car which
is smallest in the expected waiting time, and is typically used in selecting cars[3].
The specifications of the simulated ES are, although not complete, displayed in Ta-
ble 3 with parameters of considered traffic patterns. Here, the scale of considered
problems is smallest, because the authors think it is more important to thoroughly
accomplish 5 stages on small problems than to accomplish only earlier stages on
large problems. Other specifications of the simulator are same to [8].

All computations were conducted on a computer with 2 Xeon E5-2640 (v2) 2.0
[GHz] CPUs and a main memory of 64 [GB]. The OS of that computer was CentOS
6.8. IBM CPLEX[26] version 12 was used the mathematical solver to solve ILP
problems.

6.2 Procedure to Examine Achievements of Stages 1 to 3

The computation starts from generating some problem instances for each traffic
pattern. In stage 1, basically one set of ILP equations is generated for each problem

127

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Proposal and Progress of a Road-map to Bridge Theoretical and Practical Approaches



Table 3: Parameter setting.
Parameter Value

Number of floors 6
Number of cars (Nc) 3

Number of passengers (Np) 10
Capacity of cars 5 [person]

Number of problem instances 10
Traffic flow up-peak, down-peak, two-way

Expected arrival interval 5

ww, wt, wL, ∆ 1, 1, 60, 60

instance. Other sets are generated and used, if it is intended to examine influence
of imposing some constraints. That set results into an (quasi) optimal solution by
the mathematical solver. In stage 2, one identical rule-base is generated for each
(quasi) optimal solution without simulator. The objective function value of that
rule-base is calculated from car trajectories produced by simulating the ES used in
[8] with car allocations determined by that identical rule-base. In this simulation,
a similar rule-base is generated for each identical rule-base, thus stage 2 partially
overlaps with stage 3. That similar rule-base is evaluated as like identical one, and
its objective function value is also measured. The degrees of achieving stages 2 and
3 are examined in terms of objective function values as described at the former
paragraphs of Sections. 5.3.1 and 5.3.2, respectively.

6.3 Computational Times

Ten problem instances were generated for each traffic pattern, thus 30 problem in-
stances were resulted in total. Four sets of ILP equations were generated for each
problem instance. Those sets differed in whether the constraints of Equations (4)
and (5) were imposed or not. The computational times of those 4 sets are displayed
in Table 4, where each of those computational times is an average over 10 computa-
tional times which were required in solving corresponding sets of ILP equations by
the mathematical solver. In this table, T c and T w columns display figures of Table 2, 
and FCFS and length columns represent whether the constraint of Equations (4)
and (5) were imposed on the corresponding ILP equations or not.

Table 4 display that obtaining quasi optimal solutions for the down-peak traffic
pattern requires longer computational times than the up-peak traffic pattern. This
tendency accords with the fact that devising a heuristics for the up-peak traffic flow is
easier than doing so for the down-peak traffic flow[1]. Thus, the computational time
in solving ILP equations by the trip-based model for a certain problem instance may
have a proportional relation with the hardness in devising an effective heuristics for
that instance. If this conjecture is valid then it results that operating an ES with
shorter floor heights and/or longer stopping times is rather hard, as Table 4 display
larger T c had required longer computational times.
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6.4 Objective Function Values

6.4.1 In Stage 2

As like Table 4, objective function values of stage 2 were averaged then displayed in
Table 5. Each objective function value was measured from cars’ trajectories which
were generated by identical rule-bases of a certain quasi optimal solution.

Table 5 displays that objective function values with regard to the considered
up-peak and down-peak traffic patterns decrease as T c increases. This indicates 
that quasi optimal solutions with T c ∈ {1,3} in stage 1 are far from optimal in 
stage 2, and setting T c = 5 is important to reduce the gap between stages 1 and 2. 
When focusing on results with T c = 5, imposing constraints of Equations (4) and 
(5) has decreased objective function values. This indicates that those constraints
make quasi optimal solutions in stage 1 more realistic, thus reduce the gap between
stages 1 and 2. However, as to the two-way traffic pattern, we have to say that the
gap is still opened, since objective function values in stage 2 are rather larger than
those by the CDSC as displayed in the most right column of Table 5.

6.4.2 In Stage 3

In order to examine the achievement level of stage 3, objective function value ratios
were calculated then displayed in Table 6. This ratio is of an objective function
value in stage 3 to stage 2 with regard to a same problem instance. We can say
that the gap between stages 2 and 3 is narrow when that ratio is about 1, since
such ratio indicates that car trajectories generated by a similar rule-base are alike
those generated by its ancestral identical rule-base, at least in terms of the objective
function value.

In Table 6, we can see that that maximum difference of those ratios from 1 is
0.0848. This value indicates that a similar rule-base was deteriorated at the level
of 9% at most. This figure is not so small, thus it is improper to state that the
gap between stages 2 and 3 is almost filled. Possible countermeasures for narrowing
that gap are devising effective constraints and thinking out proper characteristics.
In devising such constraints, it may be a cue that those ratios on the up-peak traffic
pattern seem far from 1.

7 Conclusion

In this paper, the authors proposed a road-map to bridge theoretical and practical
approaches for the elevator operation problem. That road-map is comprised of 5
stages as described in Section 5. Two constraints were proposed to deteriorate
solutions of stage 1. Those solutions are more realistic, thus those constraints can
reduce gaps between stages 1 and 2. Computational results displayed that those
constraints worked except for the two-way traffic pattern on small problems, and
there is a wide gap between stages 2 and 3 in terms of objective function value
ratios. Thus further efforts are necessary.

Most urgent work is to fill the gap between stages 1 and 2 for the two-way traffic
pattern. Unfortunately, there is no cue to attain that work, so it may be necessary
such detailed investigation including the comparison of cars’ trajectories. Another
approach is to use a different ES simulator like [5]. It must be considered also how
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to verify achievements of the road-map in an easier manner. Other future works are
to integrate the objective on dissatisfaction of passengers and power consumption of
elevator systems, and to think out a contrivance which can decrease computational
times without losing optimality.
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A Decision variables of the Trip-based ILP formulation

This appendix introduces the decision variables of the trip-based ILP formulation for
EOPs in order to indicate the scale of the search space. Only the primary variables
are designated to be scheduled. Other subsidiary variables are determined according
to the values of the primary variables and constraints which connect trips and so
on. For more details, please refer the original work[4].

• Primary variables:

– x(i)k,l ∈ {1,0} (i ∈ P; k ∈ C ; l ∈ L ): Denoting whether passenger i is as-
signed to trip l of car k or not. Here, C denotes the set of car indices.

• Subsidiary variables for passenger i ∈ P:

– t+i , t−i : Denoting the times when the passenger enters into and leaves
from a car, respectively.

– hi ∈ {1,0}: Denoting the passenger waits longer than a given threshold ∆
or not.

• Subsidiary variables for trip l ∈ L of car k ∈ C :

– t l+
k,l , t l−

k,l : Denoting the starting and finishing times of that trip, respec-
tively.

– f l+
k,l , f l−

k,l : Denoting the starting and finishing floors of that trip, respec-
tively.
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Table 4: Computational times in obtaining quasi optimal solutions.

T c T w FCFS length
Objective function value

up-peak down-peak two-way

1 5 no no 6.446 37.725 15.806
1 5 no yes 9.59 42.987 11.477
1 5 yes no 6.036 27.29 9.237
1 5 yes yes 5.203 30.67 11.263

1 10 no no 5.809 38.297 10.938
1 10 no yes 5.57 26.367 12.828
1 10 yes no 5.191 30.871 11.027
1 10 yes yes 6.77 34.681 11.348

1 100 no no 6.937 31.031 9.529
1 100 no yes 7.755 48.887 11.923
1 100 yes no 6.105 31.154 8.644
1 100 yes yes 5.518 29.387 14.504

3 5 no no 10.3 64.803 27.583
3 5 no yes 14.637 67.565 31.415
3 5 yes no 13.801 42.961 18.577
3 5 yes yes 12.575 50.893 17.968

3 10 no no 12.268 48.684 27.189
3 10 no yes 12.972 70.529 24.588
3 10 yes no 14.445 31.307 19.878
3 10 yes yes 23.639 51.872 24.461

3 100 no no 9.943 48.761 28.5
3 100 no yes 16.29 53.146 37.961
3 100 yes no 13.612 31.527 18.579
3 100 yes yes 15.004 42.926 24.572

5 5 no no 45.747 99.616 39.987
5 5 no yes 48.554 104.81 41.007
5 5 yes no 27.656 118.32 30.181
5 5 yes yes 23.86 119.84 47.565

5 10 no no 47.612 98.844 40.126
5 10 no yes 41.49 139.32 42.878
5 10 yes no 21.767 118.85 37.419
5 10 yes yes 36.982 118.05 42.79

5 100 no no 40.508 99.288 38.833
5 100 no yes 52.668 140.95 35.722
5 100 yes no 20.041 117.84 30.163
5 100 yes yes 39.285 149.43 34.788

133

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Proposal and Progress of a Road-map to Bridge Theoretical and Practical Approaches



Table 5: Objective function values in stage 2.

T c T w FCFS length
Objective function value

up-peak down-peak two-way

1 5 no no 466.1 596.3 545.4
1 5 no yes 470.9 596.6 563.2
1 5 yes no 472.3 591.5 556
1 5 yes yes 477.1 601.4 562.5

1 10 no no 466.1 596.3 545.4
1 10 no yes 442.5 596.6 545.4
1 10 yes no 472.3 591.5 556
1 10 yes yes 470.9 544.7 545.4

1 100 no no 466.1 596.3 545.4
1 100 no yes 477.1 544.7 549.4
1 100 yes no 472.3 591.5 556
1 100 yes yes 466.1 544.7 549.4

3 5 no no 476.9 586.3 596.4
3 5 no yes 461.1 584.1 577.6
3 5 yes no 466.9 593.8 619
3 5 yes yes 469.2 591.6 592.2

3 10 no no 476.9 586.3 596.4
3 10 no yes 469.6 591.2 611.6
3 10 yes no 466.9 593.8 619
3 10 yes yes 445.3 586.7 604.9

3 100 no no 476.9 586.3 596.4
3 100 no yes 450.2 584.1 603.6
3 100 yes no 466.9 593.8 619
3 100 yes yes 439.6 584.5 604.9

5 5 no no 438.2 553.3 575.2
5 5 no yes 434.8 526.5 577.8
5 5 yes no 436.3 569.8 567.6
5 5 yes yes 427.1 530.3 569.3

5 10 no no 438.2 553.3 575.2
5 10 no yes 445.5 527.5 555.9
5 10 yes no 436.3 569.8 567.6
5 10 yes yes 433.2 553.3 574.2

5 100 no no 438.2 553.3 575.2
5 100 no yes 447.4 527.5 561.7
5 100 yes no 436.3 569.8 567.6
5 100 yes yes 423.2 527.5 563.9

(CDSC) 501.49 550.46 529.99
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Table 6: Objective function value ratios of stage 3 to stage 2.

T c T w FCFS length
Objective function value

up-peak down-peak two-way

1 5 no no 0.94551 0.99681 1.0062
1 5 no yes 0.94606 0.98827 0.97532
1 5 yes no 0.95702 0.99679 1.0061
1 5 yes yes 0.95745 0.98836 1.006

1 10 no no 0.94551 0.99681 1.0062
1 10 no yes 0.97469 0.98827 1.0062
1 10 yes no 0.95702 0.99679 1.0061
1 10 yes yes 0.94606 0.99651 1.0062

1 100 no no 0.94551 0.99681 1.0062
1 100 no yes 0.95745 0.99651 1.0062
1 100 yes no 0.95702 0.99679 1.0061
1 100 yes yes 0.94551 0.99651 1.0062

3 5 no no 1.0824 1.0086 1
3 5 no yes 1.0309 1.0086 1
3 5 yes no 1.0653 1.0085 1
3 5 yes yes 1.0811 1.0085 1

3 10 no no 1.0824 1.0086 1
3 10 no yes 1.0771 1.0085 1
3 10 yes no 1.0653 1.0085 1
3 10 yes yes 1.0858 1.0086 1

3 100 no no 1.0824 1.0086 1
3 100 no yes 1.0412 1.0086 1
3 100 yes no 1.0653 1.0085 1
3 100 yes yes 1.0844 1.0086 1

5 5 no no 1.0396 1.0091 1.0072
5 5 no yes 1.0399 1.0096 1.0071
5 5 yes no 1.0523 1.0089 1.0073
5 5 yes yes 1.0145 1.0095 1.0073

5 10 no no 1.0396 1.0091 1.0072
5 10 no yes 1.0512 1.0096 1.0074
5 10 yes no 1.0523 1.0089 1.0073
5 10 yes yes 1.0401 1.0091 1.0072

5 100 no no 1.0396 1.0091 1.0072
5 100 no yes 1.051 1.0096 1.0074
5 100 yes no 1.0523 1.0089 1.0073
5 100 yes yes 1.0411 1.0096 1.0073
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