
International Journal of Learning Technologies and Learning Environments
International Institute of Applied Informatics
2025, Vol. 8, No. 1, IJLTL874

 A Method to Detect Structure Errors
using a Model Program

Ryosuke Nakai ∗ , Tetsuo Kamina †

Abstract

It is difficult for novice programmers to solve compilation errors and perform debugging
using only the error messages output by the compiler and execution results. Failure to
solve errors may cause students to lose interest in programming. In this study, we propose
a method to support the learning of C language by detecting the cause of errors that the
compiler cannot indicate. This detection is performed by comparing the differences
between the model program and that of the novice, assuming a situation where model
programs are prepared in advance, that is, an exercise-style class. In the proposed method,
syntactic elements in the source code processed by the parser are expressed in the XML
format. The proposed method compares this XML representation with the document type
definition (DTD) generated from the model program. First, the syntactic elements in the
source code of the program written by the novice are translated into XML format. Next, a
DTD is generated from the model program. This DTD defines the structure that the model
program should satisfy. The DTD detects the structural difference between the model and
program written by the novice, which are likely to be the cause of errors. The feedback
provided is expected to enhance the effectiveness of C language learning for novice
programmers.
Keywords: C language program，Syntax Tree，Similarity Degree，Program Similarity,
XML

1 Introduction

The C language is still widely used today and is one of the representative languages that
programming beginners often first learn. An essential tool for C language beginners when
creating programs is the compiler. The compiler displays error messages for various issues
within the program. However, these error messages are often challenging for beginners to
understand. For instance, when a beginner omits the closing parenthesis of a
block structure, existing compilers do not accurately indicate the line number causing the

∗ Graduate School of Engineering, Oita University, Japan (Current affiliation: Mitsubishi Electric
Information Network Corporation (MIND))

† Division of Computer Science and Intelligent Systems, Oita University, Japan

error. Difficulty in understanding error messages can hinder the progress of writing
programs as beginners may struggle to comprehend them, potentially dampening their
learning enthusiasm. Furthermore, situations arise where the program structure does not
accurately represent the algorithm, leading to incorrect results upon execution, even
though there may not be a compilation error. In such cases, the compiler may not pinpoint
these errors, making it challenging for beginners to identify and rectify them.

In this study, we envision scenarios where beginners tackle exercises with model
answers in the context of programming, where compilation errors or structural errors may
occur. We propose a method to assist novice learners in programming by appropriately
highlighting the causes of compilation errors or structural mistakes in areas where
differences exist between the model answer program and the program written by the
beginner. Here, “beginner” refers to those getting started with programming, such as
students taking their first programming courses.

To determine the differences between the model answer and the program written by the
beginner, the proposed method involves representing the algorithm expressed by the
source code in XML format, by abstracting the details of the program. Then, using a
separately prepared document type definition (DTD) generated from the model answer, the
XML document is validated to pinpoint error locations. This approach enables feedback by
indicating areas in the XML document where the structures of the program written by the
beginner and the model answer differ; these differences may be the sources of errors.

To evaluate the proposed method, we created a codebase with programs con-taining
nested structures, such as bubble sort, based on multiple textbooks for C language
programming. Subsequently, we conducted an experiment to investigate whether the
proposed method can accurately detect the location of the missing closing parenthesis by
removing one closing parenthesis from every block structure for every program within the
codebase. Results confirmed that approximately 80% of their locations could be accurately
detected. Additionally, for a subset of the codebase, intentional algorithmic errors were
generated by changing the position of closing parentheses in block structures, and the tool
accurately detected the loca-tions of all these intentional errors. We also investigated how
the proposed method can accommodate individual differences in programs written by
users, by considering programs generated by ChatGPT as ones written by the beginner. In
some cases, the proposed method could not identify the sources of errors appropriately,
opening the further research issues.

The structure of the remainder of this paper is as follows. In Section 2, the problem
statement is presented. Section 3 provides a detailed explanation of the proposed method.
In Section 4, the proposed tool is evaluated, and the results are discussed. Section 5
introduces related research, and finally, Section 6 concludes the paper and discusses future
research.

2 Problem Statement

Many programming beginners learn C language as one of the initial
languages. However, the learning environment for C language is challenging for
beginners, espe-cially the error messages generated by compilers. For instance, in a
program like the one shown in Figure 1, existing compilers cannot accurately pinpoint the

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

R. Nakai, T. Kamina2

int main(void){

int i, j;

int num[5] = {7, 1, 3, 8, 5};

int tmp;

for (i = 0; i < 5; i++){

for (j = i + 1; j < 5; j++){

if (num[i] > num[j]){

tmp = num[i];

num[i] = num[j];

num[j] = tmp;

}

//Closing parentheses is missing

}

i = 0;

while (i < 5){

printf("%d␣", num[i]);

i++;

}

return 0;

}

Figure 1: Compilation error example

int main(void){

int i, j;

int num[5] = {7, 1, 3, 8, 5};

int tmp;

for (i = 0; i < 5; i++){

for (j = i + 1; j < 5; j++){

if (num[i] > num[j]){

tmp = num[i];

}

num[i] = num[j];

num[j] = tmp;

}

}

i = 0;

while (i < 5){

printf("%d", num[i]);

i++;

}

return 0;

}

Figure 2: Example of an algorithm error

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Detect Structure Errors using a Model Program 3

location of the missing closing parenthesis within the main function. Consequently,
beginners find it difficult to understand the source of errors indicated by the compiler
output1. Additionally, compilers fail to identify some algorithm errors. In the case of pro-
grams like the one depicted in Figure 2, although there is no compilation error, the
incorrect placement of the assignment operation yields undesired results. Since the
compiler does not flag this as an error, beginners must engage in trial and error to identify
the cause of the problem. These factors are considered to contribute to reduced learning
motivation for beginners. Consequently, this study aims to support beginner learning by
identifying compilation and algorithm errors that compilers cannot accurately indicate.

3 Proposed Method

3.1 Assumptions

We consider that the errors mentioned in the previous section can be accurately identified
by comparing the expected correct program with the program written by the beginner.
Therefore, under the assumption that a model answer exists, we propose a method to
determine whether the structure of the model answer aligns with the program written by
the beginner and use this information to identify the locations of errors. This assumption is
applicable in situations such as classroom lectures, exercises, or scenarios where model
answers are provided to programming material exercises.

3.2 Method overview

One challenge in this approach is how to abstract the details of the programs that do not
contribute to the essence of the algorithms that the programs represent. This abstraction is
necessary to accommodate individual differences in programs written by users. For this
purpose, it is desirable to extract the pattern of the correct program from the model
answer. One of the well-known methods to represent such patterns of tree structures is
using DTD; thus, in this method, a DTD is used to represent the structure of the model
answer. The program of the beginner is expressed as an XML document, which is
validated using DTD to identify errors in the program structure.

First, the user and model answer programs are parsed and translated to abstract syntax
trees (ASTs). Each AST node such as if, for, while, and return, expression statements and
declaration statements, are traversed in the depth-first manner, and both the visit and leave
actions, which correspond to a start-tag and end-tag of the corresponding XML element,
respectively, are recorded. These records of the AST of the program written by the
beginner are used to create an XML document. Subsequently, a DTD is generated from the
model answer accordingly. Finally, using the DTD, validation is performed on the XML
document, detecting error locations.

1 Autocomplete mechanisms supported by IDEs may not help in several cases where, e.g., the
beginner modifies the source code and accidentally removes the closing parentheses.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

R. Nakai, T. Kamina4

3.3 XML representation

The rules for translating a C language program into an XML document are defined for
each syntax element of the C language:

• if (condition) { statement } →
<if condition="condition">

XML element obtained by converting statement
</if>

• for (initialization; condition; subscript update) { statement } →
<Loop condition="condition" init="initialization" type="for">

<control iteration="subscript update"/>
XML element obtained by converting statement

</Loop>

• while (condition) { statement; subscript update; } →
<Loop condition="condition" type="while">

<control iteration="subscript update"/>
XML element obtained by converting statement

</Loop>

• expression statement →
<Statement expression="expression statement"/>

• declaration statement →
<Statement declaretion="declaration statement"/>

• return→
<return/>

Regarding for and while statements, to represent the same repetitive structure for
these statements, the XML elements for both are designated as Loop to ensure that
regardless of how they are described, the resulting XML document remains the
same. Additionally, statements updating the loop index are added as XML
elements2. Other translation rules are straightforward. The root XML element is
designated as main.

More precisely, to distinguish individual block structures within the XML, numbers
are assigned to Loops and ifs in the order of appearance. For example, the XML
document of the program in Figure 3 becomes Figure 4.

3.4 DTD expressions

DTD can be created using a procedure similar to that in Section 3.3. However, when
outputting for each AST node, document type declarations (<!ELEMENT>) are generated
rather than XML tags. Initially, the root of the element type declaration is declared as
main. If an element has child elements, they are defined in order of appearance, such as <!
ELEMENT element (child element 1, child element

2Concerning the reassignment expression of the while statement, it is considered an iteration update
if it consists of either (1) an expression statement composed solely of increment or decrement operations or
(2) an assignment statement where the same primitive variable is used on both sides.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Detect Structure Errors using a Model Program 5

int main(void){

int i, j;

int num[5] = {7, 1, 3, 8, 5};

int tmp;

for (i = 0; i < 5; i++){

for (j = i + 1; j < 5; j++){

if (num[i] > num[j]){

tmp = num[i];

num[i] = num[j];

num[j] = tmp;

}

}

}

i = 0;

while (i < 5){

printf("%d", num[i]);

i++;

}

return 0;

}

Figure 3: Example of a program
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<main>

<Statement declaretion="int␣i,␣j;"/>

<Statement declaretion="int␣num[5]␣=␣{7,␣1,␣3,␣8,␣5};"/>

<Statement declaretion="int␣tmp;"/>

<Loop1 condition="i␣<␣5" init="i␣=␣0;" type="for">

<control iteration="i++"/>

<Loop2 condition="j␣<␣5" init="j␣=␣i␣+␣1;" type="for">

<control iteration="j++"/>

<if1 condition="num[i]␣>␣num[j]">

<Statement expression="tmp␣=␣num[i]"/>

<Statement expression="num[i]␣=␣num[j]"/>

<Statement expression="num[j]␣=␣tmp"/>

</if1>

</Loop2>

</Loop1>

<Statement expression="i␣=␣0"/>

<Loop3 condition="i␣<␣5" type="while">

<Statement expression="printf("%d␣",␣num[i])"/>

<control iteration="i++"/>

</Loop3>

<return/>

</main>

Figure 4: Example of an XML document

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

R. Nakai, T. Kamina6

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE main [

<!ELEMENT main (Statement+,Loop1,Statement+,

Loop3,return)>

<!ELEMENT Statement (#PCDATA)>

<!ATTLIST Statement

declaretion CDATA #IMPLIED

expression CDATA #IMPLIED>

<!ELEMENT Loop1 (control,Loop2)>

<!ATTLIST Loop1

condition CDATA #REQUIRED

init CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT control (#PCDATA)>

<!ATTLIST control

iteration CDATA #REQUIRED>

<!ELEMENT Loop2 (control,if1)>

<!ATTLIST Loop2

condition CDATA #REQUIRED

init CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT if1 (Statement+)>

<!ATTLIST if1

condition CDATA #REQUIRED>

<!ELEMENT Loop3 (Statement+,control)>

<!ATTLIST Loop3

condition CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT return (#PCDATA)>

]>

Figure 5: Example of DTD

2)>. The occurrence frequency of expression and declaration statements may not carry
semantic in the structure of the program. Moreover, associating the document type with the
occurrence frequency might fail to account for differences in the programs of beginners
owing to individual variations (for instance, declaring multiple variables together in a
single statement or separately in different statements, resulting in different XML
documents for the same program). Therefore, if expression or declaration statements
appear, they are abstracted in the DTD as one or more occurrences (as Statement+).
Similar to XML document generation, numbers are assigned to Loops and ifs in the order
of appearance.

Attributes attached to elements are defined in the attribute list declaration (<!
ATTLIST>. In this case, the attribute type is set to character data (CDATA), and the
default value is marked as required (#REQUIRED). As an example, considering the
program in Figure 3 as the model answer, its corresponding DTD will be as depicted in
Figure 5.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Detect Structure Errors using a Model Program 7

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<main>

<Statement declaretion="int␣i,␣j;"/>

<Statement

declaretion="int␣num[5]␣=␣{7,␣1,␣3,␣8,␣5};"/>

<Statement declaretion="int␣tmp;"/>

<Loop1 condition="i␣<␣5" init="i␣=␣0;" type="for">

<control iteration="i++"/>

<Loop2 condition="j␣<␣5" init="j␣=␣i␣+␣1;"

type="for">

<control iteration="j++"/>

<if1 condition="num[i]␣>␣num[j]">

<Statement expression="tmp␣=␣num[i]"/>

<Statement expression="num[i]␣=␣num[j]"/>

<Statement expression="num[j]␣=␣tmp"/>

</if1>

</Loop2>

<Statement expression="i␣=␣0"/>

<Loop3 condition="i␣<␣5" type="while">

<Statement

expression="printf("%d␣",␣num[i])"/>

<control iteration="i++"/>

</Loop3>

<return/>

</Loop1>

</main>

Figure 6: XML document converted from a program with errors

3.5 XML validation

Using the XML document and DTD created in Sections 3.3 and 3.4, respectively, an
inspection is conducted to verify whether the structure of the program aligns with that of
the model answer. This is verified as part of the validation for the generated XML
document from the program. For instance, validating the XML document (Figure 6)
created from a program in Figure 1, where closing parentheses are missing, using the DTD
in Figure 5 reveals that the element Loop1 in the DTD is declared as <!ELEMENT
Loop1(control,Loop2)>. In contrast, the XML document in Figure 6 exhibits a flaw in the
block structure due to the missing closing parenthesis. The segment from <Statement
expression="i = 0"/> is included in the child element of Loop1, indicating that there is an
error in this part.

4 Evaluation

We conducted an evaluation to assess the accuracy of the proposed method in detect-ing
error locations in programs with missing closing parentheses in block structures and
programs with algorithm errors (generated by intentionally shifting the position of

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

R. Nakai, T. Kamina8

closing parentheses). The codebase used for this evaluation consists of nested programs
(bubble sort, insertion sort, selection sort, Shell sort, and a program to find maximum and
minimum values) created by one of the authors. This codebase excludes functions other
than main.

4.1 Identification of missing closing parentheses

Firstly, we conducted an experiment to investigate the accuracy of our method to detect
missing closing parentheses in block structures. This experiment involved initially
removing one closing parenthesis from the source code and using this method to identify
the error location. Subsequently, the identified position was checked to ensure its
correctness. The evaluation criteria were whether the errors were correctly detected and if
the program functioned correctly after inserting the missing closing parenthesis at the
detected location. If the criteria were met, it was considered that the “error was correctly
detected.” This process was repeated for all closing parentheses in the source code.

Table 1: Detection results

Source code Correct / Total numbers

Bubble sort 4 / 4
Insertion sort 3 / 4
Selection sort 4 / 5
Shell sort 5 / 6

Maximum and minimum 4 / 4

The evaluation results are presented in Table 1. For the bubble sort and program to find
maximum and minimum values, the method correctly detected errors in all cases. In other
source codes, for example, insertion sort achieved a correct detection rate of 75%,
selection sort achieved 80%, and Shell sort achieved 83%.

We elaborate on the cases where errors were wrongly detected. In all instances where
the method failed to detect errors, the closing parentheses, sandwiched between
<Statement/> elements in the XML document, were missing. This occurred because in
this method, the occurrence of expression or declaration statements in the DTD was
defined as one or more occurrences. Consequently, it failed to precisely distinguish when
the cause of the error was sandwiched between expression or declaration statements.

4.2 Identification of algorithm errors

Next, we conducted an experiment for detecting errors in positions of closing
parentheses in block structures on the codebase, specifically targeting bubble sort and
selection sort. In this experiment, we modified the positions of closing parentheses to
create a program with algorithm errors that the compiler would not detect. The created
programs are illustrated in Figure 2 and Figure 7. The evaluation criterion was to verify
whether the method accurately identified the closing parentheses placed in the wrong
positions. The evaluation results for both cases showed that the method accurately
identified the locations of errors.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Detect Structure Errors using a Model Program 9

#include <stdio.h>

int main(void){

int data[] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0};

int n, i, j, min, temp;

printf("---selection␣sort---\nBefore␣:␣");

for(n=0; data[n]!=’\0’; n++){

printf("%d␣",data[n]);

}

i = 0;

while(i < n){

min = i;

for(j=i+1; j<n; j++){

if(data[j]<data[min]){

min = j;

}

temp = data[i];

}

data[i] = data[min];

data[min] = temp;

i += 1;

}

printf("\nAfter␣␣:␣");

for(n=0; data[n]!=’\0’; n++){

printf("%d␣",data[n]);

}

return 0;

}

Figure 7: Selection sort with algorithm errors

4.3 Evaluation using ChatGPT

An evaluation regarding the extent to which the method can accommodate individual
differences in programs written by users was conducted by treating programs generated by
ChatGPT as if they were created by the user. Initially, ChatGPT was requested to write a C
language program using bubble sort to sort the sequence “7,1,3,8,5” in ascending order.
The program was supposed to be written within the main function, using only for, if, and
while statements for control structures, and output the sorted result3. This request was
made to make the generated program as similar as possible to the corresponding program
in the codebase. Subsequently, similar to the evaluation experiment in Section 4.1, the
closing parentheses of block structures were systematically removed, and an evaluation
was performed to deter-mine whether the method could identify these removals. This
process was applied to all programs in the codebase.
The evaluation results are presented in Table 2. Compared to the evaluation
experiment in Section 4.1, the number of successful detections for bubble, insertion,

3 This request to ChatGPT was made in Japanese.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

R. Nakai, T. Kamina10

Table 2: Detection results
Source code Correct / Total numbers

Bubble sort 3 / 4
Insertion sort 2 / 4
Selection sort 3 / 5
Shell sort 0 / 6

Maximum and minimum 4 / 4

int main(void){

int data[] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; int n;

printf("---shell␣sort---\nBefore␣:␣");

for(n=0; data[n]!=’\0’; n++){ printf("%d␣",data[n]); }

int i, j, step, temp;

step = 1;

while(step < n/9){ step = step * 3 + 1; }

while(step > 0){

i = step;

while(i < n){ temp = data[i];

j = i - step;

while(j >= 0 && temp < data[j]){

data[j + step] = data[j];

j -= step;

}

data[j + step] = temp;

i++;

}

step /= 3;

}

printf("\nAfter␣␣:␣");

for(n=0; data[n]!=’\0’; n++){ printf("%d␣",data[n]); }

return 0;

}

Figure 8: Shell sort program of a model answer

and selection sort was one less. Regarding Shell sort, it was not able to accurately
detect any error locations.

In the cases of bubble, insertion, and selection sort, all the failed error detec-tions
were instances where closing parentheses sandwiched between <Statement/> elements in
the XML document were missing, similar to the failed examples in the evaluation
experiment in Section 4.1. The decrease in the number of successful de-tections can be
attributed to the presence of <Statement/> elements in programs generated by
ChatGPT, which were not in the model answer. This led to an in-crease in the
number of elements sandwiched between expression and declaration statements, which
are the sources of errors.

We explain why the detection success count for Shell sort was zero. First, Figure 8

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Detect Structure Errors using a Model Program 11

int main() {

int arr[] = {9, 8, 7, 6, 5, 4, 3, 2, 1};

int n = sizeof(arr) / sizeof(arr[0]);

printf("Original␣Array:␣");

for (int i = 0; i < n; i++) { printf("%d␣", arr[i]); }

printf("\n");

int gap = n / 2;

while (gap > 0) {

int i = gap;

while (i < n) { int temp = arr[i];

int j = i;

while (j >= gap && arr[j - gap] > temp) {

arr[j] = arr[j - gap];

j -= gap;

}

arr[j] = temp;

i++;

}

gap /= 2;

}

printf("Sorted␣Array:␣");

for (int i = 0; i < n; i++) { printf("%d␣", arr[i]); }

printf("\n");

return 0;

}

Figure 9: Shell sort program created by ChatGPT

shows the model answer for Shell sort, and Figure 9 displays the program created by
ChatGPT. As evident from the figures, the first while statement in the model answer is not
in the ChatGPT program. The processing from the next while statement onward is the
same. Owing to this misalignment in the while statement, the numbering assigned to the
Loop in the XML document, used to distinguish individual block structures, became
misaligned. As a result, subsequent comparisons in the Loop were not performed correctly,
leading to the failure to detect missing closing parentheses. The difference between the two
programs was caused by the fact that the model answer determines the width of grouping
necessary for Shell sort in the first while statement, whereas ChatGPT performs it without
using a while statement.

There are two possible interpretations for this experiment result. The first is to interpret
it as correctly identifying algorithm errors that do not align with the intent of the model
answer. This interpretation holds when the task intent includes using while or for
statements to determine the width of Shell sort. In this case, ChatGPT should use either
while or for statements, which would lead to an algorithm error by not aligning with the
task ’s intent. This was correctly pointed out by this method. The second interpretation is
that the method failed to identify the errors (Table 2 stands for this interpretation).

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

R. Nakai, T. Kamina12

This interpretation applies when the task does not specify how to determine the width of
Shell sort and allows for freedom in writing. In this scenario, when determining the
width of Shell sort, whether it is a while statement or not should be ignored.
Since this method does not ignore this aspect, it fails to accurately point out the
errors in this context.

The proposed method extracts task intent solely from the model answer; however, this
Shell sort example demonstrates that this approach may not be sufficient in certain cases.
Therefore, it is necessary to reconsider the method of extracting task intent in the future.

4.4 Discussions

From these experiments, it can be summarized that this method identified error lo-cations
in approximately 80% of cases involving missing closing parentheses in block structures
and cases where there were errors in the positions of closing parentheses in block
structures. However, the method cannot identify missing closing parentheses sandwiched
between expression or declaration statements.

From these findings, it is evident that this method can detect errors when there are
differences in parent-child relationships among XML elements or other struc-tural issues in
the program. Further detailed experiments, especially systematic evaluation experiments
involving algorithm errors, need to be conducted to explore the effectiveness of this
method. Additionally, evaluations should be carried out in real-lecture or exercise settings
to determine if the method can accurately identify errors in programs written by students.

5 Related Work

5.1 Programming support specialized for the C language

For beginners starting with C language, there is a static analysis tool called C-Helper [1]
designed to provide clear displays of compilation errors. Traditional compilers often
present messages that are difficult for beginners to understand, lack solutions, and
generally not suitable for programming novices. C-Helper aims to detect common
mistakes made by beginners and provide user-friendly messages. According to reference
[1], issues detectable by this tool include inconsistent indentation, assigning character
arrays to variables of type char, parameter mismatches in printf, missing return statements,
extra semicolons in function definitions, insufficient semicolons in structure declarations,
and incorrect use of sizeof for dy-namically allocated arrays. However, C-Helper cannot
detect common mistakes like missing closing parentheses often made when writing for,
while, or if statements. Detecting missing closing parentheses is a challenge for existing
compilers to pin-point accurately. In these aspects, this study differs from C-Helper and
aims to provide support for beginners.

An intelligent instructional system for C language beginners is C-Tutor [2], which
extracts the intent of the programmer as a program description through reverse engineering
from sample programs. Subsequently, it uses the knowledge base to analyze the program,
examines the unfulfilled goals in the program description while executing the input source
code, queries the knowledge base for the set of plans to implement those goals, detects the
differences between the plans and the source code, and provides feedback.)

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Detect Structure Errors using a Model Program 13

C-Tutor is similar to this study in providing the intent of the programmer through sample
programs; however, it requires the preparation of test cases in advance, which takes time
and effort. Furthermore, our scope is different from this study in that this study deals with
compile-executable source code, while our proposal also targets syntax errors.

5.2 Analysis methods for program similarities

One method for analyzing source code is code clone detection [3]. Code clone detection
involves identifying specific lexemes as clones and detecting whether the source code
contains similar elements. Specific techniques for code cloning include using lexical
analysis to identify lexemes as clones [4], employing hash functions to compress lines into
strings of fixed length and detect clones [5], and considering entire functions, procedures,
class definitions as clones and solving the clone detection problem by finding equivalent
pairs of elements [6]. This study, as described in Section 3, shares similarities with various
code cloning detection methods, particularly in comparing model answers and user
programs after abstracting the source code. However, the comparison method employed in
this study is specialized for detecting error locations and not intended for detecting code
clones. It is challenging to apply the proposed approach in this study to code cloning
detection. Similarly, using ex-isting code cloning detection methods for the purposes of
this study may also prove challenging.

Program concept recognition [7] aims at supporting program comprehension by
recognizing language-independent ideas of computation and problem-solving methods
such as data structures and algorithms. Such concepts are represented using ASTs with
additional constraints based on control-flows and data-flows. Quilici [8] extended this
method by sacrificing the ability to recognize every concept located in the source code to
improve efficiency. These approaches are similar to our proposal in that both compare the
patterns of algorithms with the programs, even though our proposal only uses ASTs as
patterns and such patterns are extracted from the model answers. Like code clone detection
methods, program concept recognition methods are used to comprehend the large-sized
source code, and not designed for detect flaws in the programs.

5.3 Programming support with model answers

A static analysis framework for beginners in Java [9] is one approach that uses static
analysis for programming support. This method is mainly used to detect logical errors and
check the code quality. It compares the model answer with the program of the beginner
after normalization, considering the similarity in structure (such as loop structure,
assignment, and method invocation order). It also measures software metrics. However,
this method targets the fill-in-the-blank questions and it is uncertain whether it can be
applied to programming exercises that allow writing source code freely from the
beginning.

There is a study that considers the processing within a program as functionally
meaningful units (referred to as components in related studies) and
progressively comprehends the overall structure of the program [10]. This
approach proposes a learning method for structural understanding in programming,
where the code is recognized as meaningful chunks or components, and the learner

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

R. Nakai, T. Kamina14

progressively extends the entire program by assembling these components to meet the
predefined structural requirements of the task. Initially, the learner writes code line by line,
combining them to form the desired structure for a given task. When faced with dif-
ficulties owing to unfamiliarity or lack of knowledge, the learner can receive hints as
feedback, contributing to the structural understanding of the learner. This method consists
of a correctness judgment function that compares the answers of the learner with the
predefined correct solutions for each task and a feedback function based on correctness
judgments, thus sharing some similarities with this study. However, it differs from this
study as it uses predefined components only and considers an answer as correct only when
it perfectly matches a single correct example, lacking the flexibility to accommodate
individual differences of user programs.

5.4 Program representation using XML

CX-Checker [11] is a tool to verify whether a developed program complies with coding
conventions. It first parses the source code and represents it in XML. Users can then use
XPath or DOM formats to specify coding conventions as rules and detect rule violations in
the program. While this tool is not specifically designed to detect syntax errors or common
errors for beginners, its generic rule-writing capabilities could potentially be used to
describe the intentions of model answers as rules. However, it is unclear whether it can
detect basic errors such as omitting closing parentheses. Additionally, it needs the
preparation of the question intention as rules, making it different from this study, where the
model answer can be used directly.

There is a method [12] that converts given programs into XML-formatted syntax trees
and compares the similarity of C language programs. This approach focuses on the
structure of the programs to evaluate their similarity by comparing the respective syntax
trees. It aims to enable the comparison of block structures, including function call
relationships, which is challenging with string-based comparisons. However, while this
method proposes the conversion of programs into XML-formatted syntax trees, it does not
provide specific details about the comparison method. This differs from this study, which
proposes a specific comparison method.

6 Conclusion

In this paper, we addressed the limitations of existing compilers, which cannot accurately
pinpoint the line numbers causing errors when a block structure bracket is omitted, or
when the program structure fails to accurately represent the algorithm, resulting in
incorrect results during execution without triggering compilation errors. To overcome
these limitations, we proposed a method to compare the model answer with the program
written by the beginner and identify error locations based on the differences. We
represented the algorithm expressed by the source code processed by the parser in XML
format and performed XML validation using a DTD generated from a separately prepared
model answer to identify error locations. Additionally, we conducted an evaluation using a
codebase created for this method, and the results confirmed that this method can identify
many error locations. It should be noted that this method has not undergone an evaluation
involving subjects. Therefore, in the future, it is necessary to investigate the extent to
which individual differences between the model answer and the program of the beginner
can be tolerated.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Detect Structure Errors using a Model Program 15

References

[1] K. Uchida and K. Gondow, “C-Helper: C latent-error static/heuristic checker for
novice programmers,” in Proceedings of the 8th International Conference on
Computer Supported Education (CSEDU 2016), pp. 321–329, 2016.

[2] J. S. Song, S. H. Hahn, K. Y. Tak, and J. H. Kim, “An intelligent tutoring
system for introductory clanguage course,” Computers & Education, vol. 28, no.
2, pp. 93–102, 1997.

[3] N. Saini, S. Singh, and Suman, “Code clones: Detection and management,”
Procedia Computer Science, vol. 132, pp. 718–727, 2018.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “A code clone detection technique for
object-oriented programming languages and its emprical evaluation,” in Proc. of
the 62nd National Convention of IPSJ, pp. 23–28, 2001.

[5] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent approach for
detecting duplicated code,” in Proc. IEEE Int’l Conf. on Software Maintenance
(ICSM ’99), pp. 109–118, 1999.

[6] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. A. Kontogiannis,
“easuring clone based reengineering opportunities,” in Proc. of the 6th IEEE Int
’l Symposium on Software Metrics (METRICS’99), pp. 292–303, 1999.

[7] W. Kozaczynski, J. Ning, and A. Engberts, “Program concept recognition and
transformation,” IEEE Transactions on Software Engineering, vol. 18, no. 12, pp.
1065–1075, 1992.

[8] A. Quilici, “A memory-based approach to recognizing programming plans,”
Commun. ACM, vol. 37, no. 5, pp. 84–93, 1994.

[9] N. Truong, P. Roe, and P. Bancroft, “Static analysis of students ’Java pro-
grams,” in Proceedings of the Sixth Australasian Conferenceon Computing Ed-
ucation (ACE ’04), pp. 317–325, 2004.

[10] K. Koike, T. Tomoto, T. Horiguchi, and T. Hirashima, “Proposal of the expand-able
modular statements method for structural understanding of programming, and
development and evaluation of a learning support system,” Transactions of
Japanese Society for Information and Systems in Education, vol. 36, no. 3, pp.
190–202, 2019. (in Japanese).

[11] T. Osuka, T. Kobayashi, N. Atsumi, J. Mase, S. Yamamoto, N. Suzumura, and
K. Agusa, “CX-Checker: A flexibly customizable coding checker for C,” IPSJ
Journal, vol. 53, no. 2, pp. 590–600, 2012. (in Japanese).

[12] H. Bao, M. Nakata, and Q.-W. Ge, “A proposal of syntax tree expression of C
language programs,” CIEC Computer & Education, vol. 36, pp. 56–61, 2014.(in
Japanese).

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

R. Nakai, T. Kamina16

