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Abstract 
Quick and automatic detection of abnormal signals in electroencephalogram (ECG) can help 
cardiovascular patients. We firstly focused on the judgment of ST depression as an abnormal 
ECG signal. The optimal threshold was explored by the modified cross-validation analysis 
based on a correlation coefficient between ECG data on the ST depression as a template and 
the other disease (i.e., ventricular fibrillation or abnormal T waves). The optimal threshold of 
the correlation coefficient was around 0.8. The calculated threshold was little affected by the 
type of linear or spline interpolation and data length (i.e., 100, 200, and 300 points for the 
normalization). These results could reduce the computation time in online analysis of 
e-healthcare applications. Next, we assessed the temporal change in individual’s heart function
during the advanced trail making test (ATMT). The heart rate variability (HRV) analysis was
performed in the time or frequency domain, and it was able to reflect healthy and unhealthy
conditions during the ATMT. This result will be significantly affected by the activity of the
autonomic nervous system. The indices for the HRV could be applied to a home healthcare
system to find potential patients from daily temporal changes in heart function.
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1 Introduction 
Today heart disease has been becoming one of the main causes of death in the world [1]. Elec-
troencephalogram (ECG) is usually measured to check abnormal waves of cardiovascular pa-
tients. In a clinical situation, it is crucial to quickly notice cardiac abnormalities from ECG 
data (e.g., sudden arrhythmia, long QT syndrome, and ST depression [2][3]). In special, 
Holter ECG monitoring is a simple and effective method to diagnose cardiac patients. The 
early detection of ECG abnormalities can avoid falling into severe disease. However, clinical 
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doctors may be unable to check all of the previously recorded long-term data in each patient. 
If the cardiovascular abnormalities are automatically detected from the ECG data, using a 
simple computer system or a software application, the analytical results could help medical 
doctors and find potential patients. Therefore, the first objective of this study (Study 1: Au-
tomatic detection of abnormal ECG data) was to investigate an efficient analytical method to 
automatically catch cardiovascular disease from clinical ECG data. Although the accuracy of 
automatic detection in the abnormal ECG signals has been increased [4], the final judgement 
of diseases will depend on medical doctors. The sensitivity of the automatic ECG analysis 
may be also increased to prevent oversight of disease, as the first priority (e.g., a school 
medical examination requiring the assessment of many students at once). Such a medical 
examination will increase the burden of medical doctors because of rechecking the ECG 
data; it is required to improve the accuracy of the automatic detection. In special, it is a crucial 
task to quickly and automatically find the ST changes associated with heart diseases [5]. We 
therefore focused on the analytical method to automatically find the ST segment abnormalities as 
well as the typical heart diseases such as ventricular fibrillation (VF) and abnormal T waves. 
    In a cardiac patient who does not need to enter hospital, a Holter ECG recording can monitor 
the day-to-day function of the heart [6]. Even in healthy people, such a monitoring system has 
a possibility to find potential cardiac abnormalities from daily ECG signals. If individual 
ECG waves are measured for a long period and accumulated data are compared each other, a 
slight signal change unseen previously may be detected. Such change has a possibility to show a 
sign of a coming heart disease, even within a normal wave range of ECG. Even if he/she looks 
healthy, the sign of a heart abnormality including the fatigue or stress may be abstracted from the 
slight change in individually collected ECG data. A simple analytical method and system will be 
efficient for daily checking of temporal changes in the heart function which cannot be found by 
one time inspection of ECG. Therefore, the second objective of this study (Study 2: Temporal 
changes in heart function) was to analyze temporal changes in the heart function (e.g., RR in-
tervals) based on daily physical conditions. We focused on the RR intervals of ECG and per-
formed the heart rate variability (HRV) analysis in the time [7] and frequency [8] domains during 
the advanced trail making test (ATMT) which can induce acute fatigue [9]. 

2 Automatic Detection of Abnormal ECG Data 

2.1   Related Works 

Previous studies have described the techniques and algorithms for the automatic detection 
of ECG data (e.g., [10][11]). The frequency or time-frequency analysis makes it possible 
to facilitate the accuracy of the automatic detection because of the signal feature extraction 
with noise reduction; the morphological technique [12], template matching [13], fuzzy 
logic [14], and neural networks [15] have been applied to identify abnormal ECG patterns. 
However, the methods for the automatic detection should be further altered to increase the 
accuracy. In special, it may be difficult to catch the ST segment or ST-T complex changes 
[16][17]. The template matching technique may be easier than the other methods 
requiring the detailed parameter settings or mathematical models to detect specific 
patterns. We, therefore, tested the combination of the template matching with correlation 
coefficients [18] and the modified cross-validation analysis to categorize heart disease 
including the ST depression. The wire-less ECG system [19] based on the above technique 
could be useful for the early detection of various diseases.
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2.2   Analytical Methods 

(1) ECG dataset: Fifty ECG data (Fig. 1) were applied to this study: (a) 25 data of ST de-
pression, (b) 9 data immediately before VF, (c) 8 data during VF, and (d) 8 data of abnormal
T waves. The ECG dataset was provided from the website of PhysioNet
(http://www.physionet.org/), a database of the biomedical signal waveform. The ECG
waveforms were categorized into Group A [(a) ST depression] and Group B [(b), (c), and (d)
the other diseases]. From Group A, we created template data for automatic detection of the
ST depression. The correlation coefficient between the template in Group A and the test data
in Group B was computed to classify the ST depression and other diseases.

Figure 1: Examples of abnormal ECG waves: (a) ST depression, (b) before and (c) during 
VF, and (d) abnormal T waves. 

Figure 2: Linear and spline interpolations for the normalization of ECG waveforms. 

(2) Preprocessing of ECG data: One-beat signal was automatically detected by searching
for the R waves (i.e., peak values of ECG). The window size of the extracted single wave-
form was varied among all ECG data because it depends on the heartbeat; it was normalized
by the linear, spline, and Lagrange interpolations every 200 data points because actual data
length of ECG was the range from 150 to 250 data points. To confirm the accuracy of the
window size, other template length (100 or 300 data points) was also assessed in the spline
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interpolation. Here, we selected the spline interpolation because there are no difference be-
tween the results of the spline and linear interpolations (200 data points), as shown in Fig. 2. 
The slight difference observed between the interpolations could be allowed to carry out the 
automatic detection because the artificial noise or error on ECG signals is generally included 
(e.g., around 10% [20]). However, the Lagrange interpolation was excluded from further 
analysis owing to the insufficient interpolation depending on data points. 
(3) Modified cross-validation analysis: A template waveform for ST depression was pre-
pared for the modified cross-validation analysis, using the dataset of Group A (i.e., 25
waveforms). The template was created from the average of 24 waveforms (the mean tem-
plate) in Group A; the remaining data (i.e., a waveform in Group A) was applied to the
cross-validation analysis. Therefore, twenty five patterns of the different template waveform
were created because the total number of ECG data was 25 in Group A. The correlation
coefficient was then computed from the mean template and the remaining waveform in
Group A. We also evaluated the correlation coefficient between the mean template in Group
A (i.e., ST depression) and one of the wave patterns in Group B (i.e., other heart diseases).
Here, the mean template in Group A was randomly changed.

2.3   Analytical Results and Discussion 
Table 1 shows the correlation coefficient between the ECG data on the template and cardi-
ovascular diseases in the case of spline or linear interpolation. For the spline interpolation 
(200 data points of the template length), the correlation coefficient between the template and 
ST depression was ranged from 0.86 to 0.97. The correlation coefficient in the case of the ST 
depression was close to that in the abnormal T waves. However, the correlation coefficient 
was greatly lower in the cases before and during VF than in the ST depression. For the liner 
interpolation (200 data points), the correlation coefficient between the template and ST de-
pression showed a higher value (0.90 to 0.97), compared with that in the abnormal T waves 
(0.58 to 0.67). In contrast, the correlation coefficient before or during VF (0.20 to 0.59) was 
greatly lower than that in the ST depression. 

Table 1: Correlation Coefficients Estimated by Spline or Linear Interpolation 
 in Each Template Size 

ECG data 
Number of Data Points 

100 
(Spline) 

200 300 
(Spline) Spline Linear 

ST depression 
(Group A: 25 data) 

0.94 ± 0.03 
(0.88, 0.97) 

0.92 ± 0.03 
(0.86, 0.97) 

0.94 ± 0.02 
(0.90, 0.97) 

0.92 ± 0.03 
(0.85, 0.97) 

Before VF 
(Group B: 9 data) 

0.43 ± 0.04 
(0.39, 0.48) 

0.37 ± 0.04 
(0.33, 0.42) 

0.40 ± 0.05 
(0.32, 0.48) 

0.35 ± 0.04 
(0.30, 0.40) 

During VF 
(Group B: 8 data) 

0.30 ± 0.05 
(0.20, 0.35) 

0.27 ± 0.05 
(0.17, 0.33) 

0.33 ± 0.11 
(0.20, 0.59) 

0.22 ± 0.11 
(-0.02, 0.32) 

Abnormal T waves 
(Group B: 8 data) 

0.76 ± 0.02 
(0.73, 0.78) 

0.69 ± 0.03 
(0.66, 0.72) 

0.63 ± 0.03 
(0.58, 0.67) 

0.66 ±0.03 
(0.64, 0.70) 

Average ± S.D. (min, max). 
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    Table 1 also summarizes the correlation coefficient between the ST depression and other 
diseases under the different template length (i.e., 100 and 300 data points) with the spline 
interpolation. For the cases of the VF and abnormal T waves, the shorter length of the tem-
plate (i.e., 100 data points) resulted in the increased correlation coefficient; on the other 
hand, the result of 300 data points had the tendency for the decreased correlation coefficient. 
However, the correlation coefficient under the ST depression was the almost same as that in 
the 200 data points in the template, and the number of data points for the normalization did 
not greatly affect the correlation coefficient values of the ECG waveforms. Therefore, the 
accuracy to detect the abnormal ECG will be kept even when the data points are set between 
100 and 300. 
    Figure 3 shows the correct matching number under the threshold value to automatically 
judge the ST depression of a target ECG data, under the template length of 200 data points in 
the spline interpolation. The threshold of the correlation coefficient ranged from 0.72 (i.e., 
the maximum value in Group B) to 0.86 (i.e., the minimum value in Group A). To classify the 
data between Groups A and B, the optimal threshold with the accuracy of 100% (i.e., the 
correct matching number = 25) was at around 0.8 (i.e., the red bar in Fig. 3). In the linear 
interpolation between two points (200 data points), the threshold value was between 0.67 and 
0.90. For 100 data points of a template length (spline interpolation), the threshold of the 
correlation coefficient ranged from 0.78 to 0.88; it was between 0.70 and 0.85 in 300 data 
points. Therefore, when the threshold of the correlation coefficient in all the cases is set at 
0.8, the categorization accuracy can show 100%. The clinical ECG signals could be accu-
rately classified into the ST depression and other diseases, by setting the optimal threshold 
based on the correlation coefficient; the identification rate of this method may be higher than 
the general ones (e.g., [13][17]). This approach may be able to automatically detect potential 
abnormalities from daily ECG signals [18]. 

Figure 3: Relationship between the correct matching number and the correlation coefficient 
as the threshold to automatically detect the ST depression. 
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3 Temporal Changes in Heart Function 

3.1   Related Works 

The ATMT can estimate the change in the daily level of stress or fatigue [21] affecting car-
diac rhythms [22]; furthermore, the central nervous system modulates the feature of ECG 
signals during the ATMT [23]. However, the detailed individual characteristics including 
unusual conditions remain unknown. Therefore, in each individual, we performed the HRV 
analysis [7][8] on the temporal ECG changes during the ATMT. A wireless or wearable sys-
tem [19] based on the proposed analysis could detect abnormalities of daily heart function. 

3.2   Experimental Methods 

(1) Subjects: Participants were four male students (mean age ± S.D.: 22.5 ± 1.7 years in
Subjects A to D). All participants had normal or corrected-to-normal vision. The experi-
mental procedure was performed in accordance with the declaration of Helsinki. A detailed
description of the experimental procedure, and written informed consent was obtained from
all participants.

 Each subject had the experiment three times; the experimental interval was about one 
week. The experimenter firstly confirmed the health condition of the subjects. Subjects A and 
B were healthy conditions in all experiments. However, Subject C had signs of a slight cold 
in the ‘second’ experiment; Subject D complained of fatigue in the ‘third’ experiment. 
(2) Procedures: The visual stimuli for the ATMT were presented at eye level against a
screen monitor in a quiet experimental room. Because the participants were required to be-
come familiar with the answer method of the ATMT, they sufficiently practiced to perform
actual tasks before a few days of the first experimental day (about 10 to 20 trials).

 Figure 4(a) shows the experimental procedure for the ATMT with the measurement of RR 
intervals. After a resting period for 5 min, a subject performed the ATMT (12 trials in total), 
followed by a recovery period for 5 min. First, the numbers from 1 to 25 were randomly 
displayed [Fig. 4(b)], and the subject was required to search for the smallest number (e.g., 1 
in the first choice) and to press a mouse button on the target number. After selecting the 
target, the next number of the largest one was added (e.g., 2 to 26 in the second choice); all 
numbers were randomly assigned on a display, without the previously selected target num-
ber. When the final target number 25 was chosen, the single trial was finished. The next trial 
was started immediately after a trial, and twelve trials were performed in total. Therefore, 
the completion time for this task was different every participant. The RR intervals 
(RS800CX, Polar Co.) for the HRV analysis were continuously recorded during the 
experiment.
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(a) Experimental procedure

(b) Display of ATMT

Figure 4: (a) The experimental procedure and (b) an example of the ATMT (the smallest 
number with the blue circle, the target for this task). 

(3) Analytical methods: Reaction times were recorded during the ATMT; the multiple trials
of the first (i.e., 1 to 6 trials) or second (i.e., 7 to 12 trials) half were averaged in each ex-
periment. The RR intervals were divided into four periods: five min before, during (the first
and the latter), and after the ATMT. The RR intervals were analyzed under the time and
frequency domains. The Poincaré plot [Fig. 5(a)] was used for the time domain HRV
analysis [7]. The Poincaré plot graphically indicates the correlation between consecutive RR
intervals [x and y axes: RR(n) and RR(n+1)]. The standard deviations of the points (i.e., an
ellipse) were defined as SD1 and SD2. The SD1 means the short variation of RR intervals
reflecting the effects of respiration on vagal drive. The SD2 means the long variation
reflecting other heart rate changes. Low values of the SD1 and SD2 will indicate high stress
[24].

 For the frequency domain analysis, the fast Fourier transform (FFT) on 512 data points (5 
min) was applied to time series of the RR interval; the hamming window with 50% overlap 
was used for the FFT analysis. The power spectrum density was then calculated [Fig. 5(b)]. 
The target frequency band for the HRV analysis is divided into two components: the low 
frequency (LF) component (i.e., 0.04 to 0.15 Hz) and the high frequency (HF) component
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(i.e., 0.15 to 0.4 Hz). The LF component reflects the sympathetic and parasympathetic ac-
tivities. The HF component mainly reflects the parasympathetic activity (e.g., the inhibited 
vagal tone during inspiration). Natural respiration was selected for this experiment. The 
LF/HF ratio was used as an index of sympathovagal balance [8]. 

(a) Poincaré plot

(b) Power spectrum analysis

Figure 5: Examples of (a) the Poincaré plot (SD1 and SD2) and (b) the power spectrum 
analysis (the blue bar: the frequency band of the LF component; the red bar: that of the HF 

component). 

    For the evaluation index for the HRV analysis, we calculated the grand average across all 
experiments. The Friedman test, followed by the Tukey’s post hoc test, was then performed 
between the experimental periods. Although the statistical data included the results of dif-
ferent experimental days every subject, we considered them as the same weight. For the 
reaction times, the Wilcoxon signed rank sum test was performed between the first and se-
cond half data. Differences were considered statistically significant at p < 0.05.
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3.3   Experimental Results and Discussion 

(1) Reaction times: Table 2 shows the reaction times in the first (1 to 6 trials) and second
half (7 to 12 trials) of the ATMT. The reaction times were delayed under the second half of
the ATMT for most experiments, compared with that under the first half. The grand average
(±	S.D.) values of the reaction times in all the experiments were 56.68 ± 10.35 s in the first
half vs. 60.01 ± 9.26 s in the second half (p < 0.05 in the Wilcoxon signed rank sum test).

Table 2: Reaction Times in the First and Second Half Periods during the ATMT 
ATMT 

Subj. Times First half 
(1 to 6 trials) 

Second half 
(7 to 12 trials) 

A 
1 48.24 48.51 
2 46.59 49.07 
3 46.29 52.35 

B 
1 71.29 78.72 
2 66.42 71.83 
3 63.86 67.24 

C 
1 49.18 56.08 
2 46.83 51.86 
3 55.36 62.13 

D 
1 75.11 61.12 
2 60.00 61.86 
3 50.97 59.36 

Grand average ± S.D. 56.68 ± 10.35 60.01 ± 9.26 * 
*, p < 0.05 vs. the first half in the Wilcoxon signed rank sum test 

(2) Time domain analysis: We performed the Poincaré plot as the time domain HRV anal-
ysis. The standard deviations (SD1 and SD2) of data plots were computed in all experiments
(Table 3). For most cases under the healthy conditions, the SD1 and SD2 values had a ten-
dency to be decreased during the ATMT [Fig. 6(a) and (b)], compared to those before and
after the test. These results presumably indicate the effect of fatigue or stress [24] induced by
the test, activating the sympathetic nervous system. In contrast, the values after the ATMT
suggest the increased parasympathetic activity with a relax state.

 Figures 6(c)-(f) show the SD1 and SD2 values of Subjects C and D; the blue, red, and 
green lines indicate the results of the first, second, and third experiments. Here, note that 
irregular values appeared under the unhealthy conditions. For example, the offset levels of 
SD1 and SD2 were remarkably lower under the unhealthy conditions than under the healthy 
conditions [Figs. 6(c)-(f): the second and third experiments in Subjects C and D, 
respectively]; the SD2 value in Subject C greatly increased after starting the ATMT [Fig. 
6(d)].
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Table 3(a): Temporal Changes in SD1 Values of the Poincaré Plot during the Experiment 
ATMT 

Subj. Times Before First half Second half After 

A 
1 15.24 8.07 10.08 11.26 
2 21.57 10.07 11.98 18.15 
3 18.88 14.60 13.79 17.16 

B 
1 12.51 11.78 9.84 12.14 
2 18.08 14.96 14.27 18.09 
3 12.72 14.51 12.69 12.97 

C 
1 36.79 37.19 34.05 39.75 
2 12.00 8.17 11.38 11.52 
3 43.95 37.63 47.04 55.99 

D 
1 49.02 36.93 28.83 33.99 
2 27.52 32.67 26.13 33.77 
3 12.69 14.53 15.09 23.10 

Grand aver-
age ± S.D. 23.42 ± 13.04 20.09 ± 12.12 19.60 ± 11.80*,## 23.99 ± 14.03 

p < 0.01 in the Friedman test 
 *, p < 0.05 vs. before the ATMT; ##, p <0.01 vs. after the ATMT in the Tukey’s post hoc test 

Table 3(b): Temporal Changes in SD2 Values of the Poincaré Plot during the Experiment 
ATMT 

Subj. Times Before First half Second half After 

A 
1 85.67 44.22 51.09 59.43 
2 97.79 57.90 49.24 80.51 
3 97.47 67.04 56.16 88.36 

B 
1 52.45 43.27 37.23 59.60 
2 60.55 33.41 34.62 64.36 
3 60.32 33.58 34.93 61.93 

C 
1 77.54 62.69 77.78 100.55 
2 26.72 61.44 45.14 47.47 
3 61.82 65.64 72.69 89.90 

D 
1 93.09 78.07 76.23 107.76 
2 90.47 56.52 72.38 89.80 
3 61.89 55.21 59.72 100.99 

Grand aver-
age ± S.D. 72.15 ± 21.79 54.92 ± 13.75## 55.60 ± 16.19## 79.22 ± 19.91 

p < 0.01 in the Friedman test 
##, p < 0.01 vs. after the ATMT in the Tukey’s post hoc test 
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(a) SD1 (Ave.) (b) SD2 (Ave.)

(c) SD1 (Sub. C) (d) SD2 (Sub. C)

(e) SD1 (Sub. D) (f) SD2 (Sub. D)

Figure 6: Temporal changes in parameters of the Poincaré plot during the experiment: 
Grand averages (± S.D.) across all experiments [(a) SD1 and (b) SD2] and irregular cases 
[(c) SD1 and (d) SD2 in the second experiment of Subject C (red lines); (e) SD1 and (f) SD2 in 
the third experiment of Subject D (green lines)].
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(3) Frequency domain analysis: We carried out the power spectrum analysis every subject
(Table 4). The HF component reflecting the parasympathetic activity and the LF/HF com-
ponent reflecting the sympathovagal balance were used for this analysis. The HF compo-
nents under the healthy conditions had a tendency that the power spectrum values decreased
during the ATMT, compared with those before and after the test [Fig. 7(a) and (b)]. This
result means that the ATMT attenuated the parasympathetic activity. The HF component was
then recovered after the test, indicating the increase of the parasympathetic activity [8] and a
relax state. However, the LF/HF values were varied during each experiment, suggesting that
the LF component contained various factors. For example, the deep breath during the stress
task might have affected the LF component because the respiratory rate was not controlled
for this study (i.e., natural respiration). Furthermore, the parasympathetic nervous activity
will be considerably contained even in the LF component [25], although it mainly reflects the
baroreceptor reflex and the sympathetic nervous activity.

 Figures 7(c)-(f) represent the HF and LF/HF components of Subjects C and D; the blue, 
red, and green lines mean the results of the first, second, and third experiments. The 
previous studies [21][23] showed the decreased HF and increased LF/HF components 
during the ATMT under the healthy conditions. In contrast, the specific feature of the HF 
and LF/HF components was observed under the unhealthy conditions. For example, the 
power spectrum values of the HF component were totally lower and the variance was 
smaller under the un-healthy condition [i.e., the second experiment in Subject C and the 
third experiment of Subject D; Fig. 7(c) and (e)] than under the healthy conditions; those of 
the LF/HF compo-nent were the opposite responses [i.e., higher values in the unhealthy 
condition; Fig. 7(d) and (f)]. These results indicate that the sympathetic nervous activity was 
continuously acceler-ated under the unhealthy conditions with stress. Moreover, in Subject 
C, the power spectrum value of the LF/HF during the first half of the ATMT remarkably 
increased, compared with those in the other periods of the experiment [Fig. 7(d)]. The time-
frequency analysis (e.g., the wavelet transform [26]) may efficiently detect a slight change 
in the heart function even under such abnormal conditions.
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Table 4(a): Temporal Changes in HF Values of the Power Spectrum Analysis 
 during the Experiment 

ATMT 
Subj. Times Before First half Second half After 

A 
1 196.41 105.74 156.03 155.35 
2 310.38 97.83 146.58 232.13 
3 232.44 185.52 177.37 190.40 

B 
1 172.22 142.09 128.57 184.20 
2 245.79 203.17 163.58 265.93 
3 196.31 198.54 189.54 192.98 

C 
1 496.40 465.03 441.30 601.03 
2 132.62 99.40 114.34 114.08 
3 499.76 418.09 593.18 647.52 

D 
1 590.73 359.12 289.52 405.08 
2 362.23 374.65 341.07 427.72 
3 148.06 171.24 169.81 274.43 

Grand aver-
age ± S.D. 298.61 ± 154.73 235.03 ± 132.37 242.58 ± 147.42*,# 307.57 ± 174.99 

p < 0.01 in the Friedman test 
* p < 0.05 vs. before the ATMT; # p < 0.05 vs. after the ATMT in the Tukey’s post hoc test

Table 4(b): Temporal changes in LF/HF Values of the Power Spectrum Analysis
during the Experiment 

ATMT 
Subj. Times Before First half Second half After 

A 
1 5.33 4.38 3.64 4.97 
2 3.34 3.31 3.62 3.70 
3 4.64 4.54 3.83 5.81 

B 
1 4.27 2.09 2.65 3.50 
2 3.34 1.58 1.96 1.35 
3 2.94 1.92 1.59 2.26 

C 
1 1.95 1.38 1.76 1.48 
2 1.82 4.45 2.32 2.84 
3 0.95 1.63 1.03 0.83 

D 
1 1.45 1.58 2.41 2.15 
2 2.31 1.76 2.39 2.09 
3 3.25 3.25 3.12 3.34 

Grand aver-
age ± S.D. 2.96 ± 1.33 2.66 ± 1.25 2.53 ± 0.88 2.86 ± 1.49 
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(a) HF (Ave.) (b) LF/HF (Ave.)

(c) HF (Sub. C) (d) LF/HF (Sub. C)

(e) HF (Sub. D) (f) LF/HF (Sub. D)

Figure  7: Temporal changes in the power spectrum values. Grand averages (± S.D.) across 
all experiments: (a) HF and (b) LF/HF components; the irregular cases in Subjects C [(c) HF 
and (d) HF/LF in the second experiment (red lines)] and D [(e) HF and (f) HF/LF in the third 

experiment (green lines)]. 
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(4) Relationship between the time and frequency analyses: The correlation coefficient
(Table 5) was computed to clarify the relationship between the evaluation indices in the time
and frequency domains. The HF component was tightly associated with the SD1 value; the
high correlation will be due to the fact that both the indices reflect the parasympathetic ac-
tivity. In the other correlation coefficients, there were individual differences. In special, the
unusual data (i.e., the second experiment in Subject C and the third experiment in Subject D)
varied the correlation coefficients. For Subject C, the correlation coefficient between the HF
component and SD2 was lower under the unhealthy condition than under the healthy condi-
tion. By contrast, for Subject D, the correlation coefficient between the HF component and
SD2 was higher under the unhealthy condition than under the healthy condition. These results
suggest that the correlation under the unusual condition has a specific feature when com-
pared with the normal data.

Table 5: Correlation Coefficients between the HRV Indices 
in the Time and Frequency Domains 

Combination of HRV indices 
Subj. Times HF and SD1 HF and SD2 LF/HF and SD1 LF/HF and SD2 

A 
1 0.95 0.91 0.71 0.76 
2 0.99 0.93 0.04 -0.20
3 0.89 0.84 0.56 0.66 

B 
1 0.82 0.99 0.56 0.69 
2 0.96 0.92 0.34 0.29 
3 0.71 0.04 -0.28 0.82 

C 
1 0.90 0.85 -0.50 0.01 
2 0.86 -1.00 -0.96 0.92 
3 0.96 0.83 -0.85 -0.51

D 
1 0.96 0.48 -0.88 -0.01
2 0.87 0.37 -0.82 0.59 
3 1.00 0.95 0.63 0.72 

Average ± S.D. 0.91 ± 0.08 0.59 ± 0.58 -0.12 ± 0.67 0.40 ± 0.47 

4 User Interface for HRV Analysis 
To explore the possibility as a home-healthcare application, we created a user interface based on 
the Poincaré plot (Visual Basic 6.0) to easily check the daily condition of heart functions with 
temporal changes. Because the Poincaré plots of the multiple time-course data are added to a 
figure panel [Fig. 8(a)], they can reveal the daily changes of the autonomic nervous activity. The 
RR intervals after the axis rotation can be also visualized [Fig. 8(b)]. The ellipses were 
illustrated from the SD1 and SD2 values [Fig. 8(c)]. Temporal changes in the features of the time 
domain HRV analysis (i.e., SD1, SD2, SD1/SD2, and the area of an ellipse) can be compared 
each other, as numerical data [Fig. 8(d) and (e)]. 

The second study (i.e., Section 3) had the limitation in the number of experimental times (i.e., 
three times every subject); however, by using the user inter face as a home healthcare system, the 
continuous measurement with the HRV analysis (i.e., the cumulated data) could increase the
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accuracy and detect a slight temporal change at an early stage of diseases. The artificial intelli-
gence and machine learning [27][28] can be also implanted into this interface, in order to judge 
the abnormal or unusual state from the experimental data and the HRV analyses. 

Figure  8: The created user interface for analyzing the temporal changes in the Poincaré plot. 
(a) The Poincaré plots of the multiple time-course data. (b) The RR intervals after the axis rota-
tion; Dotted lines: standard deviations. (c) The ellipses illustrated from the SD1 and SD2 values.

Temporal changes in (d) SD1 and SD2; (e) SD1/SD2 and the areas of ellipses. 

5 Conclusions 
We explored for the analytical method to simply and automatically catch the abnormalities or 
temporal changes in heart function. To detect the ST depression from abnormal ECG data, 
the optimal threshold value was determined by the modified cross-validation analysis based 
on the correlation coefficient between ECG signals on the template and other diseases. The 
optimal threshold of the correlation coefficient existed (i.e., around 0.8 for this study); it was 
little affected by the type of interpolations and window sizes for a normalized template. If it is 
important to reduce the computation time in online analysis for smartphone or tablet ap-
plications, the small data size will be preferred. 
    Next, the HRV analysis in the time or frequency domain was performed during the ATMT, 
in order to assess the temporal change in individual’s function of the heart. The Poincaré plot 
in the time domain analysis revealed that the SD1 and SD2 values depend on the state of 
tension and concentration during the ATMT, suggesting the unhealthy conditions. The HF 
component in the frequency domain analysis expressed the temporal changes in the healthy 
and unhealthy conditions during the test, mainly reflecting the parasympathetic activity. The 
high relationship between the SD1 and HF component suggests the similar evaluation indi-
ces. As shown in Fig. 8, the evaluation indices for the cardiac analysis with daily cumulative

(a) (b) (c)

(e)(d)
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data could be applicable for a home healthcare system to simply and automatically check the 
temporal changes in heart functions. 
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