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Abstract

By analyzing the fluctuations of ability estimates in testing, we first obtain the purely prob-
abilistic fluctuations of ability estimates in a one-time testing under the condition that the
students’ abilities can be estimated by using the item response theory, and next, by taking
into account such the probabilistic fluctuations, we find students who reveal the discrep-
ancies of observed abilities between two separated testings. When such discrepancies of
abilities are observed, test results are considered to be affected by some factors such as
the physical conditions of the examinees, the teacher’s teaching skills, and students’ study
skill developments. To describe such a phenomenon, we proposed a basic formula. The
accuracies are obtained under the situation that the observed data follows the item response
theory. To investigate whether we can assume such a condition or not, we have introduced
the matrix decomposition perspective, and confirmed that the item response theory were
used properly. Using an example case took in a university mathematics testing, we have
shown how we have extracted the purely probabilistic fluctuations and segregated fluctua-
tions due to other factors.

Keywords: item response theory, purely probabilistic fluctuation, basic formula represent-
ing fluctuations, bootstrap method, Fisher information matrix, learning analytics, matrix
decomposition.

1 Introduction

Since testing is an indirect method to measure the ability of an examinee in a specific field,
the result from a test does not always represent the true ability of the examinee. Sometimes,
the examinee is not good at questions in a test even if he/she often can do well to other tests.
Therefore, it is commonly seen that the results of two consecutive tests are often not highly
correlated, even though the test interval between the two tests is short and the difficulties of
the tests are very similar.

For example, TOEIC tests are believed, in general, to be very reliable such that a test
score by an examinee discloses the absolute potential value of the examinee’s English skill.
However, as shown in Figure 1, the scores of 296 examinees fluctuate very much person
to person although the mean value of test A (horizontal axis) is almost the same as that of
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test B (vertical axis); the interval between the two tests (A and B) is about one year. If
we assume that English skill is admitted to be acceptable when the score of TOEIC test is
larger than 350, the number of rejected examinees using test A is 118 out of 296. Out of
118 examinees, 69 examinees again failed in test B. Thus. if we predict the second rejection
using the first result, the hit rate to that becomes only 0.58. In order to improve such a hit
rate, we investigate the score fluctuation characteristics in this paper.

Figure 1: Two consecutive TOEIC test results. The coefficient of correlation between the
two tests is 0.63.

Such a large fluctuation phenomenon is not considered to be caused only by proba-
bilistic errors; there may exist many factors such as personal physical conditions, advan-
tageous/disadvantageous problems given, personal studying results, or assistances by good
teachings. In this paper, we consider whether we can deal with the fluctuation phenomena
in testings. More concretely, our primary matter of concern is a possibility that we can
segregate the pure probabilistic errors from the total fluctuations.

2 Basic Formulation of Fluctuations

In the previous paper [23, 24], we showed the existence of the irreducible probabilistic
fluctuations in testing along with the basic formula representing such the fluctuations as

ϕi = µi + εi, (1)

where, ϕi, µi, and εi are student’s observed ability, student’s true ability, and purely prob-
abilistic fluctuation, respectively. However, as mentioned above, student’s observed ability
may include other factors affected by testing chances. Thus, we extend equation (1) more
precisely to include such factors αi(t) such that

ϕi(t) = µi +αi(t)+ εi, (2)

where, ϕi(t) and αi(t) are time-dependent, and µi and εi are time-independent. In [23, 24],
we also considered the evaluation bias effect model by teacher k such as

ϕi(t) = µi +βk(t)+ εi. (3)
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Fluctuations of Ability Estimates in Testing

This bias effect βk(t) can be included in equation (2) if we interpret that αi(t) absorbs βk(t)
affected by teacher k, or class k.

Thus, we think that the observed value of student’s ability fluctuates due to two elements
of αi(t) and εi. For just a one-time testing, µi in equation (1) is the same as the ability
parameter in the item response theory (IRT) which will be denoted by θi in equation (4) in
the next section. Here, we show two methods to evaluate the magnitude for εi; one is to
use the bootstrap method and the other is to use the Fisher information matrix in likelihood
principle.

We try to find the purely probabilistic fluctuation εi under the IRT with two-parameter
logistic function. For general explanations to the IRT, see [1], [7], [28], for example. For
specific explanations to online testing applications, see [8–12, 32]. However, we, here,
introduce the IRT very briefly for clarity.

3 Item Response Theory

We assume the probability Pi j that an examinee i answer to a question j correctly is denoted
as

Pi j(θi;a j,b j) =
1

1+ exp{−1.7a j(θi−b j)}
,

= 1−Qi j(θi;a j,b j), (4)

where θi expresses the ability for student i, and a j,b j are constants in the logistic function
for item j called the discrimination parameter and the difficulty parameter, respectively.
Then, we can obtain the maximum likelihood estimates θ̂i and â j, b̂ j for parameters θi and
a j,b j by maximizing the likelihood function,

L =
m

∏
i=1

n

∏
j=1

(
Pδi j

i j ×Q1−δi j
i j

)
, (5)

where m is the number of students, and n is the number of questions.
However, it is not easy to obtain the item parameters and the students’ abilities together.

There are 2×n+m unknown parameters to be estimated. Therefore, the item parameters are
first estimated by using the marginal likelihood function by removing the students’ abilities
such as

L(δ |a,b) =
m

∏
i=1

[
∫ ∞

−∞
g(θ)

n

∏
j=1

L(δi j|a j,b j)dθ ], (6)

where g(θ) denotes the ability common to all the students and δ denotes all the patterns of
δi j, taking the value of 0 and 1. We often apply g(θ) to a standard normal distribution. The
EM algorithm [3] is usually used in such a case [2]. Then, the students’ abilities are obtained
by maximizing the corresponding likelihood function. To circumvent the ill conditions so
that all the items are correctly answered or incorrectly answered, the Bayes technique is
applied [2]. However, we sometimes meet other cases such as the uniform distribution to
g(θ). In such a situation, other formulations should be established.

The indicator function δi j takes values such that δ = 1 for success and δ = 0 for failure
in answering a question. However, we may extend δi j characteristic from discrete value
of δ = 0,1 to continuous value of δ ∈ [0,1] to accept the partial correctness to answer a
question.
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4 Evaluation of Purely Probabilistic Fluctuations

4.1 The bootstrap method

After a test is taken, we obtain the estimated parameters θ̂i and â j, b̂ j by maximizing the
likelihood function (6). From the test results taken just a one-time, we attempt to obtain the
magnitude of the probabilistic fluctuation. To do so, we perform bootstrap simulations to
generate random response matrices.

Example testing cases we use here are the midterm examination and the end-term ex-
amination for the undergraduate freshman mathematics subject, analysis basic (or calcu-
lus). They were performed in the first semester in 2019. See relevant references such
as [13–22,25–27,33,34]. The number of questions to the midterm examination is 31 and the
number of questions to the end-term examination is 36, and the total number of questions
is 67; they are all consisting of multiple choice type questions. The number of examinees
took the midterm examination is 216, and the end-term examination 215. For the sake of
comparison, we chose the examinees for analysis who took both the midterm examination
and end-term examination together. The numbers of such examinees was 207. In dealing
with the grade evaluation, we have used all the question results together in the IRT analysis.

We have considered two bootstrap cases although there are many methods to generate
such a matrix. One is that we draw n whole column response results with replacement from
n question columns randomly; this is a kind of the nonparametric bootstrap method. We
call this random item selection; see Figure 2 on the left. The second is that we generate
new δ̂i j by using the cumulative probability distribution (4) with the estimated θ̂i and â j, b̂ j;
this is a kind of the parametric bootstrap method. In regenerating the response matrix, we
first generate a uniform random number p ∈ [0,1] and obtain P̂i j = Pi j(θi;a j,b j), then we
set δ̂i j = 1 if P̂i j ≥ p, and δ̂i j = 0 otherwise. We call this random delta determination; see
Figure 2 on the right.

In the figure on the bottom, two scatter plots are shown. In both the scatter plots,
the horizontal axis represents the estimated ability using the original (observed) response
matrix; the vertical axis represents the estimated ability using the bootstrapped response
matrix. We see there are no obvious differences between the two scatter plots. We may use
any of these two results. However, the former case may cause the difficulty in numerical
computation in maximizing the likelihood function due to the matrix singularity (results of
two columns could be the same with probability 1/e). The example in Figure 2 happens to
avoid such an inconvenient case. From now on, we use the second type bootstrap method,
i.e., the parametric bootstrap method.

From these scatter plots, we can see that the estimated ability points seem not to spread
in an elliptic shape (this means the points are approximately normally distributed), but in an
band-wise shape. This spreading characteristic is totally different from the feature in Figure
1 where spreading shows elliptic shape. Such a difference can be understood that Figure 1
case includes the variable αi(t) and Figure 2 cases do not.

We have generated 100 response matrices using the random delta determination. Then,
to each student i, 100 estimates of {θ l

i },(l = 1, . . . ,100) are obtained. Using these estimates,
we can draw the box-plot of the estimated abilities to each student i. Figure 3 shows the
box-plots for all the students in ascending order of the originally estimated ability θ̂i for
clarity. In the figure, the thick line in the center of the box-plot indicates the median of
{θ l

i },(l = 1, . . . ,100), Q2,i. The top edge of the box represents the third quartile, Q3,i, and
the bottom edge of the box represents the first quartile, Q1,i. In addition, the upper and lower
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Figure 2: Two kinds of the bootstrap methods. On the left hand side, the nonparametric
bootstrap method is illustrated where full questions in column are selected randomly. On
the right hand side, the parametric bootstrap method is illustrated where δ̂i j is regenerated
randomly, using equation (4).
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whiskers are, Q1,i− 1.5× IQRi, and Q3,i + 1.5× IQRi, where IQRi is Q3,i−Q1,i. Circles
represent data points larger or smaller than the whiskers, that is, outliers. We can roughly
grasp the purely probabilistic fluctuations from this figure.

Figure 3: The box-plots of the bootstrapped ability estimates for all the students in ascend-
ing order of the originally estimated ability θ̂i.

To capture the fluctuations more intuitively, we illustrated the standard deviations of
the bootstrapped ability estimates for all the students in ascending order of the originally
estimated ability θ̂i as shown in Figure 4. Looking at the figure, we see that the standard
deviations do not vary much. This may indicate that the magnitudes of εi in equation (2)
are similar to all the students.

4.2 Use of the Fisher information matrix

Assuming that the ability parameters θi follow the normal distribution, then we can use a
Bayes method to obtain the ability parameters by maximizing,

H{θ | δ ,a,b} ∝ L{δ | θi,a j,b j}h(θ), δ = (δi j), (7)

where,

L{δ | θi,a j,b j}=
n

∏
j=1

Pi j(θi)
δi j(1−Pi j(θi))

1−δi j , (8)

h(θ) =
1√

2πσ
exp

(
−θ −µθ

2σ2
θ

)
. (9)
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Figure 4: The standard deviations of the bootstrapped ability estimates for all the students
in ascending order of the originally estimated ability θ̂i.

The Fisher information matrix (in this case, it is scalar) can be obtained as follows.

I(θ) = E[(
∂ logLh

∂θi
)2]

= −E[
∂ 2 logLh

∂θi
2 ]

≈
n

∑
j=1

(1.7a j)
2Pi j(θi)(1−Pi j(θi))

+
1

2σθ 2 . (10)

Using the same example in the subsection above, we can obtain the probabilistic fluc-
tuations regarding the Fisher information matrix. Figure 5 shows the standard errors for the
ability estimates using the Fisher information matrix for all the students in ascending order
of the originally estimated ability θ̂i. The figure corresponds to Figure 4, and we see that
they provide approximately the same features.

We have compared the probabilistic errors using the bootstrap method and using the
Fisher information matrix against the examinee’s estimated ability values. Figure 6 shows
such a comparison. We can see that both the probabilistic errors are close to each other.

In addition, to compare these two fluctuations, we provide Figure 7 where the standard
deviations using the bootstrap method located in horizontal axis and the standard errors
using the Fisher information matrix located in vertical axis. These two fluctuations are well
correspond to each other. Thus, we can grasp the purely probabilistic fluctuation magnitude
to each examinee using the parametric bootstrap method (and also using the nonparametric
bootstrap method) and using the Fisher information matrix from just a one-time testing
result.
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Figure 5: The standard errors for the ability estimates using the Fisher information matrix
for all the students in ascending order of the originally estimated ability θ̂i.

Figure 6: Comparison the probabilistic errors between using the bootstrap method and using
the Fisher information matrix against the examinee’s estimated ability values.
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Figure 7: Comparison of the fluctuations using the bootstrap method and those using the
Fisher information matrix.

5 Comparison between the Purely Probabilistic Fluctuations and
the Other Factor Add-on Fluctuations

We have shown that the purely probabilistic fluctuations can be grasped using either from
the bootstrap method or the Fisher information matrix for just a one-time testing. As men-
tioned before, there may be some other factors affecting the ability results between the two
test intervals; to each test, we can obtain the magnitude of the purely probabilistic fluc-
tuations. We next attempt to extract other factor fluctuations. We assume that such the
fluctuations are independent from the purely probabilistic fluctuations in just a one-time
testing.

We again use the test results as introduced before, that is, the midterm examination
results and the end-term examination results. First, we plot these two test results via the
estimated ability values in Figure 8. We may consider that the coefficient of correlation is
high such as a value close to 1; however, actually, it is 0.72, and this is not so small, but
also not so large enough.

We again performed the bootstrap method to the end-term examination. Figure 9 shows
an ability plot of the original end-term estimates (horizontally located) and the bootstrapped
estimates (vertically located). Contrary to Figure 8, the coefficient of correlation is 0.95
which is considered to be high. Thus, we may assume that other factors different from the
purely probabilistic fluctuation in a one-time testing are existing.

To confirm such an assumption, we provided additional two figures. Figure 10 shows
the ability estimates of the end-term examination and their 95% upper and lower confidence
limits computed by using the Fisher information matrix along with the bootstrapped abil-
ity estimates to the end-term examination. Looking at the figure, we can see that almost
all estimates obtained by the bootstrap method are included in the 95% confidence band.
Figure 11 shows the ability estimates of the end-term examination and the 95% upper and
lower confidence limits computed by using the Fisher information matrix along with the
ability estimates to the midterm examination. From the figure, we can find that many points
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Figure 8: The relation between the midterm examination results and the end-term examina-
tion results.

located outside the 95% confidence band. We think that such points may include the factors
αi(t) different from the purely probabilistic fluctuations in a one-time testing. A student
(student id is 78) took 1.85 in ability value in the midterm examination, but his ability value
in the end-term examination dropped steeply to −0.25. We can imagine that his testing
condition was not so good or something wrong happened to him. On the contrary, another
student (student id is 83) took −1.67 in ability value in the midterm examination, but his
ability value in the end-term examination soared to −0.21. In such cases, we can utilize the
fluctuation analysis in a statistical manner.

6 Another Look at the Response Matrix

In analyzing the fluctuations for ability estimates, either parametric or nonparametric, we
have been using the IRT. This means that the results are those restricted under the assump-
tion that the IRT can be fitted to the data. However, the IRT requires a strict assumption that
δi j and δik is independent from each other, where j ≠ k. That is, if question j is related to
question k to some extent, we may assume that an examinee who solved question j could
also solve question k with higher probability than the examinee’s latent ability. This is so-
called the local independency [4]. In order to investigate whether the results obtained by
the IRT are affected by such a dependency or not, we have to look at the response matrix
from another perspective. We introduce the matrix decomposition (MD) [29] perspective
here. The MD does not require such an independency among questions.

6.1 Matrix decomposition perspective

The matrix decomposition is similar to the singular value decomposition, SVD [6]. The
SVD deals with complete matrix, and the MD deals with incomplete matrix. When the
matrix is complete, both the SVD and the MD can be used, and the decomposed matrices
are almost the same.
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Figure 9: The relation between the original ability estimates of the end-term examination
and the bootstrapped ability estimates to the end-term examination.

Figure 10: The ability estimates of the end-term examination and the 95% upper and lower
confidence limits computed by using the Fisher information matrix along with the boot-
strapped ability estimates to the end-term examination in ascending order of the originally
estimated ability θ̂i.
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Figure 11: The ability estimates of the end-term examination and the 95% upper and lower
confidence limits computed by using the Fisher information matrix along with the ability
estimates to the midterm examination in ascending order of the originally estimated ability
θ̂i

We can construct a target matrix R ∈Rm×n with two matrices U ∈Rm×k and V ∈Rn×k.
Matrix decomposition is described as

R =UVT. (11)

Using the non-null element values in A = (ai j), we find U and V so that

E =
m

∑
i=1

n

∑
j=1

I(i, j)(ai j− ri j)
2 (12)

becomes small, where ri j =∑k
l=1 uilv jl , and I(i, j) is the indicator function such that I(i, j) =

1, if ai j is non-null, I(i, j) = 0, if ai j is null. For stable computation, we use another func-
tion such that

W =
m

∑
i=1

n

∑
j=1

I(i, j)(ai j− ri j)
2 + ku

m

∑
i=1

k

∑
l=1

u2
il + kv

n

∑
j=1

k

∑
l=1

v2
jl , (13)

where, ku and kv are regularization coefficients to prevent overfitting. To find the optimum
values, we use the descent method [5, 30]. From appropriately set initial values of u(0)il and
v(0)jl , we proceed the following iteration until |u(t+1)

il −u(t)il | and |v(t+1)
jl − v(t)jl | are both small

enough.

u(t+1)
il ← u(t)il −µ

∂W
∂uil
|(t)

v(t+1)
jl ← v(t)jl −µ

∂W
∂v jl
|(t), (14)

where, µ is a learning coefficient.
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We use the data obtained from the midterm examination result mentioned above. The
number of questions to the midterm examination is 31. However, the number of examinees
is 216. Using the estimates of the IRT parameters, we can reconstruct the response matrix by
using equation (4). Similarly, by using the MD method, we can build the response matrix.
Figure 12 shows these two reconstructed response matrices along with the original observed
response matrix. To find a relationship between the estimate θ̂i for ability parameter in the
IRT and the estimated mean value δ̂i of δ̂i j for examinee i such that

δ̂i =
1
n

n

∑
j=1

δ̂i j, (15)

we have shown Figure 13. We can see that there is a clear relationship between them, and
thus we may proceed that we evaluate the estimation accuracy by using the reconstructed
response matrix.

Regarding Figure 12, the two constructed matrices seem to be similar at a first glance.
To compare the accuracy of the constructed matrices to the originally observed response ma-
trix numerically, we have computed the root mean squared error, RMSE. Here, the RMSE
between a matrix A = (ai j) and a matrix B = (bi j) is defined as below

RMSE = (
1

∑m
i=1 ∑n

j=1 I(i, j)

m

∑
i=1

n

∑
j=1

I(i, j)(ai j−bi j)
2)1/2, (16)

where ai j and bi j are real numbers in R, and I(i, j) = 0 if element (i, j) is null, I(i, j) =
1 if element (i, j) is not null. The RMSE using the IRT is 0.3915, and that using the MD
is 0.3854 when k = 2. We have selected k such that the number of free parameters are to
be comparable in these two mathematical models. From these RMSE, we may regard that
the independency assumption among questions will not affect the response matrix recon-
struction much. In other words, although there are dependencies among questions, we may
ignore such an effect as long as we measure the accuracy via the RMSE for the response
matrix.

6.2 Fluctuations using training data and test data

Usually, the IRT uses the full observed data for estimation, which may cause overfitting. In
machine learning, to avoid such overfitting effect, we first select training data appropriately
from the observed data, and then build a mathematical model for prediction. After that, we
see if the model is properly assumed or not by using the test data set which is a complement
set to the training data. However, the common IRT cannot perform such a procedure. Thus,
we extend the IRT to overcome this flaw such that we can use an incomplete matrix [31,32].

Figure 14 shows one case for reconstructed response matrices using the incomplete
training data matrix by the IRT and the MD along with the training data matrix. The size of
training data is set to 9/10 of the total number of elements in the observed matrix, and the
test data is set to 1/10. The training data are selected at random. We have performed such
trials for ten times. Table 1 shows the RMSE values for training data sets and test data sets.

Looking at the table, there seems to be no large discrepancies among the RMSE using
the 10 training data and among the RMSE using the 10 test data. Also, the RMSE between
the IRT and the MD show similar values in training data and in test data, respectively. We
can regard the IRT results are almost the same as those by the MD. That is, the results
obtained from the common IRT are reliable in reality.
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Figure 12: Observed response matrix and the reconstructed response matrix using the IRT
and the reconstructed response matrix using the MD.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Figure 13: Relation between the estimated ability parameter θ̂ i and the mean value of the 
corresponding δ̂ i computed by equation (15) for student i.
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Figure 14: Reconstructed response matrices using the incomplete training data matrix by
the IRT and the MD along with the training data matrix. On the top, elements where 0 and
1 numbers appear are used in the training data, and elements where 0 and 1 numbers are
hiden are used in the test data.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Table 1: RMSE values for training data set and test data set using the IRT and the MD.

trial MD MD IRT IRT
training test training test

1 0.3844 0.4137 0.3909 0.4093
2 0.3842 0.4106 0.3905 0.4097
3 0.3848 0.4158 0.3907 0.4120
4 0.3843 0.4136 0.3898 0.4174
5 0.3849 0.4162 0.3906 0.4059
6 0.3849 0.4057 0.3912 0.4046
7 0.3848 0.4088 0.3915 0.4044
8 0.3848 0.4076 0.3909 0.4048
9 0.3865 0.3918 0.3922 0.3923
10 0.3845 0.4085 0.3909 0.4080

mean 0.3848 0.4092 0.3909 0.4068
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7 Concluding Remarks

Since testing is an indirect method to measure the ability of an examinee in a specific field, 
the result from a test does not always represent the true ability of the examinee. We often 
observe the fluctuations affected by many factors. In this paper, we have analyzed such 
fluctuations of ability estimates in testing. By analyzing the fluctuations, we can first obtain 
the purely probabilistic fluctuations of ability estimates in a one-time testing under the 
condition that the students’ abilities can be estimated by using the item response theory. 
Next, by taking into account such the probabilistic fluctuations, we can find students who 
reveal the discrepancies of observed abilities between two separated testings. When such 
discrepancies of abilities are observed, test results are considered to be affected by some 
factors such as the physical conditions of the examinees, the teacher’s teaching skills, and 
students’ study skill developments. To describe such a phenomenon, we proposed a basic 
formula. The accuracies are obtained under the situation that the observed data follows the 
item response theory. To investigate whether we can assume such a condition or not, we 
have introduced the matrix decomposition perspective, and confirmed that the item 
response theory were used properly. Using an example case took in a university 
mathematics testings, we have shown how we extracted the purely probabilistic fluctuations 
and segregated them from fluctuations due to other factors in a statistical manner.
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