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Abstract

This study addresses the challenge of detecting subtle changes in static environments,
specifically focusing on images taken at different times in a museum. Typically, the method
based on direct image differencing and thresholding for change detection encounters lim-
itations due to high rates of false positives and difficulty in discerning subtle c hanges. To
improve accuracy, we employed enhanced correlation coefficient (ECC) maximization with
a perspective transformations model for image alignment. Also, we developed a color ad-
justment methodology combining Lab color scale conversion with CLAHE equalization in
harmonizing color intensity under varied lighting conditions. Experiments conducted at the
Fukushima Prefectural Museum with images from 11 locations demonstrated the effective-
ness of our methods in detecting a range of changes, from object displacements to lighting
variations. The study highlights the potential of these techniques in applications requiring
precise change detection in static settings, with recommendations for future work aimed at
refining these approaches for broader scenarios and challenging lighting conditions.

Keywords: Change detection, Low computational cost, Multi-temporal images, Remote
surveillance.

1 Introduction

Change detection plays a crucial role in discerning and quantifying environmental modifi-
cations, land use changes, urban development, and the management of natural resources. In
the realm of remote sensing, change detection is instrumental in understanding the dynam-
ics of land cover, deforestation, agricultural expansion, and urbanization [1, 2, 3, 4]. This
technique is also vital in environmental monitoring, disaster management, and evaluating
the impacts of climate change [5]. Similarly, in video surveillance, tracking changes across
consecutive frames aids in the detection of human activities [6]. In the medical field, change
detection enables the comparison of images taken at different times, thereby facilitating the
tracking of disease progression or recovery [7, 8, 9]. For a comprehensive review of ad-
vancements and methodologies in change detection across these various domains, we refer
readers to [10], which provides an extensive overview.
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Historically, change detection has predominantly relied on pixel-based methods, which  
primarily involve the direct subtraction or ratioing of pixel values from multi-temporal im-
ages.  While these rudimentary techniques have exhibited moderate success, they are prone  
to  producing  a  high  rate  of  false  positives,  especially  in  dynamically  changing  environ-
ments [11].  Machine learning has revolutionized numerous fields, including change detec-
tion. The enhancement in the quality and accessibility of satellite, aerial, and ground-based  
imagery has led to the development of more sophisticated change detection methods that  
incorporate advanced machine learning algorithms [12, 13]. Despite their advantages in ac-
curacy  and  efficiency,  these  techniques  often  come  with  challenges,  such  as  extensive  
data preparation, high computational costs, and significant energy consumption.

There are two primary advantages of artificial intelligence techniques over direct image 
differencing for detecting changes in images. The first is the susceptibility of direct 
differentiation to failures due to minor variations in camera configurations or image 
distortions. The second concerns the impact of changes in image tone, influenced by 
lighting conditions, white balance, and camera sensor sensitivity, leading to detection 
inaccuracies. While machine learning techniques are beneficial when sufficient 
computational resources are available, their applicability becomes limited in resource-
constrained environments, such as edge devices. In other words, there is a possibility of the 
method based on direct image differencing being advantageous if it can handle these two 
difficulties.

In this context, our study focuses on the development of a computationally efficient al-
gorithm for change detection in image pairs based on direct image differencing and thresh-
olding.  We aim to create an algorithm that is not only less demanding computationally but  
also  capable  of  running  on  single-board  computers  equipped  with  sensors,  such  as  
Rasp-berry Pi devices, in exhibition environments.  This approach addresses the need for a 
bal-ance between computational efficiency and the flexibility of change detection 
methods in  resource-limited settings.

2  

In this study, we address the task of visualizing changes that occur within a relatively static  
environment  over  a  certain  period.  Our  methodology  is  centered  on  the  comparison  of  
paired images, such as those taken at the begin and end of operating hours in the exhibition  
rooms  of  a  museum.  By  contrasting  these  images,  we  are  able  to  identify  and  highlight  
pixel-level  changes.  This  approach  promises  to  enable  curators  or  security  officers to  
efficiently detect and address any alterations to objects, ensuring t he integrity and safety  
of the  exhibits.  This  technique  has  the  potential  to  serve  as  a  proactive  measure  in  
museum  management,  allowing  for  the  swift  identification  and  correction  of  any  
discrepancies or potential issues with the displayed items.  The fundamental approach we  
consider is a straight-forward  one:  transforming  the  images  to  grayscale,  computing  
the  pixel  differences,  and  identifying  pixels  where  this  difference  surpasses  a  
predefined  t  hreshold. Figure 1(a) illus-trates an example of this technique.

However, a significant challenge arises when attempting to visually discern changes dir-
ectly from the input images.  Our preliminary results reveal that while the basic approach  
of differencing and thresholding detects many changes, the majority of these are false positi-
ves.  These  inaccuracies  predominantly  stem  from  minor  physical  displacements  of  the  
camera,  likely  caused  by  vibrations,  resulting  in  slight  shifts  and  distortions  between  the  
images.  We will delve deeper into image alignment algorithms suitable for our needs in
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(a) An example without image alignment

(b) An example with image alignment but no color adjustment

Figure 1: Illustration of change detection via image differencing and thresholding. Panel (a) demon-
strates the method without image alignment, and Panel (b) corresponds to the method with image
alignment but under different color temperatures. For each case, the left pair of images represents
the input pair of images captured at the opening and closing times of the museum. The list of true
changes is shown in the center as an enlarged view of the changed regions. The rightmost image in
each panel shows the outcome of the change detection process.
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Section 3.
Assuming  that  the  effective  alignment  of  the  images  is  achievable,  we  encounter  an-

other issue related to variations in color tones.  Figure 1(b) presents an example in which  
this  simple  differencing  and  thresholding  method  is  applied  to  well-aligned  images.  In  
this  instance,  the  deformation  of  large  fabric  flags on the wall due to a ir c onditioning is  
successfully detected.  However, a prominent issue arises with luminance differences, par-
ticularly in the crimson color region, leading to varying intensities in the grayscale images  
and, consequently, significant detection e rrors. An approach to address this challenge will  
be discussed in Section 4.

3  Image lignment

Image registration, a process critical for aligning multiple images of the same scene cap-
tured under different conditions or at various times, plays a central role in this study.  We  
explored two image registration algorithms. The first method, based on the approach in [14],  
employs phase correlation and logarithmic scaling to ascertain rotation, scaling, and trans-
lation parameters for alignment.  This process begins with converting images to grayscale,  
followed by applying a high-pass filter for p reprocessing. S ubsequently, the fast Fourier  
transform  (FFT)  and  log-polar  transformation  are  utilized  to  determine  the  necessary  ro-
tation  and  scaling.  The  translational  shift  is  then  computed  using  the  phase  correlation  
technique. This method essentially seeks to find the affine transformation.

The second algorithm that we investigated is the enhanced correlation coefficient (ECC)  
maximization [15].  The ECC, which is robust against illumination changes and capable of  
handling linear and non-linear intensity variations, is particularly effective in environments  
with fluctuating l ighting conditions [16]. Despite i ts i terative n ature, the ECC algorithm  
demonstrates strong convergence properties, often yielding precise registration outcomes.  
It  also  offers  flexibility i n t he choice f t ransformation models, with t his study employing  
a  perspective  transformation  (homography)  model.  While  the  transformation  matrix  
resembles  those  in  the  affine m odel, t he h omography m odel t akes p erspective distortion  
corrections into account.

For  brevity,  detailed  explanations  of  the  FFT-based  phase  correlation  and  ECC  tech-
niques are omitted here, but we refer readers to [14] and [15] for further technical specifics.  
Figure 2 presents a comparative analysis of two image registration algorithms across two  
distinct  examples.  The  first row f eatures the s ame s cene as d epicted in F ig. 1(a), where  
the expected differences have been previously established. The second row shows a bench-
marking  scenario,  a  scene  where  ideally  no  differences  should  be  detected  if  the  images  
are accurately aligned.  The leftmost image in this row serves as a reference, showing the  
outcome  when no  image  alignment is  applied.  In  the  unaligned scenario,  a multitude  of  
detection failures are evident, particularly around object edges within the scene.  The FFT-
based phase correlation technique, on the other hand, successfully identifies actual changes  
in specific elements, such as the electric bulletin board, the message board, and the thatch  
of the house.  However,  this method still presents several detection errors in areas where  
no  actual  changes  have  occurred.  Conversely,  the  ECC  maximization  method  excels  by  
accurately detecting all changes without any false positives.

To summarize, while the FFT-based phase correlation technique demonstrates computa-
tional efficiency in handling affine transformations, the ECC maximization method proves  
more robust against image distortions since it offers greater flexibility in selecting different
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Without alignment Phase correlation ECC maximization

Figure 2: Difference detection in two example scenes. Differences identified in the images are high-
lighted in white. The left column displays results obtained without image alignment, demonstrating
numerous detection errors, especially around object edges. The results in the center column, ob-
tained by employing the phase correlation technique [14], show improved detection accuracy, iden-
tifying actual changes but still presenting some errors. The images in the right column, obtained
using the ECC maximization method [15], exhibit superior performance with accurate detection of
changes and no false positives.

transformation models. This flexibility is particularly beneficial for accommodating image
distortions caused by perspective projection effects, going beyond the capabilities of mere
affine transformation handling.

4 Color djustment

Adjusting the color tones of images is a fundamental step to achieving precise image align-
ment and effective difference detection. This necessity is evident in the example shown
in Fig. 1(b), where the color temperature, influenced by the l ighting c o nditions, l eads to
detection errors. By harmonizing the color tones, the image registration process can be
simplified, as this reduces the complications arising from color variations.

In the context of our study, harmonizing the intensity of images when converting them
to grayscale proves to be sufficient. To achieve this, white balancing and color constancy al-
gorithms emerge as the primary methods for color adjustment. These techniques are partic-
ularly appealing for our application as they not only fulfill the requirement of harmonizing
color tones but also offer the advantage of being computationally efficient.

4.1 ITU onversion

To establish a baseline for our study, we utilized a standard grayscale conversion technique
recommended by the International Telecommunication Union (ITU) [17]. This method is
defined by the equation:

Y (x,y) = 0.299R(x,y)+0.588G(x,y)+0.114B(x,y), (1)
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Ri(x,y) = log [Ii(x,y)]− log [Ii(x,y)∗F(x,y)] , (2)

where Ri(x,y) is the Retinex value for i-th color channel, Ii(x,y) is the i-th color channel of
the input image, and F(x,y) is the normalized surround function, often chosen to be a radial
function. In our research, we have opted for a Gaussian filter as the surround function.

Furthermore, the Multi-Scale Retinex (MSR) is an extension of SSR, which involves
calculating a weighted average of SSR values across different standard deviations. For
instance, in our study, we adopted three standard deviation values of the Gaussian filter
σ = (15,80,250) with equal weighting wn = 1/3, as employed in previous works [20, 21].
Details of the algorithm can be found in [22].

4.4 Multi-Scale Retinex with Chromaticity Preservation

A notable limitation of the MSR algorithm is its tendency to produce images with de-
saturated colors. To counter this issue, the Multi-Scale Retinex with Color Restoration
(MSRCR) has been developed, offering enhancements in image brightness and contrast
while simultaneously preserving or restoring the original colors of the image [20, 21]. This
approach effectively reinstates the vibrant colors that might be lost in the MSR process,
thereby rendering images more natural and closer to the human eye’s perception in similar
lighting conditions.

However, a challenge identified with the MSRCR, as highlighted in [22], is its han-
dling of images with saturated colors. In such cases, pixels with intensity values near the
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where Y (x,y) is the color intensity of the converted grayscale image at pixel (x,y), R(x,y),  
G(x,y), and B(x,y) are the color intensities of the red, green, and blue components, respec-
tively,  at  the  same  pixel.  This  approach  provides  a  straightforward  and  widely  accepted  
method for converting color images to grayscale.

4.2  Gray World lgorithm

The Gray World algorithm is a simple and widely-used color constancy algorithm for au-
tomatic  white  balance  adjustment  in  digital  images [18].  This  algorithm operates  on  the  
fundamental assumption that the average color of a scene, when averaged across all pixels,  
approximates a gray tone. More specifically, it posits that the mean intensity for each of the  
primary color channels—red, green, and blue—is equal. To apply this algorithm, each color  
channel is scaled according to its average intensity across the entire image.  This process  
helps in correcting the color balance, thereby bringing the overall color tone of the image  
closer to a neutral gray.

4.3  Multi-Scale Retinex

The Retinex algorithm, rooted in the principles of human visual perception,  serves as an  
effective color constancy method to enhance the visibility and appearance of digital images  
[19].  This algorithm improves the dynamic range and corrects the color balance of images  
by  focusing  on  the  concept  that  the  perceived  color  of  an  object  is  influenced more 
by the light it reflects than the color of the light source itself. By distinguishing between  the 
illuminant and reflectance components of an image, Retinex effectively enhances the  
dynamic range and corrects the color balance, resulting in more visually appealing images  
[20, 21].  The single-scale Retinex (SSR) version of this algorithm is calculated using the 
following equation:
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extremes (near 0 or 255) may undergo drastic shifts to the opposite end of the spectrum.  
To address this and fulfill the objectives of the Retinex theory more effectively, the Multi-
Scale Retinex with Chromaticity Preservation (MSRCP) was developed.  The MSRCP is  
designed to enhance images in accordance with the Retinex theory while maintaining the  
chromaticity of the image,  thus preventing the issue of color desaturation and ensuring a  
more balanced and true-to-life color representation in the processed images.

4.5  Lab onversion with CLAHE qualization

In our research, we developed and tested a simple method aimed at adjusting illumination  
intensity in digital images. This method begins by converting the RGB color image into the  
Lab color scale.  The Lab color space is particularly advantageous for this task due to its  
ability to separate the lightness (L) component from the color components.

Once the image is converted to the Lab scale,  we specifically target the L (lightness)  
component for adjustment.  This adjustment is carried out using contrast-limited adaptive  
histogram  equalization  (CLAHE),  a  technique  noted  for  its  efficacy i n e nhancing image  
contrast [23, 24]. CLAHE is renowned for its application in diverse fields, such as medical  
image processing, remote sensing, and computer vision. The primary advantage of CLAHE  
lies in its ability to adapt the intensity mapping of an image according to local variations.  
This localized approach allows CLAHE to enhance contrast effectively while avoiding the  
over-amplification o f noise i n low-contrast a reas a nd p reserving t he i nherent c ontrast in  
high-contrast regions.

4.6  Comparisons

Figure 3 provides a comparative analysis of the aforementioned color synchronization meth-
ods utilized to equalize the intensity of images captured under different color temperature  
conditions.  In  this  context,  it  is  crucial  to  underline  that  our  primary  objective  is  to  en-
sure that the color intensities of identical objects in different images are either equalized or  
brought as close to equality as possible.

In  Fig.  3  (a)  to  (c),  three  pairs  of  images  are  displayed.  The  first p air ( a) shows the  
original input color images. The second pair (b) is the result of applying the grayscale con-
version recommended by the ITU [17], serving as a baseline for comparison. The third pair
(c) is processed using the Gray World algorithm. These methods aim to demonstrate how
basic grayscale conversion techniques perform in terms of color tone harmonization. Fig. 3
(d) to (f) presents three additional pairs of images processed with advanced techniques.
The first pair (d) is processed using the MSR method [20, 21], known for its effectiveness
in various lighting conditions. The second pair (e) is the result of using the MSRCP [22],
which addresses some of the color saturation issues observed in the MSR. Lastly, the third
pair (f) in this row is obtained through RGB to Lab conversion followed by CLAHE equal-
ization applied to the L-component, illustrating the effectiveness of our proposed method
in achieving color tone harmonization.

In the evaluation of the different color-conversion methods used in our study, it was
observed that the color of objects appeared similar across most pixels in all methods. How-
ever, noticeable disparities in the intensity of the gray color were found in specific regions,
particularly those where the original color was a vivid crimson. These differences were
especially pronounced in the simple grayscale conversion recommended by the ITU and
the method based on the Gray World assumption. While MSR methods are generally con-
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(a) Original (b) ITU-R Conversion (c) Gray World

(d) MSR (e) MSRCP (f) Proposed Method

Figure 3: Comparative results of various color adjustment methods. Each figure consists of two
rows, showing pictures at the opening (9:00) and closing times (17:00) of a venue.
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sidered robust to brightness variations and effective under diverse lighting conditions, they
also exhibited noticeable differences in color intensity in our specific case. In contrast, our
method demonstrated superior performance in harmonizing color intensity for grayscale
images. This method effectively addressed the challenges posed by variations in lighting
and color temperature, leading to more consistent and harmonized grayscale images. For
the purposes of this study, we have chosen to use our Lab conversion and the CLAHE
equalization method for color harmonization.

This comparison highlights the effectiveness of each method in achieving a consistent
color intensity across images, an essential factor for accurate image registration and change
detection in environments with varying lighting conditions. However, it is important to
acknowledge that further investigation is required to fully assess the efficacy of this method
under a variety of conditions and with different examples. This additional research will
help in validating the method’s versatility and effectiveness in diverse image processing
applications.

5 Experiments

Our change detection procedure can be summarized as the following list of steps for given
Images A and B:

1. Color Adjustment: Apply our color adjustment method, which includes Lab conver-
sion and CLAHE equalization, to input Images A and B. The L-component of the
color is used as the grayscale image intensity.

2. Perspective Projection: Calculate the perspective projection matrix using ECC max-
imization.

3. Image Alignment: The calculated transformation is applied to Image B to align it
with Image A.

4. Gaussian Blurring: Both Images A and B are subjected to Gaussian blurring.

5. Pixel Difference Calculation: The differences between all pixels of Images A and B
are calculated.

6. Thresholding: The pixels with an absolute difference in intensity exceeding a certain
threshold are marked.

7. Morphological Operations: Erosion and dilation are applied to the difference image
to emphasize changes.

In addition to the experiments conducted in our previous study [25], images were cap-
tured at opening and closing times at 11 different locations within the Fukushima Prefec-
tural Museum. The locations and coverage of the 11 cameras are illustrated in Fig. 4. All
images were captured at a resolution of 1280 × 960 (1.2M) pixels. The computational pro-
cedure was tested on an ordinary personal computer, and in all cases, the computation was
completed in approximately 600 milliseconds.

Figure 5 showcases the results of our change detection procedure, except for the results
from Camera 1, which were shown above in Fig. 2.

The following list summarizes the results of our experiments:

(a) Camera 2: Changed were detected in the paper box where comment sheets in the box
vanished, while slight variations in illumination intensity were not detected due to
thresholding.
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Figure 4: Locations and approximate coverage area of 11 cameras for capturing images.

(b) Camera 3: A slightly peeled label was detected and changes observed through reflec-
tions in showcases.

(c) Camera 4 and (i) Camera 10: A small object was detected with a slight directional
change.

(d) Camera 5 and (j) Camera 11: Changes were detected in the location of pedals for in-
teractive exhibitions and in the armrest of a security officer’s chair.

(e) Camera 6: A big difference was detected in the information board due to significant
rotation and deformation of the fabric cover.

(f) Camera 7: This is the case in which the input images are given in different color tem-
peratures. Changes in fabric flags and polystyrene foam board were detected, but
detection failures still exist in areas with vivid crimson colors and near exhibition
case lights.

(g) Camera 8: Changes were successfully detected changes in a relatively dark region,
demonstrating the method’s effectiveness in challenging visibility conditions.

(h) Camera 9: This was a control experiment with no changes in the scene.

These results demonstrate the effectiveness of our method in various settings within the
museum, aiding curators and security staff in monitoring and detecting undesirable changes
in exhibitions.

6 Conclusions

In our study, we explored the task of visualizing changes within a relatively static envi-
ronment over a period, with a focus on image pairs taken at different times, such as at
the opening and closing of a museum. First, we delved into image alignment techniques.
We examined two algorithms for image alignment: a phase correlation technique for affine
transformations and ECC maximization for perspective transformations. The comparative
analysis revealed that while the phase correlation method is computationally efficient, ECC
maximization provided more robust results against intensity variations and was more flex-
ible in handling different transformation models. Another important aspect of our study
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Figure 5: Results of our change detection method for images captured by Cameras 2 to 11. In all
cases, we used the pictures taken at opening (9:00) and closing (17:00) times of the museum on a
workday at July 7, 2022. In all cases, existing changes were successfully detected. This emphasizes
the usefullness of this system in assisting curators or security officers in noticing and correcting
changes if necessary.
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was the adjustment of color tones. We explored various color adjustment methods, includ-
ing ITU conversion, the Gray World algorithm, MSR, and a simple method combining Lab
conversion with CLAHE equalization. Our comparative analysis indicated that our Lab
conversion and CLAHE equalization method outperformed the others in harmonizing color
intensities for grayscale images.

We applied these methodologies in a series of experiments at the Fukushima Prefectural
Museum, capturing images at 11 locations at opening and closing times. Our change detec-
tion procedure involved color adjustment, perspective projection, image alignment, Gaus-
sian blurring, pixel difference calculation, thresholding, and morphological operations. The
computational process was efficient: it was completed in approximately 600 milliseconds
for images consisting of 1280 × 960 (1.2M) pixels on an ordinary personal computer. The
results demonstrated the effectiveness of our method in a range of scenarios within the mu-
seum environment. We successfully detected changes in various settings, from minor shifts
in object positions to more subtle changes, such as variations in lighting and reflections.
Notably, challenges persisted in areas with saturated colors and ghosting artifacts due to
intense lighting, indicating areas for further research and method refinement.

In conclusion, we demonstrated the efficacy of advanced image alignment and color
adjustment techniques in detecting subtle changes, which are crucial for applications such
as museum security and exhibit maintenance. Future work will focus on refining these
methods to address the remaining challenges and extend their applicability to a broader
range of conditions and scenarios.
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