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Abstract 

Storage vendors have had difficulty adapting their proprietary protocol stacks to com-

modity servers. Despite large development effort, many proprietary protocol stacks can 

be used only on the specialized storage appliances because they depend on specialized 

hardware or software. Most of these protocol stacks use original filesystems to store 

custom file metadata that contain the protocol specific metadata to comply with the 

protocol specifications. In this study, we propose a new metadata management module 

named the protocol metadata module (PMM) that enables the custom file metadata to be 

used on commodity Linux servers. The PMM uses a portable operating system inter-

face (POSIX)-based Linux interface to store the custom file metadata in Linux filesys-

tems so that the protocol stacks can use the custom file metadata without the specialized 

hardware or software. The PMM enables the protocol stacks using the custom file 

metadata to offer the protocol functions on commodity Linux servers. We applied our 

developed PMM to the protocol stack of our storage appliance to verify its concept. Our 

evaluation results show that the PMM increases the protocol function coverage from 

75.0% to 96.7% on Linux servers while suppressing the access performance degradation 

to at most 8% in the typical file server workloads. 
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1. Introduction

For many years, storage vendors have developed specialized storage appliances to 

satisfy user demands for performance, functionality, and reliability [1][2]. 

Conventionally, software-based protocol stacks process client requests such as a net-

work file system (NFS), server message block (SMB), and Internet small computer in-

terface (iSCSI) on those appliances [3][4]. The vendors have made large effort to 

incorporate frequent updates in the protocol specifications into their protocol stacks.  
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However, the conventional storage vendors have struggled to adapt their protocol stacks 

to the commodity servers. As interest in software-defined storage has increased [5][6], 

users have demanded cheaper commodity servers for storage hardware for light-weight 

workloads. To achieve this transition, some storage vendors use a hypervisor-based 

virtual machine [2]. However, this approach is not applicable to the protocol stacks that 

depend on specialized hardware. 

Many storage appliances use their original filesystems to store user files and custom file 

metadata that contain protocol specific metadata [1][2]. These original filesystems are 

often implemented in specialized hardware or software. The custom file metadata enable 

the protocol stacks to offer protocol functions in a protocol compliant manner. However, 

the protocol stacks cannot be used on other filesystems because they depend on the 

original filesystems. 

The use of the standardized portable operating system interface (POSIX) filesystem 

removes the dependency on the specialized hardware or software from the protocol 

stacks [7]. The POSIX filesystem is used in a wide range of open-source software (OSS) 

filesystems. Once the protocol stacks support the POSIX filesystem, they can be used on 

the commodity servers on which OSS filesystems are deployable.  

However, on the POSIX-based filesystems, the protocol stacks cannot offer protocol 

functions that rely on the custom file metadata. The POSIX-based filesystems store the 

file metadata in the POSIX compliant format that does not cover protocol specific 

metadata. The protocol function coverage of the protocol stacks largely decreases on 

Linux servers because of the lack of the custom file metadata. 

In this study, we propose a protocol metadata module (PMM) that enables the custom 

file metadata to be used on OSS Linux
i
 filesystems [8]. It utilizes a POSIX-based Linux 

application programming interface (API) to store the custom file metadata in Linux 

filesystems so that the protocol stacks can use the custom file metadata on Linux servers. 

The PMM consists of two components: the metadata management that stores the custom 

file metadata in Linux filesystems, and the journal management that ensures data 

integrity of the custom file metadata [9].  These modules complement the differences 

between the custom file metadata and the POSIX file metadata. 

We applied our PMM to the protocol stack of our storage appliance named 

High-performance Network Attached Storage (HNAS). The PMM enables the HNAS 

protocol stack to offer protocol functions that rely on the custom file metadata on Linux 

servers. 

Our evaluations show that the PMM increases the functional coverage of the 

HNAS protocol stack from 75.0% to 96.7% on Linux servers while 

suppressing the performance degradation to at most 8% in the typical file server 

workload. We found that the HNAS protocol stack with PMM achieves a file server 

performance competitive against other OSS protocol stack implementations. 

Also, we found that the journal management of the PMM ensures data integrity of 

the custom file metadata by offering fast and scalable recovery processing upon a 

system failure.
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2. Background and Objective

2.1. HNAS Protocol Stack 

Many proprietary protocol stacks use specialized hardware or software to store the 

custom file metadata to comply with the protocol specifications. This hardware or 

software usually has the original interface and functionality.  

HNAS, which is the target storage appliance of this study, uses an original field-

programmable gate array (FPGA)-based filesystem [10]. Like many other 

storage appliances, HNAS uses the original filesystem to store the custom file 

metadata in a protocol compliant format. The software-based protocol stack pro-

cesses client requests that involve advanced file processing such as the security de-

scriptor, the named stream, Quota, and the virus scan [11]. The HNAS protocol 

stack uses the custom file metadata to provide these capabilities. Figure 1 shows an 

over-view of the HNAS architecture. 

Figure 1 HNAS Overview 
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The HNAS protocol stack has a layered architecture that separates hardware de-

pendent modules from other modules. The architecture consists of the protocol 

layer, the FileSystem Independent (FSI) layer, and the FileSystem Dependent 

(FSD) layer. The protocol layer accommodates NFS, SMB, and iSCSI modules, 

which interpret client requests. Underneath the protocol layer, the FSI layer offers 

the aforemen-tioned advanced filesystem functions. The FSD layer encapsulates the 

FPGA filesystem implementation from the upper layers. 

Although a large part of the HNAS protocol stack is independent of the FPGA 

filesystem, the protocol stack runs only on the HNAS appliance because it depends 

on the FPGA filesystem in the FSD layer. 

2.2. Objective 

Despite the large development effort, the proprietary protocol stacks can be used only 

on specialized appliances and not on other platforms because they depend on the 

original filesystems. If the protocol stacks are enabled to run using alternative 

filesystems, users will be able to choose a wider range of configurations on the basis 

of workload requirements.  

Use of the POSIX filesystem removes the dependency on the specialized appliance 

from the protocol stacks. The POSIX filesystem is widely used in OSS filesystems 

such as Ext4/XFS [12][13]. Once a protocol stack supports the POSIX filesystem, it 

can be used on commodity Linux servers on which the OSS filesystem is commonly 

used.  

However, to comply with the protocol specifications, the protocol stacks need the 

custom file metadata originally stored in the original filesystems. Without the 

custom file metadata, the protocol stacks cannot offer the protocol functions that 

require the protocol specific file metadata. 

This study aims to adapt the protocol stacks using the custom file metadata to 

commodity Linux servers. Our developed PMM enables the custom file metadata to 

be used on Linux servers. We use the POSIX-based Linux API in the PMM so that 

the protocol stacks can use the custom file metadata on Linux servers. 

Our PMM aims to enable the protocol stacks to offer the protocol functions that 

rely on the custom file metadata on Linux servers. Along with the higher protocol 

func-tion coverage, the PMM aims to offer reasonable access performance and data 

in-tegrity assurance. Our performance target is the HNAS protocol stack that 

performs competitively against other OSS protocol stack implementations for a 

typical file server workload. Also, the PMM aims to enable fast recovery 

processing of data integrity of the custom file metadata upon a system failure. 

3. Protocol Metadata Module

3.1. Challenges
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Table 1 Linux File Metadata and Custom File Metadata 

The PMM has to complement the differences between the POSIX-based Linux file 

metadata and the custom file metadata to comply with the protocol specifications. The 

PMM stores the user data and the file metadata in Linux filesystems. However, Linux 

filesystems do not support the protocol specific file metadata whereas the custom file 

metadata contain the metadata. 

The differences between the Linux file metadata and the custom file metadata appear in 

metadata types and data integrity assurance. The custom file metadata comply with the 

NFS and SMB protocol specifications whereas the Linux file metadata comply with the 

POSIX standard. Although a large part of the NFS requirements overlaps the POSIX 

standard, SMB requires different types of file metadata from the POSIX standard be-

cause of the different operating system (OS) environment. Also, the protocol specifica-

tions require data integrity assurance on a per client request basis whereas POSIX en-

sures data integrity on a per system call basis [8].  

Table 1 shows the differences between the Linux file metadata and the custom file 

metadata of HNAS. 

For the metadata types, the Linux file metadata use necessary file attributes and security 

metadata for UNIX applications. Also, modern Linux file systems provide the extended 

attributes to add small file attributes to user files [12][13], and most Linux filesystems 

use original Quota databases to manage filesystem usage.  

On the other hand, the HNAS custom file metadata comply with the SMB and NFS 

specifications [3][4]. The HNAS custom file metadata use an additional set of file at-

tributes such as the file creation time or the archive attribute. The security metadata 

contain the security descriptors of multiple owner files [11]. The named stream stores 

arbitrarily sized named user data. The Quota database stores the Quota entries given by 

the HNAS protocol stack. 

For the data integrity assurance, modern Linux filesystems use the journaling systems to 

ensure the data integrity. These journaling systems guarantee the data integrity on a per 

system call basis, so they do not ensure the data integrity among multiple system calls 

[14]. Therefore, if a system failure happens between a user file update and an update of

Items Linux File Metadata 
Custom File Metadata 

(HNAS) 

Metadata 

Types 

File Attributes POSIX /  

Extended Attributes 

SMB / NFS 

Security POSIX Permission / 

ACL 

SMB / NFS 

Named Stream None SMB / NFSv4 

Quota Filesystem Function Protocol Stack Function 

Data Integrity Assurance Per System Call Per NFS / SMB Request 
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the custom file metadata stored in the extended attributes or system files, the data integ-

rity between the user file and the custom file metadata is not guaranteed. In contrast to 

Linux metadata, HNAS guarantees the atomicity of all updates during processing of a 

single client request. The above differences cause less protocol function coverage and a 

lack of data integrity assurance when the protocol stacks using the custom file metadata 

run on Linux filesystems. 

The PMM needs to complement these differences to achieve the objectives. To offer 

higher protocol function coverage, the PMM needs the metadata of the protocol func-

tions such as the SMB and NFS file attributes, the security descriptor, the named stream, 

and Quota. The PMM also needs to assure the atomicity of updates of user data and 

metadata during a single client request. And also, the performance is also a concern if the 

PMM introduces new metadata or data integrity assurance method. These modifications 

are usually accompanied by performance overhead such as additional metadata accesses 

and the journal logging [18][19][25][26]. 

3.2. PMM Architecture 

Our PMM introduces a new metadata management and the journal management to re-

alize the custom file metadata and the data integrity assurance on Linux filesystems. The 

metadata management stores the custom file metadata in Linux file systems to enable 

the custom file metadata to be used on Linux servers. The journal management records 

the journal logs in the journal file to ensure the data integrity between user files and the 

custom file metadata. In addition, performance optimization techniques are used in the 

new modules to achieve the reasonable performance. 

We implemented our PMM in the HNAS protocol stack. The PMM works as an internal 

module in the new FSD module named Linux FSD. Linux FSD supports XFS and Ext4. 

An interface called an FSD API clearly separates the FSD layer from the FSI layer in the 

HNAS protocol stack. The compliance with the FSD API in Linux FSD enables the 

protocol layer and the FSI layer to work on Linux servers. Figure 2 shows the PMM 

overview. 

Linux FSD maps an FSD API call to system calls for file operations. The file operations 

in the FSD API are mostly compatible with Linux system calls including open, read, 

write, and so on [8]. Therefore, the API mapping between the FSD API and system calls 

for the file operations is straightforward. 

Along with the file operations, the PMM issues system calls for the metadata 

manage-ment and the journal management. In contrast to the file operations, the 

metadata man-agement and the journal management are the original functions of 

the PMM. These modules issue the system calls in the performance optimized way. 

We describe the de-tails in the next section.
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Figure 2 PMM Overview 

4. Implementations

4.1. Metadata Management 

The implementation of the metadata management consists of the namespace manage-

ment, the extended attributes, and the open_by_handle system call [15]. The PMM di-

vides the namespace of Linux filesystems into the system directory and the data direc-

tory. The PMM uses the extended attributes to store file attributes with a fixed size 

and file handles of metadata files that contain arbitrarily sized metadata. The PMM 

also uses the file handles and the open_by_handle system call to link the metadata 

files to one or more user files. These data structures enable the custom file metadata 

with an arbitrary size or multiple-owner files to be used in Linux filesystems. 

Figure 3 shows the metadata layout in Linux filesystems.
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The PMM offers three types of file metadata: composite attributes, linked metadata, and 

system metadata.  We explain these file metadata below. 

4.1.1.  Composite attributes 

The PMM uses the composite attributes to offer predefined file attributes. The compo-

site attributes contain SMB/NFS compatible file attributes and application attributes 

used in the HNAS protocol stack. 

The storage of the composite attributes consists of the extended attributes and the 

POSIX file attributes of user files. The PMM uses the extended attributes to store most 

of the file attributes of the custom file metadata. Additionally, the PMM uses a small 

part of the POSIX file attributes and converts them into a compatible format with the 

custom file metadata. These POSIX file attributes include the access time, the modified 

time, and the file length, which are updated during write system calls. The use of the 

POSIX file attributes eliminates the disk access to the extended attributes in the write 

request processing and improves write performance. We evaluate the performance im-

provement in the next section. 

4.1.2.  Linked metadata 

The linked metadata store the custom file metadata that have arbitrary sizes and multi-

ple-owner files. The PMM uses the linked metadata to store the named stream without

Figure 3: Metadata layout in Linux filesystems 
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the size limitation. Also, the capability of the multiple-owner files reduces the storage 

capacity of duplicated security descriptors like Windows NTFS [11].  

The PMM creates metadata files or directories in the system directory for all linked 

metadata. The PMM then records the file handles of the linked metadata files and di-

rectories to the extended attributes of owner files. It uses the file handles and the 

open_by_handle system call to access the linked metadata. The PMM manages the ref-

erence count of the linked metadata in the extended attributes of the linked metadata file. 

It then deletes the linked metadata file when the reference count becomes zero to prevent 

a linked metadata file from becoming an orphan. In addition, the PMM creates a 

metadata directory when the first named stream of a user file is created. The PMM stores 

named streams of the user file to the same directory. 

4.1.3. System metadata 

The system metadata contain the filesystem metadata such as the Quota database and the 

journal log, which is described in the next subsection. The system metadata are system 

files with pre-defined pathnames in the system directory. The PMM provides an access 

interface for the system metadata files to the FSI layer through the FSD API. The FSI 

layer stores arbitrary contents to the system metadata. 

4.2. Journal Management 

The journal management of the PMM ensures data integrity between user files and the 

custom file metadata. The PMM introduces user-space journaling to extend the scope of 

data integrity assurance from a per system-call basis to a per client request basis.  

The custom file metadata could be inconsistent with user files without the journal man-

agement. The PMM issues system calls to update user files and the custom file metadata 

separately. Without any additional protections, the user files and the custom file 

metadata could be inconsistent when a system failure happens between these system 

calls. These inconsistencies include inconsistent file attributes, inconsistent security 

descriptors or named stream handles, and inconsistent linked metadata reference count. 

These inconsistencies could cause invalid file metadata, security violation, orphan 

metadata files, or unexpected system behaviors. 

To solve the above inconsistencies, the PMM offers journaling and replay processes. We 

describe both processes below. 

4.2.1. Journaling 

The PMM manages a system file named the journal file to record all metadata 

updates as journal logs. The PMM uses several types of journal logs 

corresponding to the above inconsistencies. A journal log consists of the log header 

and the updated metadata. A log header contains the necessary information for the 

replay process such as the log type, the sequential number, the update time, the file 

handle of a target user file, and request type. Figure 4 shows an example journal 

log.
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<<Log header>> 

Log Type: Composite Attributes 

Sequential Number: 0x001 

Update Time: 2016-01-29 12:00:01 

Request Type: Write 

File handle: 0x00001 

<<Log body>> 

(Updated contents of the custom file metadata) 

Figure 4: Example of Journal Log 

For each client request, the PMM flushes journal logs to the journal file before issuing 

any system calls that update the target user files. An internal service thread, which pro-

cesses client requests, adds the journal logs to a per-thread log buffer on memory. The 

PMM merges the journal logs into a single disk write and flushes them to the journal file. 

The PMM periodically restarts the journal file every few seconds so that the journal file 

does not consume large disk capacity. Figure 5 shows the overview of the journaling 

processing. 

Figure 5: Journaling in PMM 
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The PMM uses an optimization named the direct commit to reduce the journaling 

overhead. User-space journaling is known to cause a large delay due to the kernel jour-

naling during synchronous journal file updates [16]. To avoid the delay, the PMM 

pre-allocates the disk blocks of the journal file. Also, the PMM uses Direct IO to update 

the journal file to reduce the page cache overhead in the kernel space [8]. The PMM uses 

a predefined journal file size that is calculated from the journal log size and the required 

system throughput. If the total size of journal logs on the journal file exceeds the prede-

fined file size, the PMM appends the extra log items to the end of the journal file and 

truncates the journal file to the predefined size when the PMM restarts the journal file. 

4.2.2. Replay 

When a system failure happens, the PMM starts the replay process in the next system 

reboot. In the replay process, the PMM reads the journal logs on the journal file while 

the log headers contain the continuous sequential numbers.  

For each journal log, the PMM checks the existence and the modified time of the target 

user file given in the file handle field of the log header. The PMM uses the 

open_by_handle system call to find the target user file. If the target user file is created, 

deleted, or modified after the update time in the log header, the PMM reflects the up-

dated metadata to the target metadata on the basis of the log type. Otherwise, the PMM 

discards the journal log because the system calls that update the target user files do not 

take effect during the system failure. 

5. Evaluations

5.1. Protocol Function Coverage 

We evaluated the protocol function coverage of the HNAS protocol stack on Linux 

servers. We listed 60 HNAS protocol functions from SMB, NFS, and iSCSI specifica-

tions [3][4]. The SMB includes not only SMB specifications but also other specifica-

tions used in the SMB environment such as Volume Shadow Copy Service (VSS). Also, 

NFS and iSCSI include other related specifications 

We evaluated the protocol function coverage without and with the PMM (wo PMM and 

w PMM). Table 2 shows the evaluation results. 

The PMM improves the functional coverage from 75.0% to 96.7%. The security de-

scriptor enables the SMB security descriptor, NFSv4 ACL, and mixed mode security. 

The named stream enables the SMB named stream, SMB2 symbolic link, SMB3 trans-

parent failover, and NFSv4 named attribute. The Quota database enables the NFSv3 

rquota and NFSv4 quota. The composite attributes enable other improvements.  

The PMM does not cover the SMB long file name or volume shadow copy because 

of the lack of corresponding functions in Linux filesystems. The PMM is supposed 

to be capable of these features if Linux filesystems or other modules provide the 

correspond-ing functions. 
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Table 2: Protocol Function Coverage Without and With PMM 

5.2. Access Performance 

5.2.1. Measurement Environment 

We used a commodity server (Dell
ii
 R610) as an NFS server in the following evalua-

tions. We used another server with the same configuration as an NFSv3 client. The client 

accesses the server via a 10 Gbps network. We used a serial ATA (SATA) disk on the 

server so that we can evaluate the impact of the metadata access increase of the PMM in 

the disk bottleneck environment. Table 3 shows the evaluation configuration. 

Table 3 Evaluation Configuration 

Item Description 

Hardware 

(Server and 

Client) 

CPU Intel Xeon E5-2620 
iii

(6 cores, 2.0 GHz)

RAM 12 GB 

Storage Seagate Constellation.2  ST9500620NS SATA 6 

Gb/s, 500 GB 7200 rpm 

NIC Broadcom NetXtreme II, BCM57810 10 Gigabit 

Ethernet 

Software 

(Server) 

OS Debian Linux Wheezy (kernel 3.16.0)(kernel 3.16.0) 

Filesystem XFS (inode size 512 bytes) 

NFS server HNAS protocol stack with PMM, kernel nfs 

daemon (knfsd),  NFS ganesha v4.1 

Software 

(Client) 

OS Debian Linux Wheezy (kernel 3.16.0) 

Benchmark filebench v 1.4.9.1 
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5.2.2. Measurement Results 

We used filebench [17] to measure the performance of the typical file server perfor-

mances including read, write, file server, and mail server performance. We used the 

fivestreamwrite and fivestreamread workloads of filebench to measure the read and 

write performance. We used the fileserver workload for the file server performance and 

the varmail workload for the mail server performance. The fileserver workload consists 

of create, write, open, append, read, close, delete, and stat to middle-sized files. The 

varmail workload consists of create, write, fsync, read, open and close to small files. In 

the measurements, the total file-set size is set at least two times larger than the server and 

client memory to avoid cache effects. 

First, we evaluated the performance overhead of our PMM. We evaluated the perfor-

mance of the HNAS protocol stack without the PMM (without PMM) and with it. In the 

evaluations with the PMM, we measured the performance without any optimizations 

(with PMM (No option)), with composite attribute optimization (with PMM (CA)), and 

with direct commit (with PMM (CA + DC)). Figure 6 shows the measurement results.  

The optimizations suppress the performance degradation of PMM from 32% to 0% in 

the write performance, 16% to 7% in the file server performance, and 20% to 8% in the 

mail server performance. For the read performance, no overhead was found because the 

workload does not involve PMM overhead.  

Figure 6: NFS Performance with and without optimizations 
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Table 4 Number of Disk Writes per Filebench Operation 

As shown in Table 4, the decrease in the number of disk writes for a single filebench 

operation explains why these performances improved. In the write workload, the com-

posite attribute optimization reduces the number of disk writes by over 75%. In the write 

workload, filebench issues 1 MB write system calls, which are split into 64 KB NFS 

write requests by the NFS client module. If the composite attribute optimization is not 

applied, the PMM issues a disk write for updating the extended attributes in each 64 KB 

NFS write request. The composite attribute optimization eliminates these disk accesses 

during the NFS write request processing. In addition, 64 KB NFS write requests are 

sequentially processed and merged into a single 128 KB disk write by Linux OS [8]. 

Theoretically, the composite attribute optimization decreases the number of disk writes 

from 24 to 8 for a single 1 MB write operation.  

Also, the direct commit reduces the number of disk writes in the file server workload 

and the mail server workload by 2% and 5%, respectively, by eliminating the overhead 

in the kernel journaling and the page cache management.  

Second, we evaluated the performance of the HNAS protocol stack (Proposal) against 

NFS-ganesha [18] (ganesha) and the kernel nfs daemon (knfsd). As we can see in Figure 

7, the HNAS protocol stack has 10% and 20% better write and read performances than 

OSSs, respectively.  

The HNAS protocol stack issues disk IOs to a single file as continuously as possible to 

make the disk IOs more sequential. This optimization is supposed to contribute to better 

read and write performances than OSSs. 

Even with the overhead of the PMM, the HNAS protocol stack performs equivalently to 

OSSs in the file server evaluation. As the file server workload uses 128 KB files on av-

erage, the better write and read performances are thought to contribute to this result.  

On the other hand, the HNAS protocol stack shows 20% lower performance in the mail 

server evaluation that uses 16 KB file size. This result suggests that the HNAS protocol 

stack performs worse than OSSs for the metadata intensive workload because of the 

PMM overhead and its original performance characteristics.   

As write, read, and file server workloads are the typical file server workloads, it can 

be said that PMM performs competitively against OSSs in the HNAS protocol 

stack.

Write File server Mail server 

without PMM 8.51 0.82 0.91 

with PMM (No opt.) 25.14 1.29 1.46 

with PMM (CA) 8.16 1.05 1.13 

with PMM (CA + DC) 8.30 1.02 1.08 
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Figure 7: Performance comparison with OSS Implementations 

5.3. Recovery Performance 

We evaluated the recovery performance of the PMM journal management upon a 

system failure. In case of a system failure, the PMM recovers the data integrity of the 

custom metadata when the HNAS protocol stack mounts the failed filesystem. We 

evaluated the amount of time to mount the failed filesystem with and without the 

PMM journal management. Also, we evaluated the performance of the exhaustive 

check used in conventional filesystem utilities like fsck [9]. The exhaustive check 

scans all files in the failed filesystem and recovers the consistency of metadata if 

necessary. 

In the evaluations, we intentionally caused system crashes while issuing file creation 

and deletion requests to the HNAS protocol stack. The evaluations were carried out 

with different numbers of stored files to see the scalability of the recovery methods. 

Figure 8 shows the measurement results. 

The mounting time with the PMM journal management was similar to that without it. 

The mounting time is only about two seconds when the filesystem contains one 

million files. The recovery process of PMM examines a small number of journal logs 

regardless of the total number of files in the filesystem. Therefore, the recovery time 

remains constant and short even if a filesystem contains a large number of files. 

On the other hand, the mounting time of the exhaustive check increases in accord-

ance with the number of files. The mounting time reaches nearly 100 seconds at 

one million files.
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Figure 8: PMM Recovery Performance 

These results show that the PMM journal management offers fast and scalable re-

covery upon a system failure. 

6. Related Work

There have been a lot of studies to achieve higher protocol function coverage with 

less performance overhead on commodity servers. Basically, these studies are cate-

gorized into two approaches; the POSIX based approach or the VM based approach. 

For the POSIX based approach, the OSS community has developed protocol stack 

implementations such as the kernel nfs daemon, NFS-ganesha, and samba [18][19]. 

Some of these implementations use the extended attributes and system files to store 

the protocol compliant file attributes or the named stream in a similar way to our 

proposed PMM. However, these OSSs do not ensure the data integrity of these 

custom file metadata upon system failures whereas the PMM does. Richacl stores the 

security descriptor to the extended attributes of each user file in Linux filesystems 

like the PMM does [20]. However, this approach imposes larger storage consump-

tion of security descriptors than our multiple-owner metadata approach. Also, the 

PMM allows the reuse of the proprietary protocol stacks with the multiple protocol 

support and third-party vendor application support. These capabilities enable ad-

vanced protocol functions such as mixed mode security, the inter-protocol file lock, 

and the certified proprietary virus scan support whereas OSSs do not support these 

functions.  

For the VM based approach, much research has focused on porting software of 

purpose-built appliances to commodity servers. Burtsev et al. proposed an efficient
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inter-VM communication for software of purpose-built NAS appliances running on 

virtual machines (VMs) [21]. Also, NetApp
iv

 released the VM implementation of its 
NAS appliance to deploy the virtual appliance to the software-defined storage [22]. 

These studies focus on the protocol stacks using a software-based filesystem in the 

VM environment, so their methods are not applicable to the protocol stack using the 

hardware-based filesystem like HNAS.  

The data integrity assurance of filesystems and its performance optimizations have 

long been studied [23][24]. For data integrity assurance in the kernel space, Verma et 

al. showed that kernel modifications enable user-space applications to ensure data 

integrity of application data [25]. However, these kernel changes can be done only in 

their filesystems. The PMM is applicable for Linux filesystems that are widely used. 

Moreover, user-space data integrity assurance has been widely studied in database 

research [26][27][28]. This study focuses on the application of the user-space data 

integrity assurance to the network storage protocol stack. 

7. Conclusion

In this study, we proposed a method to adapt storage protocol stacks using the custom 

file metadata to commodity Linux servers. We developed a new metadata management 

module named the protocol metadata module (PMM), which enables the protocol stack 

to use the custom file metadata on Linux servers. We implemented the PMM in the 

protocol stack of our storage appliance, High-performance Network Attached Storage 

(HNAS), to prove the concept of the PMM. 

The PMM utilizes Linux application programming interfaces (APIs) such as the 

namespace management, extended attributes, and open_by_handle system call to store 

the custom file metadata in Linux filesystems. The PMM enables protocol stacks to 

achieve higher protocol function coverage by using the custom file metadata on Linux 

servers  

The PMM consists of metadata management and journal management. These new 

modules complement the differences between the custom file metadata and portable 

operating system interface (POSIX) file metadata. Also, we introduced performance 

optimizations to reduce the performance overhead of the PMM.  

Our evaluations show that the PMM improves the coverage of the HNAS protocol 

functions from 75.0% to 96.2% on Linux servers. Our performance optimizations sup-

press the performance degradation of the PMM to up to 8% in the typical file server 

workloads. As a result, the HNAS protocol stack with the PMM performs competitively 

against OSS protocol stack implementations. Also, we found that the PMM journal 

management enables fast and scalable recovery processing for the data integrity 

assurance of the custom file metadata. 

The PMM enables the proprietary protocol stacks to achieve high protocol function 

coverage while offering reasonable access performance and ensuring data integrity 

on commodity Linux servers.
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