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Abstract

A test score does not represent the exact ability of an examinee. It only shows just one 
aspect of the examinee, even if the coverage of the test is restricted. Due to this, for example, 
we may not see obvious relationships between entrance examination scores and academic 
records in universities, even in mathematics subjects. Thus, in order to make clear such a 
relationship in a statistical sense, we have investigated three testing records of the placement 
test, the learning check test, and term examinations.

Then, we have shown mainly three consequences from the investigation: 1) by using 
the full computer based testing results of the placement test, we have become aware of the 
magnitude of irreducible probabilistic fluctuations; 2) in using the description type testing, 
it would be inevitable to accept biased evaluations by teachers; 3) by adopting full computer 
based testing in the placement test, the learning check test, and term examinations, we can 
remove the teacher’s evaluation bias occurred in the description type testing, and can obtain 
the more accurate student’s ability.

In addition, we have proposed a fundamental ability equation on student’s ability in-
cluding irreducible probabilistic fluctuations.

Keywords: ability estimation, item response theory, computer based testing, irreducible 
probabilistic fluctuation, evaluation bias, description type testing, multiple choice type test-
ing, academic growth, ability equation, learning analytics.

1 Introduction

Many people often regard examinees’ apparent performances in testings as their true poten-
tial abilities. However, a test score does not represent the exact true ability of an examinee. 
It only shows just one aspect of the examinee, even if the coverage of the test is restricted. 
It may be a result of probabilistically fluctuated outcome due to the examinee’s condition, 
selected problems, teacher’s evaluations, and etc.

Here is an another aspect for the fluctuation phenomenon. It is well-known that we can-
not see obvious relationships between entrance examination scores and academic records 
in universities in mathematics subjects (see [10, 42], e.g.). There may be many reasons for



this. One is that examinees are classified into a successful group and a failed group by the
entrance examination and that academic records in the successful group will become much
more similar to each other; this is so-called the regression fallacy (see [38, 44, 48]). The
second is that the contents taught in universities become much more difficult to understand
than those in high schools, resulting in larger differences of scores in universities. The third
is that assessment results in universities are versatile and academic records deeply depend
on evaluation ways by teachers. That is, teachers’ evaluations to students’ abilities may
be biased as Meissel et al. [34] mentions such as the psychological belief and the narrow
focus of standardized tests. Regarding such biases, they suggest that there may be possible
causes that we have not yet considered, and future research should investigate alternative
explanations for these results to develop a better understanding.

If we can remove some of such fluctuation factors, we may obtain students’ true abilities
more accurately. In such a sense, the purpose of the paper is to reveal such factors and
to eliminate them. To accomplish these, firstly, we pay attention to the academic score
itself. We show that the score is fluctuated with some probability. Next, after we have seen
such fluctuations, we will focus on evaluation bias elimination due to teachers’ evaluation
methods and attitudes. To do this, we have changed the testing style from description
type examinations to multiple choice type examinations in the end-term examinations. (see
Appendix). Thirdly, we try to see academic growths of students by education ways of
teachers. From these investigations, we have found new interesting insights. They are the
following: 1) by using the full computer based testing results of the placement test, we have
become aware of the magnitude of irreducible probabilistic fluctuations; 2) in using the
description type testing, it would be inevitable to accept biased evaluations by teachers; 3)
by adopting full computer based testing in the placement test, the learning check test, and
term examinations, we can remove the teacher’s evaluation bias occurred in the description
type testing, and can obtain the more accurate student’s ability. In addition, under such
situations, we have proposed a fundamental ability equation on student’s ability including
irreducible probabilistic fluctuations [27].

Here, we remark that the term “teacher evaluation” in this paper does not mean so-called
“student evaluations of teaching (SETs)” in a narrow sense. SETs are used for evaluating a
teacher’s teaching effectiveness, often by using questionnaires asking students to rate their
perception of the course teacher. Regarding such discussions, there are many references
(see, e.g., [1, 46, 47]), while other references are also seen ( [3, 4, 6, 9, 11, 32, 33, 35–37]).

2 Irreducible Probabilistic Fluctuation

We take into account of various type of testing results. They are placement tests took just
after the enrollment, the learning check testing (LCT) for every class to check if students
comprehend the contents of lectures or not (see [17–20,22–25,29,30,41,45]), the midterm
examination results, and the final (end-term) examination results. By comparing results
among these testings, we have tried to extract irreducible probabilistic fluctuations.

2.1 Placement Test

First, in order to grasp the magnitude of irreducible probabilistic fluctuations, we deal with
the placement test analysis. All the questions in the test consist of multiple choice type
questions. Figure 1 shows the histogram of the placement test results applied to 1130 fresh-
man students in 2017. The horizontal axis expresses the correct answer rates (CAR). A
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CAR score for student i is computed from
1
T ∑

j
δi, j, where δi, j denotes the indicator func-

tion (δi, j = 1, if the student answered the question correctly, and δi, j = 0, incorrectly). T is
the total number of questions, and here, it was 77. We assume that all of the questions are
independent from each other. The mean value for all the CAR is 0.624.

If we assume that a student has the same ability to solve each question, the probability
distribution of CAR taken from the even number of questions and that from the odd number
of questions may be similar. Figure 2 shows the scatter plot for this, superimposed two
histograms corresponding to these two CAR. The mean value to even number of questions
is 0.634, and 0.615 to the odd number of questions. The coefficient of correlation is 0.948.
Looking at Figure 2, we could assume such a hypothesis to the student’s ability.

Figure 1: Histogram of the correct answer rates (CAR) of the placement test results to 1130
freshman students in 2017. The total number of questions was 77.

Figure 2 reveals us that the ability of a student does not vary to a large extent and that
the magnitude of the probabilistic fluctuation to the corresponding ability can be measured
to some extent. That is,

ϕi = µi + εi, (1)

where, ϕi, µi, and εi are student’s observed ability, student’s true ability, and probabilistic
fluctuation, respectively. This is a basic idea for the ability equation.

In this situation, since the number of questions using even id question numbers and us-
ing odd id question numbers are both almost half of the total questions, the magnitude of
the fluctuations in Figure 2 is larger than the true magnitude of the fluctuation. Actually,
they are

√
2 times larger of the true value. This is because we assumed that all the questions

are independent from each other and a student has the same ability of µi to solve each ques-

tion; the standard deviation εi to student i is approximately computed from

√
2
T

µi(1−µi),

assuming a binomial distribution. When µi = 0.5, then εi is 0.08, and the approximate 95%
confidence interval for ϕi becomes [0.34,0.66]. This result is consistent to Figure 2. Such a
probabilistic fluctuation is considered to be irreducible.

To find the magnitude of the probabilistic fluctuations, we have divided the observed
CAR result into two groups. This treatment is considered to be the two-fold cross-validation
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Figure 2: Scatter plot of the CAR taken from the even id question numbers and that from
the odd id question numbers from the same data as in Figure 1 with two histograms corre-
sponding to these two CAR. The number of questions having even id question number is
33, and the number of questions having odd id question number is 34. A point with longer
shadow indicates that the frequency at the point is larger.
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Figure 3: A part of the response matrix from the midterm and end-term examination results
performed in the first semester in 2019 to analysis basic subject. Only 55 rows in the
response matrix is shown from more than 209 students, and 67 columns in the response
matrix represent full results. Red color suggests that the answer was correct, and green
color suggests that the answer was incorrect.

From this response matrix, we can estimate students’ abilities and difficulty and dis-
crimination parameters of questions altogether using the item response theory (IRT); for
general explanations, see [2, 8, 31], and for specific explanations to online testing appli-
cations, see [12–16, 40]. We deal with the cases of the standard IRT evaluation using the
two-parameter logistic function Pi, j(θi;a j,b j) shown below.

Pi, j(θi;a j,b j) =
1

1+ exp{−1.7a j(θi −b j)}
,

= 1−Qi, j(θi;a j,b j), (2)

where θi expresses the ability for student i, and a j,b j are constants in the logistic function
for item j called the discrimination parameter and the difficulty parameter, respectively. We
can obtain the maximum likelihood estimates θ̂i and â j, b̂ j for parameters θi and a j,b j by
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2.2 Midterm and End-term Examinations

Figure 3 shows a part of the response matrix from the midterm and end-term examination 
results performed in the first semester in 2019 to analysis basic subject. The number of 
questions to the midterm examination is 31 and the number of questions to the end-term 
examination is 36, and the total number of questions is 67; they are all consisting of multiple 
choice type questions.
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maximizing the likelihood function,

L =
N

∏
i=1

n

∏
j=1

(
Pδi, j

i, j ×Q1−δi, j
i, j

)
, (3)

where δi, j denotes the indicator function such that δ = 1 for success and δ = 0 for failure
in answering a question. When student i miss a question j in the LCT, we regard δi, j = 0 in
that LCT. N is the number of students, and n is the number of questions.

After we obtained the estimated parameters θ̂i and â j, b̂ j, we can perform the bootstrap
simulation to generate a random response matrix. There are many methods to gen erate such
a matrix. For example, we could choose N whole column results from column questions
randomly. However, this may cause the difficulty in numerical computation due to the ma-
trix singularity (results of two columns could be the same with probability 1/e). Thus, we
have generated δ̂i, j by using (2). Figure 4 shows one example of the generated δ̂i, j response
matrix by such a bootstrap method. To each element of the matrix, warm colors correspond
to high probability to solve question j by student i, and cool colors low probability.

Figure 4: A generated δ̂i, j response matrix by the bootstrap corresponding to Figure 3. We
have generated δ̂i, j by using (2). Warm colors corresponds to high probability to solve
question j by student i, and cool colors lower probability.

After that, we regenerate the response matrix. In regenerating the response matrix, we
first generate a uniform random number p ∈ [0,1] and obtain P̂i, j(θi;a j,b j), then we set
δ̂i, j = 1 if P̂i, j(θi;a j,b j) ≥ p, and δ̂i, j = 0 otherwise. Figure 5 shows the regenerated δ̂i, j

response matrix. Figure 5 looks similar to Figure 3, but slightly different from each other.
We have performed this procedure for B times and have obtained the B bootstrapped

estimates. In this example, we set B = 100. We have picked up typical five students’ cases
from 209 students, and Figure 6 shows these five student cases. In the figure on the right,
histograms of abilities estimated by the IRT to each student are superimposed. The mean
values and the standard deviations of the 100 bootstrapped estimated θ̂i to five students are
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Figure 5: A bootstrapped regenerated response matrix corresponding to Figure 3. We have
generated δ̂i, j by using (2) such that if P̂i, j ≥ 0.5 then we set δ̂i, j = 1, and δ̂i, j = 0 other-
wise. Red color suggests that the answer could be correct, and green color suggests that the
answer could be incorrect.

shown in Table 1. These standard deviations are similar to the mean value of 0.224 by the
computed standard deviations to each examinee by using the IRT. We can roughly grasp the
magnitude of probabilistic fluctuations. We understand again the ambiguity of the academic
scores. They are not deterministic, of course.

Table 1: The mean values and the standard deviations of the 100 bootstrapped estimated θ̂i

to typical five students

student id mean standard deviation
1 −1.401 0.218
2 −0.912 0.218
3 −0.223 0.225
4 0.682 0.245
5 1.319 0.261

Figure 7 shows the scatterplots of the abilities among originally computed abilities from
observed δi, j values and the estimated abilities using the bootstrapped simulation results.
The correlation coefficients between the original case and the bootstrap cases are located
around 0.95, and that among bootstrap cases are located between 0.91 and 0.93, which are
a little bit smaller than 0.95. In both the cases, they are highly correlated with each other.

From these two trials, we can recognize the ambiguity of classifying classes by using a
threshold score in a test performed just only once such as the placement test, the end-term
examination, and the entrance examination.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.
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Figure 6: Typical five students’ cases for 100 bootstrapped simulation times. We see each
student’s 100 simulated ability values; each simulated ability is consisting of his/her own
true ability with his/her own probabilistic fluctuation. On the right, histograms of 100
simulated abilities can be seen to each student.

Figure 7: Scatterplots of the estimated abilities among the bootstrapped simulation results
and the original testing result.
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3 Evaluation Bias in End-term Examination

In many classes, teachers charged themselves with the responsibility of teaching students
in their classes. They teach students in their own ways; some teacher focuses on important
points, some teacher teaches everything thoroughly; some teacher’s problems in testing
are very easy; some teacher’s problems are tough; some teacher is too generous in eval-
uation; some teacher evaluates students’ academic records very rigorously. However, in
some cases, e.g., students are required to be learned in small classes to one department,
then the teaching material inevitably must be the same to all the teachers and the problems
in the final examination shall be the same. In such a condition, in some cases, students in
a department are classified into classes where the placement test score distributions are al-
most equivalent among classes. Then, we may expect that end-term examination evaluation
distributions are also equivalent among classes. However, this expectation becomes to be
negative in reality.

3.1 An Example that Evaluation Bias Appears

Figure 8 shows the three testing cases (placement test, LCT, end-term examination) with
two teachers. This case is corresponding to the results of linear algebra in the first semester
in 2017. At the beginning of the classes, students were split into two classes equally; that
is, odd numbered students in descending order scores are classified into class A (teacher
a), and even numbered students are into class B (teacher b). On the left and top in the
figure, we see that placement test scores are totally the same in these two classes because
the distributions are the same. Two classes are considered to be equal to each other. In the
middle of the figure, we see the distributions of the LCT ability results, where two classes
also show almost the same aspect. This means that students’ abilities in two classes seem
to be almost the same both at the beginning and at the end of the semester.

However, we find very different patterns of evaluation distributions between the two
classes in the end-term examination. One class teacher evaluated “C” to many students,
and the other teacher evaluated “A” to most of the students. This could be regarded as
the teacher’s evaluation bias due to the teacher’s way of evaluations because as mentioned
above students’ latent abilities in two classes appear to be almost the same.

We have investigated whether differences exist or not between two classes by using the
hypothesis test of Wilcoxon signed rank test [43]. Table 2 shows that although there is no
difference of mean values between two classes in the placement test, we recognize a very
clear difference of mean values between the two classes in the end-term examination.

Table 2: Wilcoxon signed rank test for linear algebra in the first semester in 2017

hypothesis H0 : a = b
placement test 0.703

LCT 0.048
end-term exam. 0.00000761

H0 : a = b means that mean value in teacher a class equals to that in teacher b class

This may be merely an unusual case showing a clear difference of end-term examina-
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Figure 8: Comparison of records among three testing cases (placement test, LCT, end-term 
examination) with two teachers performed to linear algebra in the first semester in 2017. At 
the beginning of the classes, placement test scores are totally the same; the LCT ability 
results show almost the same aspect; at the end-term examination, we could see the 
teacher’s evaluation biases due to teacher’s way of evaluations.

tion evaluations between some two classes. However, such a phenomenon can be seen in 
common; see discussion section 5.1.

3.2 Removal of Teacher’s Evaluation Bias

In the above case, the term examinations were performed in description type testing style. 
In such a condition, teacher’s evaluation bias can be occurred unless teachers set previous 
arrangements for evaluation because we can assume that the ability distributions in two 
classes at the end-term examination are equal to each other by the fact that the LCT results 
were observed to be almost the same in these two classes. Setting this kind of arrangement 
seems to be difficult in general, and eventually the bias could appear in many cases. This is 
considered to be unfair in evaluation.

To avoid such an inconvenience, we have changed the testing style of end-term exam-
ination from description type to multiple choice type. Computers mark the examination 
automatically using the IRT, and there is no room for teacher’s own manner of evaluation.

Figure 9 shows a similar comparison among three testing cases (extended placement 
test, LCT, midterm and end-term examinations) performed to analysis basic (calculus) in 
the first semester in 2019. Similar to the previous case, students in three classes (teachers 
e, f, g) were split into the three classes equally. The LCT results also show the similar 
aspect to the previous case. However, the abilities from the evaluation of the combination 
of midterm and end-term examinations via the IRT seem to be almost equally distributed 
unlike the previous case. The problems in the examinations are totally the same, and scores 
are automatically computed without human working.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.
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Figure 9: Comparison of records among three testing cases (extended placement test, LCT,
midterm and end-term examinations) with three teachers performed to analysis basic (cal-
culus) in the first semester in 2019. Students were split into the three classes equally; the
LCT results show the similar aspect; in addition, the abilities from the combined evaluation
of midterm and end-term examinations seem to be almost equally distributed.

We have investigated whether differences exist or not among three teachers by using the
hypothesis test of Wilcoxon signed rank test again. The hypothesis test cases of H0 : e = f,
H0 : f = g, and H0 : g = e are all rejected in the extended placement test case (extended
placement means placement test A and placement test B), LCT case, and combined evalua-
tion of midterm and end-term examinations. As a result, there are no differences among all
three classes of extended placement test case, LCT case, and combined evaluation case by
midterm and end-term examinations; see Table 3. In these three classes, we may think that
teaching manners are not so different in the three classes, and thus the fully automated ex-
amination style using multiple choice type testing admits no room for existence of teacher’s
evaluation bias.

Table 3: Wilcoxon signed rank test for analysis basic in the first semester in 2019

hypothesis H0 : e = f H0 : f = g H0 : g = e
placement test 0.91 0.99 0.91

LCT 0.17 0.36 0.71
end-term exam. 0.15 0.12 0.95

numbers mean p-values
H0 : e = f means that median value in teacher e class equals to that in f
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4 Student’s Growth Owing to Teaching Skill

We have found a much fairer evaluation method using the multiple choice type testing than
using the description type testing. This enables us to look at further aspects for education.
Education works when students are educated; that is, students show the growth by educa-
tion. There may be a large extent growth or a small extent growth due to teaching skills by
teachers.

Figure 10 shows also a similar comparison among three testing cases (placement test,
LCT, end-term examination) performed to linear algebra in the second semester in 2019;
the placement test and the LCT took in the first semester. Similar to the previous two cases,
the classes were split into three equal classes using the placement test results. Obviously,
in the figure, there are no differences among these three classes in latent academic skills.
The LCT results show a similar aspect to the two cases mentioned before; there seems no
differences among the classes.

However, on the contrary to the case mentioned just above, it seems that there could
appear the differences among three classes. As indicated in the figure, the median in the
class of teacher x is located lower than those in the classes of teachers y and z. To check
if the academic records in these three classes are the same or not, we again used Wilcoxon
signed rank test. The results are shown in Table 4. The hypothesis that the median in class
of x equals to that in y is rejected; z equals to y is also rejected. This suggests that students
in classes of teachers y and z are grown much than students in class of teacher x.

Figure 10: Comparison of records among three testing cases (placement test, LCT, end-term
examination) with three teachers performed to linear algebra in the second semester in 2019.
Students were split into the three classes equally; the LCT results show the similar aspect;
however, the abilities from midterm and end-term examinations show teacher dependent
learning growth.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.
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Table 4: Wilcoxon signed rank test for linear algebra in the second semester in 2019

hypothesis H0 : x = y H0 : y = z H0 : z = x
placement test 0.92 0.53 0.63

LCT 0.96 0.15 0.20
end-term exam. 0.02 0.73 0.01

numbers mean p-values
H0 : x = y means that median value in teacher x class equals to that in y

5 Discussions

5.1 Existence of Evaluation Biases

As mentioned in 3.1, we can commonly observe cases showing a clear difference of end-
term examination evaluations among equally distributed classes at the beginning of the
semester. Figure 11 shows such examples. In Figure 11, looking at on the left top two
comparison figures of placement score distribution and linear algebra (LAA) end-term ex-
amination grade in classes A&B, we see that placement scores in two classes colored by
pink and blue are equally distributed and that LAA end-term examination grade seems to
be a little bit different from each other. However, we can find that there is no difference
between the two classes by using Wilcoxon signed rank test. Then, there are no marks of
difference in red color. Next, looking at on the left second top two comparison figures in
classes C&D, we see a mark of difference in red color between green colored distributions
and blue colored distributions.

We see 18 LAA classes on the left and 18 analysis basic classes (ABA) on the right
in Figure 12, and the possible numbers of comparison between two classes is 11 in LAA
and 13 in ABA; in total, 24 cases can be tested. The number of cases we observed the
difference between two classes in the end-term examination evaluation is 12. Thus, almost
half of the two classes comparison shows the evaluation difference between the two classes.
The probability that such a case just occurs is

(24
12

)
/224 = 0.16. The probability that more

than 12 cases show the difference between two classes is ∑24
k=12

(24
k

)
/224 = 0.58. Thus, it is

proved that the example shown in 3.1 is not a rare case. We can see that it is important to
remove such an evaluation bias.

5.2 Extension of the Ability Equation

In section 2, we have mentioned that irreducible probabilistic fluctuations may occur even if
an examinee happens to take very similar examinations twice assuming that the examinee’s
ability is not changed. That is, εi in (2) could be measured. This can be estimated by using
a binomial distribution assumption. For example, if someone took an examination with 36
questions and 18 answers are correct, then the standard deviation for this score (1 point for
one question) is computed to be ε =

√
36×0.5× (1−0.5) = 3, and the 95% confidence

interval could be [12,24]. We should understand the observed score in such a way. In
splitting a class into several classes using some threshold in pre-tests, e.g., placement test,
we should pay attention to this effect.

Looking at Figures 9, the values of coefficient of correlation among the placement test,
the LCT, and the term examinations are approximately 0.8, and this value is smaller than
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Figure 11: Comparison of records among three testing cases (placement test, LCT, end-term
examination) with two teachers performed to analysis basic (calculus) in the first semester
in 2017. At the beginning of the classes, placement test scores are totally the same; the
LCT ability results show almost the same aspect; at the end-term examination, we see the
teacher’s evaluation biases due to teacher’s way of evaluations.

Figure 12: Comparison of records among three testing cases (placement test, LCT, end-term
examination) with two teachers performed to analysis basic (calculus) in the first semester
in 2017. At the beginning of the classes, placement test scores are totally the same; the
LCT ability results show almost the same aspect; at the end-term examination, we see the
teacher’s evaluation biases due to teacher’s way of evaluations.
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0.9 (or more concretely 0.91 to 0.95 seen in Figure 7) mentioned in the irreducible fluctu-
ations. Such discrepancies are considered to be caused by variations of the students’ effort
or laziness. That is, we may assume that µi in (2) was not a constant value to each stu-
dent; µi can be described as µi(t) depending on time. For example, some student showed
µi(0) = 0.4 and µi(1) = 0.7 (he/she made effort), and some student showed µ j(0) = 0.6
and µ j(1) = 0.3 (he/she was reluctant to study), where t = 0 means the beginning of the
class and t = 1 means the end of the class.

Looking at Figure 10, the value of coefficient of correlation between the placement test
and the end-term examination is approximately 0.5, which is smaller than the value of 0.8
mentioned above. Since the value of coefficient of correlation between the LCT and the
end-term examination is approximately 0.76, we may suppose that there may be teaching
differences among teachers.

On the other hand, by looking at Figure 8, the values of coefficient of correlation among
the placement test, the LCT, and the end-term examinations seem to be badly disturbed by
some effects. This may be teacher’s evaluation bias.

Therefore, we can extend equation (1) to

ϕi(t) = µi(t)+β j(t)+ εi(m), (4)

where, t means time (t = 0 when a class begins, and t = 1 when the class ends), m means the
number of questions; i corresponds to student i and j corresponds to teacher i. β expresses
the teacher’s evaluation bias. We may assume that εi(m) is normally distributed. By taking
into account the multiple choice type testing, we could eliminate the teacher’s evaluation
bias β j(t). Then, we could measure the student’s academic growth by the difference be-
tween µi(0) and µi(1). This is the proposed equation for ability equation. The concrete
methodology to estimate each term is planned to show in the future. This is beyond this
paper’s scope.

5.3 Possibility to the Online Testing for the Final Examination

In 2020, COVID-19 has totally changed the learning manner worldwide from face-to-face
to online. All the teachers and students were forced to accept lectures online. However,
many teachers may be wondering whether the final examination should be taken by face-
to-face style to evaluate the students’ scores fairly and accurately.

We have been experiencing issues that could arise surround computer based testing until
now. Internet crashes, glitches in programs, internet connection issues, data security are
among them. However, with advances in information technology, they will be overcome
in the future. Rather, it is much more important that many students preferred testing on
computers rather than with a pencil and paper (see [7]). This is true also in our case.

The principal issue in the online testing may be the prevention of cheating. Chiru-
mamilla et al. report such aspects (see [5]). They considered cases of impersonation, for-
bidden aids, peeking, peer collaboration, outside assistance, and student-staff collusion.

According to questionnaires and interviews, both students and teachers perceived cheat-
ing as easier with e-exams, and especially with bring student’s own device. Here, e-exam
means computer based testing. Thus, it will be crucial to prevent cheating in online testing
from now on.

If we adopt multiple choice type testing rather than description type testing, much fairer
and much more accurate student’s ability evaluation could be achieved with teacher’s eval-
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f (x) =

{
x2 (x > 0)

(1) x+ (2) (x ≦ 0)

f (x) =

{
x2 +2x+2 (x > 0)

(3) x+ (4) (x ≦ 0)

1. Show the definition to obtain the differential function of f (x).

2. Show the differential function of f (x) = sinx by following the definition 1).
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uation bias free and without cheating. From a statistical viewpoint, this is also supported 
by comparing paper based testing and computer based testing using the IRT (see [39]).

As long as we can prevent cheating, the results of this paper suggest the possibility to 
the online testing to the official final examination. How we proceed the online testing fairly 
and accurately is the future work to be resolved to the online education era.

6 Concluding Remarks

A test score does not represent the exact ability of an examinee. It only shows just one 
aspect of the examinee, even if the coverage of the test is restricted. To answer a typical 
question why we cannot see obvious relationships between entrance examination scores 
and academic records in universities, we have investigated three testing results; one is the 
placement test, the second is the learning check test, and finally the term examinations. In 
this paper, firstly, we have analyzed the irreducible probabilistic fluctuations of academic 
scores by using the placement test and term examinations. Then, we could catch the mag-
nitude of irreducible probabilistic fluctuations. Next, we have compared the distributions 
of the three testing scores in equally split classes using the placement scores. In testings, 
unlike the common testing style of the description type in mathematics subjects, the mul-
tiple choice type testing was applied. Then, we have found two crucial points. One point 
is that we can remove the teacher’s evaluation biases. The other is that student’s academic 
growth could be measured more clearly. We have also proposed a fundamental equation on 
student’s ability including irreducible probabilistic fluctuations.

7 Appendix

We illustrate a multiple choice type question and a description type question below.

7.1 Multiple Choice Type Problem

Select numbers from {0,1, · · · ,9} and fill them into (1), (2), (3), and (4) boxes, so that 
function f (x) becomes a differentiable function.

7.2 Description Type Problem

Answer the following questions.



3. In Figure A, if the length of arc PQ is r, and the length of line segment HP is s, then
obtain lim

dθ→0

s
r

using θ .

O

P

Q

H

θ

dθ

Figure A
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