
Fill-in-the-blank Questions for Object-Oriented Pro-

gramming Education and Its Preliminary Evaluation

Miyuki Murata *, Naoko Kato †,

Mika Ohtsuki ‡, Tetsuro Kakeshita ‡

Abstract

Object-oriented technology is important to improve software quality from various perspectives.

We have developed pgtracer, a programming education tool that provides fill-in-the-blank

questions for the C programming language. By analyzing the data collected by using pgtracer in

actual classes, we have obtained useful knowledge for C programming education. In this paper,

we develop fill-in-the-blank questions for Java programs to extend pgtracer for object-oriented

programming. The fill-in-the-blank question consists of a set of programs and trace tables. A

program and a trace table respectively correspond to a Java class and an instance. A trace table

contains message sendings between instances, which are important for understanding the be-

havior of object-oriented programs. Furthermore, we introduce blanks that students do not need

to fill. This provides more flexibility in setting the difficulty level while reducing the student

workload to fill the blanks. We report the results of a trial experiment in which students were

asked to solve some of the fill-in-the-blank questions using the Embedded Answers (Cloze)

question type of Moodle's Questions function. Analysis of the collected student data will pro-

vide useful knowledge for object-oriented programming education, which will be reported in a

future report.

Keywords: Learning Analytics (LA); programming education, object-oriented programming,

Java, fill-in-the-blank question

1 Introduction

With the further development of information technology in recent years, IT-based services

are being provided in many application domains. As these services become more

sophisticated and complex, object-oriented programming is highly important to improve

software quality and the development efficiency of these services.

* National Institute of Technology, Kumamoto College, Yatsushiro, Japan
† National Institute of Technology, Ariake College, Omuta, Japan
‡ Saga University, Saga, Japan

I nternational Journal of Learning Technologies and Learning Environments
I nternational Institute of Applied Informatics
20 23, Vol. 6, No. 1, IJLTLE699

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Although object-oriented programming education is provided in universities and institutes of

technology to develop software engineers, the lack of time and staff makes it hard to provide

sufficient programming exercise. We are thus developing an education support tool pgtracer [1,

2] utilizing fill-in-the-blank questions to support programming exercises and learning analytics

(LA) utilizing the collected data. Fill-in-the-blank questions have the advantage that the diffi-

culty level of the question can be easily adjusted according to the location and size of the blanks

and that an answer log can be collected for each individual blank. It is expected that the

knowledge obtained from LA applying the collected log can be used to improve the effectiveness

of the learning process.

The purpose of this paper is to support Java programming education by applying the

fill-in-the-blank questions of Java programs to pgtracer to acquire knowledge about students’

learning processes and achievements. In this paper, we propose an extension of fill-in-the-blank

questions of Java programs. The proposed questions are provided to students in an actual class

and are evaluated.

A fill-in-the-blank question for pgtracer is composed of a set of Java programs and trace tables.

A trace table corresponds to an instance and represents the values of variables and outputs of the

instance. An innovation of our research is that the blanks are defined in a trace table not only in

the program. Through our previous experiment of C programming, we found that the students

who have a high understanding of the trace table also have a high achievement of the program,

and visualizing the change of the variable value by the trace table is useful for the acquisition of

the program [3, 4]. It is also important to trace message sending among objects to understand a

Java program. Thus, we extend the trace table to represent such message sending in this paper.

When we define a blank within a program or a trace table, other portions of the program or the

trace table may serve as hints. To hide such hints, it is sometimes necessary to define many

blanks. However, this may increase the number of similar blanks and may reduce students’

motivation to learn [4]. By introducing a special type of blanks that students do not need to fill in,

we can provide more flexibility in controlling the difficulty level of the questions while hiding

hints.

We utilize 12 Java programs to demonstrate GoF design patterns [5]. These programs fully

make use of the functions of Java programming language and object-oriented design so that they

are suitable for the education of object-oriented programming. We classify these programs into

three levels and adjust the difficulty levels of the fill-in-the-blank questions by carefully choos-

ing the place of the blanks.

We are planning to utilize the proposed fill-in-the-blank questions in an actual class and to apply

the LA method to the collected data. The class is "Programming Exercise III", which is provided

in the third academic year of the Computing Division, Faculty of Science and Engineering, Saga

University. Since pgtracer for Java programs is still under development, we conducted a trial

experiment using Quiz, one of the Moodle activities. Using the analysis of the logs collected

and the results of the questionnaire, we will examine the differences in the difficulty level of the

different types of blanks and the student’s understanding of the concept of the trace table, and

verify the validity of the proposed questions.

This paper is organized as follows. In the next section, we describe some related research. We

introduce pgtracer functions in Section 3. In Section 4, we describe how to express programs

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

and define blanks within the program. We describe how to express trace tables and define blanks

within the trace table in Section 5. In Section 6, we propose a strategy to adjust the difficulty

levels of the fill-in-the-blank questions. Section 7 describes the lecture and the trial, and Section

8 describes the results of the trial. Section 9 discusses the results of the questionnaire. We shall

conclude the paper in the last section.

2 Related Works

There are many educational tools for object-oriented programming with different educational

objectives.

Hsiao et al. proposed web-based parameterized questions for Java [6]. The questions are as

examining the final value of a variable or predicting the text being printed. Pgtracer allows set-

ting blanks not only in the final value but also in the variable values at each step of the program.

The ability to trace not only the final correctness but also the variable values at each step is useful

for estimating the degree of understanding of the program.

Truong et al. introduced a static analysis framework for the Java program [7]. The student an-

swers the entire program of an assigned question. The system uses model answers and prede-

fined gaps for analysis. In pgtracer, the same kind of problem can be created by defining the

entire program as blank. Furthermore, by analyzing the answer log of all students, pgtracer can

discover trends in errors other than the expected ones.

Hauswirth et al. proposed the Informa clicker system to teach Java programming [8]. Informa

provides several types of questions related to program code such as a multiple-choice question

but does not address the tracing of variables.

Funabiki’s research group proposed several programming education systems for Java utilizing

fill-in-the-blank problems [9, 10, 11]. The problems in each of these systems define the blanks

for the part of a program statement, an entire statement, or an output value. However, they

cannot address message sending or variable values for each step of program execution. Our

proposed question provides more flexibility because it can define the blanks for these parts as

well.

Most of the studies on LA using Java programs have analyzed program and compilation errors.

Edwards et al. analyze static analysis errors occurring in student-written Java programs, and

detected using Checkstyle and PMD. They obtained knowledge such as the most common errors

[12]. McCall et al. analyzed errors in student programs and studied the classification of errors

and their frequency [13]. Altadmri et al. analyze the frequency, time-to-fix, and spread of errors

among users using a year’s worth of compilation events from over 250,000 students [14].

Pgtracer collects not only the final answers but also the answers that the students input during the

answering process. By using these data, it is possible to analyze the behavior of the students until

they reach the final answer.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

3 Programming Education Support Tool Pgtracer Utilizing

Fill-in-the-Blank Questions

Pgtracer provides the functions to create fill-in-the-blank questions, functions to provide a ques-

tion to the students, functions to evaluate student answers, functions to collect student learning

logs, and to analyze the log.

3.1 A Fill-in-the-Blank Question

A fill-in-the-blank question is composed of four XML files, representing a program, a trace table,

masks for the program, or masks for the trace table. A token, consecutive sequence of tokens, an

expression, and a statement are the candidate of blanks within a program. A variable value, a

step number, and a variable name are the candidate of blanks within a trace table. We have ver-

ified that the difficulty level of a question can be controlled by the place of the blanks [1, 2].

3.2 The Functions provided by pgtracer

Pgtracer provides various functions. The first function is to edit a fill-in-the-blank question.

Pgtracer provides the functions to generate XML files, for a program, a trace table, masks of a

program, and a trace table.

The Second function provides fill-in-the-blank questions for a student and automatic evaluations

of the student’s answer. Pgtracer fills the blanks within a program using student answers. Then

pgtracer executes the filled program and compares the execution process of the program with the

correct trace table.

Pgtracer also automatically collects student logs, such as the student's answer, the correct answer,

and the required time, just after filling in each blank. Pgtracer provides the analysis functions for

the collected log from various viewpoints such as the analysis functions of each student, each

question, each blank, and the detailed learning process of a student [2]. The analysis functions

are useful to analyze students’ achievement and their learning process.

3.3 Programming Education Model using pgtracer

Figure 1 represents the programming education process utilizing pgtracer. A teacher creates a

fill-in-the-blank question using the correct program and the input file. A student chooses the

question from the question database and answers the question. Pgtracer automatically evaluates

the student's answer. At the same time, pgtracer collects the answer log. The students and the

teacher can analyze the answer log using the analysis functions. The teacher then can improve

the question database to provide a better set of fill-in-the-blank questions and may give feedback

to the student or the entire class.

 M. Murata, N. Kato, M. Ohtsuki, T. Kakeshita

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

5

Figure 1: Programing Education Process utilizing pgtracer.

4 A Program for Fill-in-the-Blank Question

In this section, we describe how to express programs and to define blanks within a program.

Figure 2 represents an example.

Figure 2: Example of a Program with Blanks (Template Method, Main Class)

4.1 Representation of a Program

Since the most high-level component of a Java program is a class, there is one source file for

each class. Thus, a fill-in-the-blank question of a Java program generally contains multiple

source files. We also assign a step number to each statement including instance variable and

local variable definitions since they may contain initialization statements. The step numbers are

assigned according to the following rules and correspond to the step numbers in the trace table

described in Section 5.

⚫ Assign a sequential step number to each statement including instance variable definition.

⚫ Assign a sequential step number starting from 1 to the statement in the method definition.

Student
Teacher

Store Questions
Answer
Questions

View Analysis
Results

View Analysis
Results

Create/Improve
Questions

Feedback to Students or to the Entire Class

pgtracer

Automatic Scoring

View Evaluation

Analyze Answer Log

Collect Answer Log

 Fill-in-the-blank Questions for Object-Oriented Programming Education and Its Preliminary Evaluation

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

6

⚫ Assign a sequential number to each statement defined in Java, such as assignment state-

ment, method call, or control statement such as if, else, switch, case, default, while, return,

etc.

⚫ Assign step numbers such as “x.y” to compound statements having nested structures.

A program must be compiled successfully. We also define the following guidelines for the Java

program.

⚫ Indentation is used to correctly represent nested structure.

⚫ Class definitions are preceded by an independent comment explaining the concept or fea-

ture of the class.

⚫ Method definitions are preceded by an independent comment explaining the feature pro-

vided by the method.

⚫ Variable definitions are accompanied by a comment of the same line explaining the stored

values in the variable.

⚫ A sequence of statements is preceded by an independent comment explaining their intention

or algorithm.

⚫ An independent comment is preceded by a blank line.

⚫ Only one statement is described in a single line if possible.

⚫ Variable and function names follow the Camelcase convention. However, the first letter of

a class name should be capitalized.

4.2 Blanks within a Program

A token is a string that cannot be further subdivided, such as a variable name, a class name, an

operator, a keyword. A comment is defined as a token. Pgtracer allows defining a blank at an

arbitrary sequence of tokens. Thus, a part of a statement, an entire statement, and a sequence of

consecutive statements can be defined as a blank.

There are two types of blanks. One requires an answer, the other does not. We called a blank of

the latter type an ignorable blank. By introducing the ignorable blanks, the difficulty level of a

blank can be controlled more flexibly. Consider the case to repeatedly send similar messages to

different objects. If a blank is defined within one of these statements, the statements near the

blank may become a hint to fill the blank. By defining appropriate ignorable blanks within other

statements, we can hide the clue tokens without increasing the number of blanks that the student

must fill. Thereby the difficulty level of the question can be controlled more flexibly.

Since it is also possible to hide comments using the ignorable blank, we can also control the

difficulty level of a question. To distinguish between the blanks and the ignorable blanks, the

background of these blanks is filled with different colors. The blanks without a number represent

ignorable blanks in Figure 2.

 M. Murata, N. Kato, M. Ohtsuki, T. Kakeshita

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

7

5 A Trace Table for Fill-in-the-Blank Question

5.1 Representation of a Trace Table

A Java program is executed through message passing between objects. If the trace table is ex-

pressed in the order of execution steps, the table will be complicated. Thus, we define a trace

table for each object and represent each message passing in the trace table. This approach also

matches with the object-oriented programming concept such as sequence diagram. The pro-

posed trace table is defined below. Figure 3 provides an example.

5.1.1 Representation of Instance Identifier

We shall define a trace table for each instance and the Main method. A trace table corresponds to

an instance that has the name of the instance, while a trace table representing the Main method

has the name “Main”.

Each instance is expressed as “ClassName#X” to distinguish each instance of a class. Here,

“ClassName” is the string of the class name with the first letter is changed to the lowercase letter,

and “X” is a sequence number representing the order of generation. For instance, the identifier of

the first generated instance of class “CharDisplay” is “charDisplay#1”

Figure 3: Example of a Trace Table with Blanks

(Template Method, Instance ID = charDisplay#1)

Table 1: Columns of a Trace Table for each Object

Column Sub-Item Value

Caller of the

Method

Object Instance or Class Name

Method Method Name

Step # of Step

Step of Called the

Method
Class

Class Name which the

method is defined

Method Method Name

Step Step Number of the Code

Argument of the

Method

 Upper Column: Data Type,

Class Name

 Lower Column: Argument

Argument value when the

corresponding code is exe-

cuted

 Fill-in-the-blank Questions for Object-Oriented Programming Education and Its Preliminary Evaluation

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

8

Column Sub-Item Value

Name

Instance Variable Upper Column: Data Type,

Class Name

 Lower Column: Variable

Name, Instance Name

Value or Object Identifier
Local Variable of

the Method

External Object
 Upper Column: Class Name

 Lower Column: Instance Name
Object Identifier

Output / Return

Value of the

Method

Return Value of the Method
Return Value or Returned

Object Identifier

Output Output String

5.1.2 Columns of a Trace Table

The trace table for an object has columns listed in Table 1, while the trace table for the Main

method has the same columns except “Caller of the Method”. The “Caller of the Method”

column describes the calling object. The object is generated by a call to the constructor. After

generating the object, other objects may send messages to the object to execute some operations.

In a trace table, all the objects are listed as sub-items of the “External objects” column, if the

current object creates the object or sends a message to the object. The value of the sub-item is the

name of a called method. We can then understand the lifetime and the message flow of each

object generated within the program.

The trace table of a class including a static method is named to the class name. The trace table

has the item “Class Variable” and the sub-item “Data Type” in addition to the items shown in

Table 1.

5.1.3 Multiple Method Calls

An object may be called multiple times. To distinguish the series of processes in each method

call, a double line is drawn in the trace table. Specifically, a double line is drawn under the row

corresponding to the return statement.

5.1.4 Statement Representation Containing Multiple Operations

A single line of code may contain multiple operations. For example, the following code contains

two operations.

AbstractDisplay d1 = new CharDisplay(‘H’);

One is the generation of an instance of the class "CharDisplay" and the other is the assignment of

the generated instance to the variable d1.

Understanding each operation is necessary to understand the program. Therefore, in the trace

table, these two operations are represented by two rows in the order of execution. Here, the step

numbers are all the same. The operation represented by a row in the trace table can be recog-

nized by referring to the column of instance variables and external objects.

5.1.5 Representation of Variable Values

 M. Murata, N. Kato, M. Ohtsuki, T. Kakeshita

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

9

If the data type of the variable is a basic data type such as an integer, the stored value is displayed.

If an instance is stored, the cell displays the corresponding instance identifier.

Nothing is displayed if the variable is not allocated a space within the program or the variable is

in an indefinite state. Although these two cases are different in a strict sense, the target course

does not require students to strictly distinguish them. At an elementary level of object-oriented

programming education, we consider that presenting these subtle differences may cause confu-

sion among students and hinder their understanding process. Considering this, we use the same

notation for both of two cases.

5.1.6 Abbreviation of Iterative Steps

If the number of iterations is large, the trace table becomes quite large and may become hard to

understand. Therefore, we decided to describe the iterative process by omitting the intermediate

steps. To clarify the omitted rows, a row describing (omitted) is inserted.

5.2 Blanks within a Trace Table

In a trace table, the value of each cell can be defined as a blank. Specifically, variable values,

output values, step numbers, object identifiers, class names, method names, etc. Moreover,

method arguments, instance variables, local variables, and external objects, a blank can be de-

fined for their sub-items, data types or class names, variable names, or object names can be de-

fined as a blank.

Like the case of the program, it is possible to define ignorable blanks that do not require an

answer in a trace table. In a trace table, the state of a variable does not change until a new value is

assigned to it. Therefore, even when we want the students to guess the value from the program,

they can guess it from the values at the previous and next rows. To prevent this, the values before

and after the target value were also defined as blanks. However, this was not appropriate for

verifying the difficulty of the question, because some students confused the difficulty of the

question with the tediousness of answering since the additional blanks increased the number of

inputs. This issue can be solved by introducing ignorable blanks that do not require an answer.

6 Creation of Fill-in-the-Blank Questions

In this section, we propose the development strategy of fill-in-the-blank questions. We plan to

provide the created problems in “Exercise in Programming III”, which is provided in the third

academic year of the computing courses at Saga University. The students learn Python in the

first year, and in the second year, they learn structured programming using C++, so that students

are familiar with fundamental programming techniques as well as basic sorting and alignment

algorithms. They start learning object-oriented programming using Java at “Programming III”.

6.1 Blanks within a Trace Table

The target class intends to learn the purpose and usage of various tools used in the practical field

of software development to maintain efficiency and high quality. Specifically, students develop

software in the Java language using the integrated development environment (IDE) Eclipse and

learn how to use tools such as JUnit and Jenkins.

 Fill-in-the-blank Questions for Object-Oriented Programming Education and Its Preliminary Evaluation

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

10

In the first week, the students get a lecture about the IDE and practice basic Java programming.

Then the students learn Git and registration to GitHub, software testing techniques and unit test

design, JUnit, Jenkins, UML diagrams, and design patterns. Finally, development exercises are

given for four weeks. In parallel with this lesson plan, the students are provided with the

fill-in-the-blank questions proposed in this paper, to help them master Java programming.

6.2 Providing Fill-in-the-Blank Questions

The purpose of the exercises is to deepen the understanding of the students by providing them

with exercises that correspond to the course content. Twelve topics are selected from "Intro-

duction to Design Patterns in Java" and their sample programs are used to create the problems

[15]. The topics are selected considering the contents to be covered in the class, and the question

levels were set as beginner, intermediate, and advanced according to the topic contents and the

order of teaching (Table 2).

Table 2: The Topic of the Providing Fill-in-the-Blank Questions

Order Level Design Pattern The section in the Textbook

1

Beginner

TemplateMethod 3

2 FactoryMethod 4

3 Iterator 1

4 Composite 11

5

Intermediate

Decorator 12

6 Strategy 10

7 AbstractFactory 8

8 Observer 17

9

Advanced

Adapter 2

10 Builder 7

11 Command 22

12 Visitor 13

6.3 Development Policy of the Fill-in-the-Blank Questions

Through our previous research, we have obtained the following knowledge about

fill-in-the-blank questions for C language [3, 4].

 Questions with blanks defined only within the trace table are the easiest, followed by ques-

tions with blanks defined only within the program. The questions with blanks defined

within both the trace table and the program are most difficult for the students.

 The difficulty level of blanks within a program increases in the order of individual tokens,

sequences of tokens, and entire sentences.

 The difficulty level of blanks within the trace table increases in the order of step number,

variable value, and variable name.

 Comments reduce the difficulty level of the problem.

 M. Murata, N. Kato, M. Ohtsuki, T. Kakeshita

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

11

 As the number of blanks increases defined in a question, the motivation of the students

decreases to answer the question.

Since the students have already learned the basics of programming through the previous classes,

we designed the questions for the students to learn the basics of object-oriented programming

and design patterns.

The blanks within the program are defined mainly to check the understanding of Java-specific

grammar such as class definitions and to check the execution flow of message sending. Fur-

thermore, the blanks within the trace table are mainly defined for topics about the caller objects,

such as classes, method names, and step numbers, items about the called object, and values that

change as messages are sent and received.

Considering these factors, we developed the following policies to create questions with appro-

priate levels of the topic.

(1) Define approximately ten blanks per question. Here, ignorable blanks are not counted.

(2) Create two problems for one topic with different difficulty levels.

(3) Clarify the educational objective of each question.

(4) Clarify the intent for each blank.

(5) To define blanks within a program, we use individual tokens as the basis at the beginner

level. We use a longer sequence of tokens for intermediate and advanced levels.

(6) To define blanks within a trace table, we mainly use variable values at the beginner level.

At the intermediate level, we use more blanks of instance identifiers and methods.

According to our previous experience, we found that if the number of blanks in the question was

too many, students' motivation will decrease, and this would prevent them from continuous use

of pgtracer. In our previous experiment, five blanks were defined per question because the target

students were beginners of the C language and the total number of lines of the program was

approximately 20. In this paper, however, approximately ten blanks were defined for each

question because the level of programming proficiency of the students is expected to be higher

than that of the previous students. The total number of lines in the program is larger for the same

reason.

The second policy is defined to investigate the difference in difficulty between types of ques-

tions. Furthermore, the educational objective of the questions and the intention of each blank,

clarified by policies 3 and 4, will be used to analyze the learning logs. Policies 5 and 6 are set to

clarify the differences among the beginner, intermediate, and advanced levels.

6.4 An Example of a Fill-in-the-Blank Question

Table 3 shows the educational objective of the question created based on the program described

in the “Template Method” section and the intent of some blanks of the question. The resulting

question can be found in Figure 2.

 Fill-in-the-blank Questions for Object-Oriented Programming Education and Its Preliminary Evaluation

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

12

Consider the blanks (1) and (2), since the variables d1 and d2 are variables of the abstract class

“AbstractDisplay”, the user is required to understand that the constructors of either “CharDis-

play” or “StringDisplay”, which are subclasses of “AbstractDisplay”, are to be called, and to

derive the appropriate constructor from the arguments. It should be relatively easy to derive the

appropriate constructor based on the comments. The statement of Step 2 is not shown because it

is the same process as the blank (2).

The blank (3) and (4) are in the statement of the method call. For the blank (4), it is necessary to

derive the instance from the output value. Furthermore, although it is a sequence of tokens, it can

be derived from the comments and the statement in step 6.

Thus, the difficulty of the blanks can be controlled utilizing the length of the blank such as to-

kens, sequence of tokens, and entire statement, and the show/hide of comments. This question

becomes more difficult if the comments are hidden while leaving the blank unchanged.

Table 3: Educational Objective and Intent of Some Blanks within the Program

(Template Method)

Educational Objective Recognize usages of abstract classes and abstract methods.

Blank# Right answer The intent of the Blank

(1) CharDisplay Understand a constructor call.

(2) StringDisplay Understand a constructor call.

(3) display Can describe method calls.

(4) d2.display() Can derive an instance and a method from the output.

7 Primary Trials in a Lecture

The name of the lecture in which the trial was conducted is “Programming Exercise III”. The

target students of this lecture are third-year students at Saga University. The number of

students who took the course was 76. This trial was conducted in the first semester of the

2021 academic year.

The Java language is taught in this lecture in the third year. However, detailed explanations

of the language are not given in the lecture, and self-study at external online learning sites is

recommended as supplementary material after the basics are explained.

7.1 Trial using Moodle

This trial used the Embedded Answers (Cloze) question type of the Questions feature, rather than

the original Moodle module. This led to several limitations.

First of all, unlike the C version of pgtracer, there is no automatic question generation function,

so we had to manually create and present the fill-in-the-blank questions as images. Secondly, the

C version of pgtracer had more freedom in accepting descriptions as long as they could be

compiled and executed, but the Embedded Answers (Cloze) question type had less freedom in

the answers that could be set because only short sentences could be filled in and regular expres-

sions could not be used.

 M. Murata, N. Kato, M. Ohtsuki, T. Kakeshita

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

13

Although it is possible to limit the number of times a student could take the test, the number of

attempts was set to two in this trial. However, when students were allowed to take the test more

than once, some students would memorize the answers and copy them at the succeeding test.

Therefore, when students took the test twice, the average score was used for evaluation so that it

would be difficult for them to cut corners on the first attempt.

7.2 Problems used in the trial

In each week, we conducted trials with the following problems as indicated in Table 4. Suffixes

such as PR and TR in the problem ID indicate that the problem type is a program or a trace table,

respectively. The column on the right is the number of examinees for the first attempt.

Since some of the students were not familiar with the Java language, we presented a very basic

program and trace table problem in the first week. After that, we presented the design patterns

with the simplest structure. Presenting the program and the trace table for the same problem at

the same time was problematic because the trace table presented the entire program. In addition,

the student workload was too heavy when there were other exercises to be done. For these

reasons, we divided the trace table and the program into separate weeks and adjusted the way the

program was presented so that it was presented before the trace table.

For the trace table, a document explaining how to answer the questions in a simple program was

prepared when the trace table of the Iterator pattern was presented. For the Iterator pattern, the

programs were explained during the lecture, so the questions on the programs were omitted. The

fill-in-the-blank questions for the Factory Method pattern program were posted again after the

lecture because problems were found in the program. Since there was an error in the description

of the problem for the Composite trace table, the program was posted first after that.

Table 4: Problems and Number of Examinees

Week Design Pattern level
Problem

Type

Problem

ID

of

Blanks

of

Examinees

1 “for” statement
 Program Ex01_PR 6

67
 Trace table Ex01_TR 4

6
Template

Method

Beginner Program Ex06_PR 12
71

Beginner Trace table Ex06_TR 12

7
Factory

Method

Beginner Program
Ex07_PR 9 58

8

Simple

Example

 Trace table
Ex08_SP 2

67

Iterator pattern Beginner Trace table Ex08_TR 10

10
Factory

Method

Beginner Trace table
Ex10_TR 9 61

11 Composite Beginner Program Ex11_PR 11 69

13 Strategy
Interme-

diate

Program
Ex13_PR 10 66

14 Observer
Interme-

diate

Program
Ex14_PR 10 65

 Fill-in-the-blank Questions for Object-Oriented Programming Education and Its Preliminary Evaluation

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

14

8 Answer Result

Most of the students repeated the attempt. Since the correct answers have already been disclosed

for the second attempt, only the results of the first attempt will be included in the following

analysis. Ex01_PR, Ex01_TR, and Ex08_SP are the problems to explain how to answer or

concept of a trace table. Therefore, we except for these problems for discussion.

Table 5 shows the number of blanks and the average right answer ratio for each of the

fill-in-the-blank questions which problem type is “program”, categorizing the blanks into two

types which are composed of a simple token and multiple tokens. In both the beginner and in-

termediate levels, the average right answer ratio for the blanks containing multiple tokens was

lower than for the blanks containing a token. This indicates that the blank containing multiple

tokens is more difficult for students to answer. For both blanks containing a token or multiple

tokens, the average right answer ratio is lower at the intermediate level than at the beginner level.

At the intermediate level, we set blanks that require an understanding of the processing flow of

the program to derive the correct answer. Therefore, we were able to reflect the difficulty level

intended by the contestants, even if it was a blank containing a token.

Table 5: Number of blanks and right answer ratio (%) for problems which type is “program”

Level of

problem

of

prob-

lem

All of the Blanks
Blanks containing a

Token

Blanks containing

Multiple Tokens

of

Blanks

Average

of Right

answer

ratio (%)

of

Blanks

Average

of Right

answer

ratio (%)

of

Blanks

Average

of Right

answer

ratio (%)

Beginner 3 32 70.6 22 76.5 10 57.7

Intermediate 2 20 55.8 11 67.2 9 41.9

Table 6 shows the number of blanks and the average right answer ratio for the fill-in-the-blank

questions which problem type is “Trace table”, categorized by the type of blanks. Table 6 indi-

cates that the average right answer ratio for the step number of the method caller and the variable

value that answers the instance is low. This suggests that problems related to object-oriented

specific method invocation and instances are difficult for students. In addition, as will be dis-

cussed in Section 9, it is thought that some students did not reach the correct answer due to the

difficulty of tracing caused by the existence of multiple trace tables and programs.

Table 6: Number of blanks and right answer ratio (%) for problems which type is “Trace table”

Type of Blanks # of Blanks
Average of Right answer

ratio (%)

Call for constructor or method 16 72.5

Step number of the calling method 3 46.0

Called Class 2 61.7

Return value (Instance) 5 64.0

Variable value (Instance) 1 38.8

Variable value (Basic type) 4 71.1

 M. Murata, N. Kato, M. Ohtsuki, T. Kakeshita

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

15

9 Questionnaire Result

On the last day of the lecture, we took a questionnaire about this trial. We used the Moodle

survey module so that we can identify the respondents. The students were notified that they

could write their frank opinions without any disadvantage depending on their answers. The

number of responses was 69.

The questionnaire items and their respective IDs are listed in Table 7. The eight questions from

ENQ01 to ENQ08 have five levels of answer options as shown in Table 8. Only ENQ09 is a

free-text survey.

Table 7: Questionnaire Items

Q ID Question

ENQ01 Did you understand the behavior of the correct program itself?

ENQ02 Did you understand the concept of a trace table?

ENQ03 Did you trace instance variables and local variables?

ENQ04 Did you trace the flow of sending and receiving messages?

ENQ05 How difficult are the fill-in-the-blank questions?

ENQ06 How about the number of blanks per question?

ENQ07 Do you have an interest in programming and a desire to learn it?

ENQ08
Do you think that fill-in-the-blank questions are useful for learning

programming?

ENQ09
If you have any suggestions for improvement or comments on the

fill-in-the-blank questions, please feel free to write them.

Table 8: Description of the Answer Options for Questionnaire Items

Q ID
Answer Options

1 2 3 4 5

ENQ01 Barely un-

derstood

Didn't un-

derstand

much

Understood
Understood

generally

Understood

very well ENQ02

ENQ03
Not traced

Not much

traced
Traced

Almost

traced

Traced cor-

rectly ENQ04

ENQ05
Very diffi-

cult

Rather diffi-

cult
Neither Rather easy Very easy

ENQ06 Very many Rather many Neither Rather few Very few

ENQ07 Unmotivated
Somewhat

unmotivated
Neither

A little mo-

tivated

Highly mo-

tivated

ENQ08 Disagree
Disagree a

little

Neither agree

nor disagree

Agree with a

little

Strongly

agree

Figure 4 shows the results of the five-step evaluation from ENQ01 to ENQ08. The labels of a

graph element represent percentages. For ENQ01, understanding the contents of the program,

and ENQ02, understanding the concept of the trace table, 69.5% and 68.1%, respectively, an-

swered that they understood the program. On the other hand, 39.1% and 42.0% respectively

 Fill-in-the-blank Questions for Object-Oriented Programming Education and Its Preliminary Evaluation

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

16

answered that they could not trace the variables and message passing in the trace table (ENQ03

and ENQ04).

This indicates that although the students were able to understand the program itself and the

concept of the trace table, they had difficulty in tracing variables and messages sent and received.

This difficulty may be caused by the format of the problem display, so we should consider how to

improve the display format.

Figure 4: Questionnaire Results from ENQ01 to ENQ08

As for the fill-in-the-blank questions themselves, 63.8% answered that they were rather difficult

(ENQ05). The amount of fill-in-the-blank questions itself was appropriate for 87.0% of the

respondents (ENQ06).

Consider ENQ05, 63.8% of the students answered that the problems were rather difficult. This

suggests that the level of difficulty of the problems is appropriate. According to ENQ06, 87.0%

of the students answered that the number of blanks was just right, which is considered appro-

priate. In this paper, we introduced a blank that does not require an answer. We believe that this

allowed us to set an appropriate number of blanks to be answered while hiding codes and vari-

able values that could be used as hints. Therefore, we can reduce the student workload of filling

in blanks and prevent them from losing motivation.

Moreover, 89.9% answered that they were interested in the program and willing to learn

(ENQ07), and 78.2% answered that the fill-in-the-blank questions were useful for learning

(ENQ08). These results indicate that the students took this trial experiment seriously, and the

responses from ENQ01 to ENQ06 can be considered reliable.

Finally, consider the 14 opinions of students obtained from the free text item ENQ09. There

were five responses regarding the method of displaying programs and trace tables. In this trial

experiment, the program and the tracing table were presented as images in multiple tabs, but it

was necessary to switch tabs when understanding the program and tracing messages sent and

received, and this may have hindered understanding. In addition, there were three responses

 M. Murata, N. Kato, M. Ohtsuki, T. Kakeshita

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

17

related to answer writing. They were complained about incorrect answers due to differences in

capitalization and lowercase letters when typing. However, in actual programming, the differ-

ence between lowercase and uppercase letters can be a fatal bug, therefore we should consider

educationally and require correct input.

10 Observation

When creating the blanks within the programs or the trace tables, we clarified the intent of each

blank. We found that the student should obtain knowledge about Java syntax, design patterns,

processing flow, and combinations of these to get the correct answer. By further categorizing this

knowledge and analyzing it together with the students’ answer logs, it may be possible to esti-

mate the difficulty level of each blank.

Creating problems is complex because it requires cross-checking of multiple program files and

trace tables. Therefore, we expect to have a navigation function from the statement of a method

call to the program defining that method or from the instance identifier to the trace table of that

instance.

There may be hints before and after the blanks, such as the same value in the trace table or a

similar description of the program. We can hide these areas by introducing ignorable blanks that

do not require an answer. This allows us to control the number of blanks requiring an answer to

satisfy the educational objective of the question.

In this paper, consecutive tokens were defined as one blank, but each token can also be defined as

one blank. This would reduce the difficulty of the question since students would have the

number of tokens as a hint. For students who cannot solve blanks containing multiple tokens, we

can provide the number of tokens as a hint.

11 Conclusion and Future Work

In this paper, we proposed a fill-in-the-blank problem for the Java language. The difficulty level

of the question is set by whether the blanks are in the program or the trace table, and by the length

of the blanks. Also, the difficulty of the question can be controlled more flexibly by introducing

ignorable blanks that do not require an answer.

In this trial, a part of the fill-in-the-blank questions in Java programming, which was designed in

a previous study, was solved by students in a lecture where they practiced programming. Be-

cause we used the Moodle quiz module rather than extending pgtracer itself, there were some

problems in the way the problems were presented and judged. However, these problems should

be improved by the implementation of the Java version in the future.

Our research group has been developing a programming education support tool, pgtracer, which

provides fill-in-the-blank questions. We have a plan to apply the question proposed in this re-

search to pgtracer and perform an experiment in an actual class. We will analyze the data col-

lected from the experiment by applying the LA method to analyze the mistakes and answering

behaviors that students tend to make. The findings obtained from these analyses are expected to

 Fill-in-the-blank Questions for Object-Oriented Programming Education and Its Preliminary Evaluation

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

18

be used to support Java programming education.

Acknowledgment

This research is supported by JSPS KAKENHI under grant numbers 20K03232 and 20K03265.

References

[1] T. Kakeshita, R. Yanagita, K. Ohta, “Development and evaluation of programming education

support tool pgtracer utilizing fill-in-the-blank question”, Journal of Information Processing:

Computer and Education, Vol. 2, No. 2, pp. 20-36, Oct. 2016. (in Japanese)

[2] T. Kakeshita, K. Ohta, “Student log analysis functions for web-based programming education

support tool pgtracer”, IPSJ Trans. on Education and Computer, Vol. 5, No. 2, pp. 456-468,

2019.

[3] T. Kakeshita, M. Murata, “Application of Programming Education Support Tool pgtracer for

Homework Assignment”, International Journal of Learning Technologies and Learning En-

vironments, Vol. 1, No. 1, pp. 40-61, 2018.

[4] M. Murata, T. Kakeshita, “Analysis method of student achievement level utilizing

web-based programming education support tool pgtracer”, 5th International Conference on

Learning Technologies and Learning Environment (LTLE 2016), Kumamoto, Japan, pp.

316-321, July 2016.

[5] J. Gamma, E. Helm, R. Johnson, R. Vlissides, Design Patterns Elements of Reusable Object

Oriented Software, Addison-Wesley Professional, 1994.

[6] I-Han Hsiao, P. Brusilovsky, S. Sosnovsky, “Web-based parameterized questions for ob-

ject-oriented programming”, E-Learn'2008: World Conference on E-Learning, 2008.

[7] N. Truong, P. Roe, P. Bancroft, "Static analysis of students' Java programs", Sixth Australa-

sian Computing Education Conference (ACE 2004), 2004.

[8] M. Hauswirth, A. Adamoli, "Teaching Java programming with the Informa clicker system",

Science of Computer Programming, Vol. 78, Issue 5, pp. 499-520, 2013.

[9] N. Funabiki, Y. Matsushima, T. Nakanishi, et al., "A Java programming learning assistant

system using test-driven development method," IAENG International Journal of Computer

Science, vol. 40, no.1, pp. 38-46, 2013.

[10] K. K. Zaw, N. Funabiki, W.-C. Kao, "A proposal of value trace problem for algorithm code

reading in Java programming learning assistant system," Information Engineering Express,

Vol. 1, No. 3, pp. 9-18, 2015.

[11] H. H. S. Kyaw, N. Funabiki, W.-C. Kao, "A proposal of code amendment problem in Java

programming learning assistant system," International Journal of Information and Education

Technology, Vol. 10, No. 10, pp. 751-756, 2020.

 M. Murata, N. Kato, M. Ohtsuki, T. Kakeshita

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

19

 [12] S. H. Edwards, N. Kandru, M. B. M. Rajagopal, “Investigating static analysis errors in

student Java programs”, International Computing Education Research (ICER) conference,

pp. 65-73, 2017.

[13] D. McCall, M. Kolling, “Meaningful categorization of novice programmer errors”, In

Frontiers in Education Conference, pages 2589-2596, 2014.

[14] A. Altadmri, N. C. C. Brown, “37 million compilations: Investigating novice programming

mistakes in large-scale student data” SIGCSE '15 Proceedings of the 46th ACM Technical

Symposium on Computer Science Education, pp. 522-527, 2015.

[15] H. Yuki, An Introduction to Design Patterns using Java Programming Language, revised

edition, Softbank Creative, 2004. (in Japanese)

