
Dealing with Stumbling in C Language Programming
Using Visual Programming Environment

Kousuke Abe *, Yuki Fukawa *, Tetsuo Tanaka *

* Kanagawa Institute of Technology, Kanagawa, Japan

 International Journal of Learning Technologies and Learning Environments
 International Institute of Applied Informatics
 2020, Vo. 3, No. 1, 35 – 50

Abstract

For the education of beginning programmers, visual programming that develops programs by
combining blocks has attracted significant attention. An environment for generating code in a
conventional programming language is also provided. However, existing environments are not
fully visualized. In this investigation, we prototyped a development environment for the C lan-
guage in which users can intuitively understand the concept of variable declarations and include
statements, and an execution environment that visualizes the state of evaluation of expressions
and changes in the values of variables before and after the execution of the statement. It also has
step-forward and step-backward functions. This programming environment is a web application
developed with JavaScript. For step-by-step evaluation of an expression, it converts the expres-
sion internally to Reverse Polish Notation and visualizes the change in the terms in the expres-
sion. To implement the step-backward function, it has a history-of-execution context. We de-
termined experimentally that students who are not proficient in C can program more accurately
and quickly in this environment than with text-based coding.
Keywords: visual programming, block-based, C language, novice programmer, web application,

interpreter

1 Introduction

In higher education institutions, the C language is often the first programming language to be
learned. This is also true in the authors’ institution, the Kanagawa Institute of Technology De-
partment of Information Engineering. C language classes are held three times per week in the
first year. Students use Visual Studio for programming. However, in text-based C language
programming, students must memorize keywords such as int, double, return, break, or the syntax
of an if statement, for statement, and so on, which places hurdles in front of beginners. Fur-
thermore, in the case of a computer beginner, it takes time to edit a program because they are not
used to keyboard input. Even if the student can finally input the program, merely including a

single typo would produce a compilation error, yielding frustration rather than positive motiva-
tion [1][2].

On the other hand, the research and development of a programming support system for novice
programmers has reached an advanced stage. One development is block-based visual pro-
gramming such as Scratch [3] or Snap! [4]. In block-based programming, students edit programs
by selecting blocks and combining them. Thus, they can program even without remembering or
formulating the grammar correctly. The effectiveness of block-based visual programming has
been reported [5][6][7][8][9].

However, Scratch and Snap! use their own programming languages and are not suitable for
learning popular programming languages such as C or Java. There are visual programming en-
vironments for existing programming languages like Google Blocky [10], BlockEditor [11], and
Pencil Code [12], but their visualization is not adequate. For example, BlockEditor cannot exe-
cute the block-based programs as they are created. Since they output text-based source code,
users have to paste and execute their source code in another development environment such as
Microsoft Visual Studio. Therefore, in addition to the editor, it is necessary to prepare the exe-
cution environment of the program.

With these factors in mind, in this investigation we developed a C language visual programming
environment with the aim of lowering the barriers between beginning programmers and the
learning of C. This programming environment is a Web application that has an editing function
to edit a C language program and an execution function that can step through the program and
trace the changes in the variables being executed.

In this paper, Section 2 describes common stumbles in programming and how to deal with them,
and Section 3 outlines the programming environment. Section 4 describes its implementation
and Section 5 describes the results of a trial experiment.

2 How to Deal with Stumbling in Programming

2.1 Block-based Visual Programming

In programming with a general-purpose language such as C, the programmer has to remember
keywords such as #include, int, float, return, break, and the syntax required for statements such
as if and for. Such hurdles are high for beginners. Many novice programmers do not fully un-
derstand the basic concept of grammar, and often make simple errors [13]. Even if the error is
simple, it can be difficult to identify and deal with it [14] [15]. Furthermore, beginners with PCs
are not used to keyboard input, so it takes time to edit programs. Even if they can finally input a
program, they will get a compile error from just one typographical error. If they make a mistake
in the name or declaration of a variable or function, they get an error message saying "variable or
function is not declared". But since they feel sure that they declared it, they do not know what is
wrong. At that point, they stumble. Too much such frustration, and they will lose their motiva-
tion.

In this investigation we provided a visual programming environment for editing programs by
combining blocks. The environment presents a list of blocks corresponding to programming
actions (function declaration, assignment, branching, repetition, etc.) that are necessary for pro-
gramming. This eliminates the need for the user to correctly memorize C language keywords and

K. Abe, Y. Fukawa, T. Tanaka

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

36

syntax. Also, since typing errors are eliminated, grammatical errors can be reduced. For users
who type slowly, keyboard input is reduced, making it easier to program.

When the user declares variables or functions, the environment generates corresponding variable
blocks or function blocks. This enables the user to select them when referring to variables or
calling functions. For standard functions such as printf, the same can be done at the time of in-
serting the corresponding #include statement. This makes it possible to eliminate errors in vari-
able names and function names. Users will also be able to intuitively understand the concepts
"variable can be referenced after declaring" and "function can be called after declaring". In ad-
dition, the user can learn the role of the include statement.

2.1 Various Step Executions and Tracing

When learning programming, students initially come to understand concepts such as assignment,
branching, and repetition. Next, they come to understand how the program works by carefully
reading the sample program, absorbing the concepts one line at a time, and confirming the be-
havior by typing it into the computer and executing it. In addition, they will deepen their under-
standing by changing parts of the program or by developing programs dealing with similar
problems on their own.

However, for users who are not good at programming, it is difficult to understand how a program
works. They often do not understand it, but they are satisfied when they input a program ac-
cording to the sample and get the expected answer. However, this makes it difficult to improve
their programming skills.

Also, when a logical error occurs, it will be in a situation such as producing an erroneous answer,
crashing, stopping, and so on. Logic errors differ from grammar errors: no error message is dis-
played, so the novice programmer cannot find out what kind of error it is, and stumbles.

To understand the behavior of the program and to debug it when a logic error is involved,
step-by-step execution in the debugger and tracing the value of each variable at the time of ex-
ecution are useful. However, in the step-by-step execution of a typical debugger, since it is ex-
ecuted on a statement-by-statement basis, the way that the value of the expression changes is not
visualized.

This programming environment steps through each evaluation of the expression. For example,
the assignment statement shown in Figure 1 is decomposed until the evaluation step of the ex-
pression and executed, as shown in Figure 2.

Figure 1: Example of Assignment Statement

int x = 3;
y = x = x + 1;

Dealing with Stumbling in C Language Programming Using Visual Programming Environment

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

37

Figure 2: Example of Expression Step Evaluation

This makes it more intuitive for the user to follow the updating of the value by assignment, to
have the value on the right side of the assignment show the value before substitution, the ex-
pression containing the value, and the assignment also presented as an expression.

Also, the conventional debugger, once there is a crash, cannot go back to the execution of the
program to show the value of the variable immediately before the crash. In order to refer to that
value, it is necessary to stop and execute debugging again, which is time-consuming and trou-
blesome.

This programming environment provides the function of step-back (function to go back by one
step), and it always displays the values of variables during program execution, the history of
function calls, and the result of console output. In addition, the statement that is being executed,
the variable whose value has changed, and the character string newly outputted to the console are
highlighted.

This makes it possible to grasp the value of each variable and perceive how the console changes
each time it executes one step. Also, when a crash happens, the user can step back and check the
value of the variable immediately before the crash, and thus can efficiently ascertain which value
is in error.

3 Overview of Programming Environment

In this section, we will describe how the user sees this programming environment, the editing
function, and the execution function.

3.1 User’s Image

This programming environment has program editing and execution functions. The user creates
and edits the program with the editing function and executes it with the execution function. This
programming environment is a single-page application consisting of a menu bar, a block list
pane, a program pane, and an execution context pane, as shown in Figure 3. The user can edit a
program by dragging and dropping blocks from the block list pane to the block pane, and execute
it by pressing a button on the menu bar. In addition to normal execution, there are step-over,
step-in, and step-back functions, and a rewind function to return to the beginning of the program.

3.2 Editing Function

The purpose of the program editing function is to create a program (block-based source code).
The user creates a program by dragging and dropping a block from the block list pane to the
program pane. This eliminates the need for the user to accurately recall the keywords and syntax
of C. Also, since input errors are eliminated, grammatical errors can be minimized.

y = x = x + 1 (evaluate x value of x: 3)
y = x = 3 + 1 (evaluate 3 + 1 value of x: 3)
y = x = 4 (evaluate x= 4 value of x: 4)
y = 4

K. Abe, Y. Fukawa, T. Tanaka

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

38

In the block list, the following blocks are prepared in advance.
· Include statement
· Variable declaration
· Function declaration
· Control statements (if, if-else, while, for, do-while, return, break, continue)
· Comment

Figure 3: Appearance of the Programming Environment

Also, the following variable blocks and function blocks are dynamically generated in the block
list when they are declared.

· Included built-in functions
· Declared variables
· Dummy arguments in function declaration
· Array elements of the declared array
· Declared functions

The built-in functions are displayed in the block list at the time when the #include statement is
dropped into the program. Also, at the time of adding a declaration block, variables and functions
are added to the block list pane as a block for reference to the variable and a function-calling
block.

This allows the user to visually understand that "variables and functions are used after declar-
ing". It also reduces errors due to mistakes in keyboard input.

 A block cannot be dropped if the placement is grammatically incorrect. An error message indi-
cating that a block cannot be placed at that location is displayed, and the block is restored. This
makes it easier for users to create grammatically correct programs, and if an intention or execu-
tion is incorrect, they can immediately know the reason. Places where blocks cannot be dropped
include:

· Arguments of function or operator: Blocks of a type different from the argument type
· Left side of the assignment expression: Block other than modifiable left side value
· Inside of function declaration: Function declaration block

state of evaluation

highlighted
executing statement

console variable, type,
and value

Menu bar

Program
pane

Execution
context pane

Block list
pane

Variable and
function blocks
that generated
automatically

Dealing with Stumbling in C Language Programming Using Visual Programming Environment

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

39

This can reduce grammatical errors and the user can focus on examining algorithms.

3.3 Execution Function

The program execution function executes a program and displays the execution context. Here,
the execution context is an overview of the state of program execution, that is, the value of the
variable, the function called, the console output, and the exception occurrence situation. For each
function call or expression evaluation, a function call context or an expression evaluation context
is generated, respectively.

In addition to the function to execute to the end of the program, the execution environment has
step-over, step-into, and breakpoint-setting/cancellation functions as in a conventional debugger.
In addition, it has a step-back function that returns to the situation before execution of the sen-
tence.

In the step-in function, step execution is performed for each expression evaluation, not for each
statement execution. As a result, the user can intuitively grasp the behavior of the program, and
when there is a logical error, it is easy to specify the error.

4 Implementation of This Programming Environment

4.1 Structure of this Programming Environment

This programming environment has been developed as a web application to run on a browser.
For development, HTML 5, CSS, and JavaScript are used as shown in Figure 4. As a library of
JavaScript, we use jquery-sortable [16] which can rearrange nested elements by drag & drop, and
SoraMame.Block [17], which is the front end of a lightweight block type code editor.

Figure 4: Structure of this Programming Environment
This programming environment has editing and execution functions. The editing
function edits the block-based C language source code based on the user's operation,
and generates abstract syntax tree (AST) code represented by the proprietary AST
language. The executing function executes the AST using the proprietary interpreter
based on the user’s operation. The details of the AST language and AST are described

Visual Programming Environment

jquery-sortable

Interpreter

HTML5, CSS(Bootstrap), JavaScript

Web Browser

SoraMame.Block

Editing Function

Abstract Syntax Tree

Executing Function

Intermediate Code

K. Abe, Y. Fukawa, T. Tanaka

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

40

below in section 4.2, and the details of the interpreter are described in section 4.3.

4.2 AST Language and AST

The editing function generates AST. AST is tree-structured data in which information irrelevant
to the meaning of the language is removed from the parse tree.

Each node of AST consists of the type of node and the information necessary for each
type. The types of nodes include 'int', 'float', and 'array', representing variable declarations,
'func_dec', representing a function declaration, 'if' and 'while', representing control
statements, and 'literal', representing literals. Table 1 shows examples of the types of nodes
and the necessary information for each type.

Table 1 AST Language (only a part)
AST node Item Description

include statement Kind “#include”
Name file name

variable declaration Kind “int”, “float”, “double”, or “char”
Name variable name
Value initial value

variable declaration
(array)

Kind “array”
Type type of array element
Name array name
Dimension dimension of array
Length length of array
Value initial value

function declaration Kind “func_dec”
Type type of return value
Name function name
Argv arguments list
Statements body of function

if statement Kind “if”
Condition condition expression
Statements list of statement

for statement kind “for”
init Initialization
condition condition expression
increment increment expression
statements list of statements

function call Kind “func_call”
Name function name
argv Arguments

Figures 5 and 6 show an example of source code and an example of a corresponding abstract
syntax tree.

Dealing with Stumbling in C Language Programming Using Visual Programming Environment

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

41

Figure 5: Example of Source Code

Figure 6: Example of AST

include <stdio.h>

int f (int n) {
 return n;
}

int main () {
 printf("f(3) = %d\n", f(3));
}

[
{
kind: "#include", name: "stdio.h"
},
{
kind: "func_dec", type: "int",
name: "f", argv: [{kind: "int", name: "n"}],
 statements: [
 {kind: "return", value: {kind: "var", name: "n"}}
]
},
{
kind: "func_dec", type :"int",
name: "main", argv: [],
 statements: [

 {
 kind: "printf",
 format: "f(3) = %d\\n",
 val_list: [

{
kind: "func_call",
name: "f",
argv: [{kind: "literal", type: "int", value: "3"}]

 }
]

 }
]
}

]

K. Abe, Y. Fukawa, T. Tanaka

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

42

Figure 7: Example of Intermediate Code

4.3 Interpreter

In order to enable step execution of a program, the interpreter converts an abstract syntax tree
with a tree-structure form into an internal code with a sequential list-structure form, and executes
the internal code line by line. This makes it possible to express sentences that are being executed
as indices of the list. Also, when converting a tree structure to a list structure, it adds an EOB
statement indicating the end of a block, such as an “if” statement. Offset information from the
head of the block is added to the EOB statement. Thus, it is possible to obtain the index of the
sentence to be executed next. As an example, Figure 7 shows the internal codes of the source
code of Figures 5 and 6.

The execution state is called a context. The context has a stack structure as shown in Figure 8,
and a function call context or an expression evaluation context is generated for each function call
and expression evaluation, respectively, and pushed onto the stack. This stack is called a context
stack.

Figure 8: Structure of Context Stack

The context stack is a snapshot of program execution and has all the information necessary for
execution. Therefore, by storing the history each time the program executes one step, the context
can be reproduced by going back to the steps executed in the past. That is, it is possible to go
back 10 steps and re-execute. In this interpreter, the context stacks for 100 steps are saved.

000 {kind: "#include", name: "stdio.h"}
001 {kind:"_func_dec", name: "f", type: "int", argv: [{kind: "int", name: "n"}],

offset: 3}
002 {kind: "return", value: {kind: "var", name: "n"}}
003 {kind: "_func_dec_end", name: "f"}
004 {kind: "_func_dec", name: "main", type: "int", argv: [], offset:3}
005 {kind: "printf", format: "f(3) = %d\\n", val_list: [{kind: "func_call",

 name: "f", argv: [{kind: "literal", type: "int", value:"3"}]}]}
006 {kind: "_func_dec_end", name: "main"}
007 {kind: "func_call", name: "main", argv: []}

Function-call context

Expression-evaluation context

Function-call context

Expression-evaluation context

Context Stack

0

1

2

3

Function-call context

Expression-evaluation context

:

4

5

: ::

• name: function name
• pc: index of executing statement
• end: index of last statement
• statements: body of function
• variables: local variable table
• return_value
• upper_value: value of upper

expression

• variables: local variable table
• rpn: reverse polish notation of

expression
• eval_stack: stack for expression

evaluation
• return_value

Dealing with Stumbling in C Language Programming Using Visual Programming Environment

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

43

In order to execute the step of evaluating an expression, we convert the expression in the pro-
gram to Reverse Polish Notation and evaluate it using the stack (called the RPN stack to dis-
tinguish it from the context stack). One push of the calculation result to the RPN stack is defined
as one step.

Figure 9 shows examples of Reverse Polish Notation for expression ‘1 + 2 * n2 – n1’, ‘f(n1,

n2)’, and ‘a[2][1]’. Table 2 shows representation of RPN element for each kind of expression.

Figure 9: Example of Reverse Polish Notation (in JSON)

Table 2 Representation of RPN Stack Element
kind representation

variable 'var' kind name type
literal 'literal' kind value type
binary operator '+', '-', '*', '/', '%', '&&', '||', '<', '<=', '>', '>=', '==', '!= ' kind argc(=2) type
unari operator 'u+', 'u-', 'u!', 'u*', 'u&' kind argc(=1) type
assignment '=', '+=', '-=', '*=', '/=' kind argc(=2) type
prefix/postfix 'pre++', 'pre--', 'post++', 'post--' kind atgc(=1) type
printf/scanf 'printf', 'scanf' kind format atgc type
array element 'array_elem' kind argc(=2) type
function call 'func_call' kind name argc type

expression: 1 + 2 * n2 - n1
[

{"kind":"literal", "value":1, "type":"int"},
{"kind":"literal", "value":2, "type":"int"},
{"kind":"var", "name":"n2", "type":"int"},
{"kind":"*", "argc":2, "type":"int"},
{"kind":"+", "argc":2, "type":"int"},
{"kind":"var", "name":"n1", "type":"int"},
{"kind":"-", "argc":2", "type":"int"}

]

expression: f(n1, n2)
[

{"kind":"var", "name":"n1", "type":"int"},
{"kind":"var", "name":"n2", "type":"int"},
{"kind":"func_call", "name":"f", "argc":2, "type":"int"}

]

expression: a[1][2]
[

 {"kind":"var", "name":"a", "type":"int"},
 {"kind":"literal" ,"value":2, "type":"int"},
 {"kind":"array_elm", "argc":2, "type":"int"},
 {"kind":"literal" ,"value":1, "type":"int"},
 {"kind":"array_elm" ,"argc":2, "type":"int"},

]

K. Abe, Y. Fukawa, T. Tanaka

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

44

5 Evaluation of This Programming Environment

5.1 Evaluation Method

Some of the above functions have been prototyped, and the effectiveness of this programming
environment was evaluated by trial experiments. The scope of supported (and unsupported) C
language elements is as follows.

· Type: int, float, double, char, array (struct, union, pointer, enum, typedef, const are not
supported)

· Operator: assignment operator, comparison operator, arithmetic operator, logical operator,
increment / decrement operator (bitwise operators, shift operators, assignment operators
dealing with bits are not supported)

· Control statements: if, if-else, while, for, do-while, break, continue, return (switch is not
supported)

· Standard functions: printf, scanf (other standard functions are not supported)
· Syntax error: variable/function not defined
· Run-time error: array index out of range

The subjects were seven undergraduates (five 4th grade students and two 3rd grade students) from
the Department of Information Engineering, Kanagawa Institute of Technology. They took a C
language course for one year and earned credits. However, they are not proficient in C language.
They tackled the programming tasks prepared in advance using both this programming envi-
ronment and MS Visual Studio. They first used MS Visual Studio to solve four exercises, and
then used this tool to solve four similar but different exercises. The outline of the exercise is as
shown in Table 3. Coding in this programming environment started with the include statement
and main function displayed beforehand in the program pane.

Table 3 Overview of Programming Exercises
Exercise outline Elements of the

language to use
Number
of lines

1 Display specified character printf 4
2 Display typed characters printf, scanf 7
3 Display entered number of specified characters repetition

(for or while)
9

4 After entering the number for the specified
number of times, display the value

two repetitions
(for or while)

12

In the experiment, the following equipment/software was used.
· PC: Panasonic Let's note CF-SX 4
· OS: Windows 10 Pro
· Development environment: Microsoft Visual Studio Community 2017 (version 15.9.3)
· Browser: Google Chrome (version 71.0.3578.98)

5.2 Evaluation Items

The following evaluation items were compared when coding in this programming environment
and coding in Microsoft Visual Studio.

Dealing with Stumbling in C Language Programming Using Visual Programming Environment

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

45

(1) Number of trials until correct answer
(2) Coding time (the time it took from the start of coding to pressing the execution button)

Also, this 5-question survey was taken by those who used this programming environment:
1. Was it easy to use?
2. Was it easy to use the variable block generation function?
3. Were you able to do what you expected?
4. Were you able to understand the movement of the program?
5. Your opinions? (free description)

5.3 Results and Discussion

The results and discussion are described for each evaluation item.

5.3.1 Number of trials until correct answer

Figure 10 shows the number of trials that preceded the correct answer. Each pair of raw
scores corresponds to one exercise task described in Section A, the number of subjects
correctly responding in one trial (coding, compiling, and execution), the number of
subjects correctly responding in two trials, and the number of subjects who required
three trials, respectively. The upper row shows the values when this programming en-
vironment was used and the lower row shows the values when using MS Visual Studio.

For simple tasks such as outputting and inputting character strings, there was no dif-
ference between the programming environment and Visual Studio in the number of trials
until the correct answer was produced. However, with a program that used double iter-
ation, coding in this programming environment produced fewer program mistakes.
Therefore, for students who are not good at programming, this programming environ-
ment is considered to be more effective for complicated programs.

Figure 10: Number of trials until correct answer

output string

Upper: This programming environment
Lower: Visual Studio

Number of people who answered
at the 1st time
at the 2nd time
at the 3rd time

Input and
output string

repetition of
output

rep. of input,
rep. of output

5 2

5 2

5 2

4 3

3 3 1

2 4 1

2 3 2

1 3 3

K. Abe, Y. Fukawa, T. Tanaka

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

46

5.3.2 Program creation time

The creation time of the program is shown in Figure 11. Each set corresponds to one
exercise task described in Section A. Each graph is a box plot showing the time from the
start of coding until pressing the execution button. The values on the left side are for the
case using this programming environment and those on the right side are for Visual
Studio. In simple tasks, there is no difference in program creation time, but as subjects
get more complicated, coding using this programming environment is faster. For pro-
grammers who are not good at C, it was found that coding in this programming envi-
ronment is faster if the program is long.

Figure 11: Program creation time

5.3.3 Impressions

The results of a questionnaire on impressions are shown in Figure 12. Each question is
then discussed.

Figure 12: Impressions

00m00s

01m26s

02m53s

04m19s

05m46s

07m12s

Ex. 1 Ex. 2 Ex. 3 Ex. 4

This Programming Env.

MS Visual Studio

5

7

4

5

2

3

2

Was this programming
environment easy to use?

Was the variable block
generation function easy to use?

Were you able to do something
you wanted?

Were you able to understand the
behavior of the program?

YES NO

Dealing with Stumbling in C Language Programming Using Visual Programming Environment

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

47

Question 1: Was it easy to use?

While there was a positive answer that "I did not have much difficulty because I did not
enter any letters," two users said that it was hard to use. The reason given was that "there
was a block, but I didn’t know how it would work". It is necessary to devise measures
such as displaying a use example and explanation of the block when hovering the cursor
over the block.

Question 2: Was it easy to use the variable block generation function?

All subjects responded that the variable block generation function was easy to use. This
is the effect of reducing input mistakes on variable names by reducing the required labor
input for the function.

Question 3: Were you able to do what you expected?

Three answered that they could not do what they thought. This was due to a bug in the
variable declaration in the initialization expression of the for statement. These subjects
declared a variable like int i = 0; in the initialization expression of the for statement, but
this programming environment did not support a variable declaration in the initialization
expression, so an error occurred. In this implementation, not all language functions are
supported, so there are other syntaxes that do not work. Improvement of the interpreter is
necessary.

Question 4: Were you able to understand the action of the program?

Two subjects replied that they could not understand the behavior of the program. There
was also an opinion that "I could understand the behavior of the program better if I knew
which sentence of the program was being executed". At the time of this experiment, we
did not implement the function of step execution, and we believe that the implementa-
tion of this function will improve the understandability of behavior.

Question 5: Your opinion is . . .? (free description)

A positive answer was obtained that "I thought it would be good to learn logical think-
ing" and "I thought that it was easy to understand how to code in a GUI. For a C lan-
guage novice programmer, it is a good introduction"

6 Conclusion

In order to lower the hurdles for a C language novice programmer, we prototyped a C
language visual programming environment. Featured were the following three points:
(1) it is possible to edit a program without precisely recalling the C language keywords
and syntax by programming with blocks, (2) when declaring variables and functions, the
corresponding block can be used. This allows the user to understand the concept of
declaration, (3) with the various step execution functions, it is possible to trace the be-
havior of the program in detail. With the step-back function, it is easy to identify where
there was an error.

K. Abe, Y. Fukawa, T. Tanaka

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

48

We evaluated this programming environment by conducting trial experiments and con-
firmed that students who are not good at C can program more accurately and quickly
than by using text-based coding.

Implementation of the functions to visualize the behavior of the program more visually
that help understand the programming concepts advanced novices have trouble with
[18], improvement of the interpreter, and improvement of usability are future tasks. We
will also collect operation logs of this programming environment and develop them into
learning analytics.

References

[1] Brett A. Becker, An Effective Approach to Enhancing Compiler Error Messages. Proc. of the
47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16),
pp.126-131, 2016.

[2] Brett A. Becker, Kyle Goslin, and Graham Glanville, The Effects of Enhanced Compiler
Error Messages on a Syntax Error Debugging Test, Proc. of the 49th ACM Technical Sym-
posium on Computer Science Education (SIGCSE ’18), pp.640–645, 2018.

[3] Scratch - imagine, program, share, https://scratch.mit.edu/

[4] Snap! – build your own blocks, https://snap.berkeley.edu/

[5] D. Bau, J. Gray, C. Kelleher, J. Sheldon, F. Turbak, Learnable programming: blocks and
beyond, Communications of the ACM, June 2017, pp. 72-80, 2017.

[6] M. Armoni, O. Meerbaum-Salant, M. Ben-Ari, From Scratch to “real” programming, ACM
Transaction on Computing Education, Vol.14, No.4, Article No. 25, 2015.

[7] Y. Matsuzawa, Y. Tanaka, S. Sakai "Measuring an impact of block-based language in intro-
ductory programming". In: Brinda T., Mavengere N., Haukijarvi I., Lewin C., Passey D. (eds)
Stakeholders and Information Technology in Education. SaITE 2016. IFIP Advances in In-
formation and Communication Technology, vol.493, pp.16-25, Springer, Cham, 2016.

[8] T. W. Price, T. Barnes, Comparing textual and block interfaces in a novice programming
environment, Proceedings of the eleventh annual International Conference on Interna-
tional Computing Education Research, pp.91-99, 2015.

[9] Mazyar Seraj, Serge Autexier, Jan Janssen, BEESM, a block-based educational program-
ming tool for end users, Proc. of the 10th Nordic Conference on Human-Computer Interac-
tion, pp.886–891, 2018.

[10] Blockly, https://developers.google.com/blockly/

[11] Y. Matsuzawa, H. Tasui, M. Sugiura, S. Sakai, Seamless language migration in introductory
programming education through mutual language translation between visual and Java (in
Japanese), Vol.55, No.1, pp.57-71, 2014.

Dealing with Stumbling in C Language Programming Using Visual Programming Environment

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

49

[12] D. Bau, A. Bau, M. Dawson, C. S. Pickens, Pencil Code: block code for a text world, Pro-
ceedings of the 14th International Conference on Interaction Design and Children,
pp.445-448, 2015.

[13] Davin Mccall, Michael Kolling, A New Look at Novice Programmer Errors, ACM Trans-
actions on Computing Education (TOCE), Article No.: 38, 30pages, 2019.

[14] X. Fu, C. Yin, A. Shimada, H. Ogata, Error log analysis in C programming language
courses, Proceedings of the 23rd International Conference on Computers in Education,
pp.641-650, 2015.

[15] X. Fu, A. Shimada, H. Ogata, Y. Taniguchi, D. Suehiro, Real-time learning analytics for C
programming language courses, Proceedings of the Seventh International Learning Analytics
& Knowledge Conference, pp. 280-288, 2017.

[16] jQuery Sortable a flexible, opinionated sorting plugin for jQuery,
http://johnny.github.io/jquery-sortable/

[17] MameBlock.js, http://ycatch.github.io/mameblock.js/index.html

[18] Gavriel Yarmish, Danny Kopec, Revisiting novice programmer errors, SIGCSE Bull,
Vol.39, No.2, pp.131–137, 2007.

K. Abe, Y. Fukawa, T. Tanaka

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

50

