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Abstract

In recent years, dialog systems, a type of application in the field of natural language process-
ing, have become more prevalent in our daily lives, such as through help desk services. In
dialog response generation, responses generated for a specific context may differ from those
for other contexts not only grammatically but also semantically in some cases. Thus, sim-
ply applying translation technologies would cause issues with the diversity of the generated
responses. Previous studies, such as VHRED and GVT, used sampled latent variables for
response generation to achieve response diversity. In this study, we propose a method (ex-
tended GVTSC) for classifying dialogs before reflecting them in internal dialog processing,
in addition to the characteristics of each speaker, to improve diversity while maintaining
consistency.

Keywords: Dialogue System, User-RNN, Conditional Variational Autoencoder, Global
Variational Transformer, Extended GVT.

1 Introduction

The field of natural language processing is dramatically changing with the development
of deep learning models. The Transformer[1] model has been proposed as an alternative
to RNN and LSTM[2][3][4], which are suited to sequence-type data processing and can
generate sentences. Language processing analysis that takes context into account is now
possible, as seen in BERT[5], one of Transformer ’s models. Meanwhile, GTP-2[6] is ca-
pable of generating word definitions. The current dialog systems that are used for practical
purposes are not generation-based dialog systems[7] that may generate inaccurate or risk-
averse responses[8][9], but rather rule-based dialog systems where accuracy is guaranteed
by manually generated rules.

RNN-based HRED[10] and VHRED[11] models have been announced. However, be-
cause these models do not distinguish between utterances made by two parties in a dialog,
the characteristics of each party may become confused, resulting in a loss of consistency in
response generation. The GVT model[12], in which the Transformer model is applied to
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Figure 1: User-RNN added to VHRED model

dialog, also loses the characteristics of each speaker in latent variables generated from the 
entire context, causing issues with consistent response generation.

Therefore, in this study, we propose a VHRED model with added User-RNN (VHRED
+ User-RNN) that retains utterance information of each person in a two-person dialog, and
an extended GVT model where latent variables of each speaker are added to the GVT model
to improve response consistency.

The GVT model is a method that uses sampled latent variables for Decoder input, where 
speaker characteristics are represented by latent variables and sampled to achieve response 
diversity. However, a previous study indicated that latent variables tend to reduce the con-
sistency of generated responses[13]. Thus, this study proposes a method for preparing 
speaker characteristic vectors via clustering and using them in context encoding (GVTSC) 
to improve consistency and diversity through abstraction of speaker characteristics and to 
add these speaker characteristics to Encoder so that the characteristics of each speaker are 
considered. The study also proposes a method that combines the method of adding la-
tent variables for each speaker with the method of clustering speaker characteristic vectors 
(extended GVTSC).

To evaluate this model, the diversity of the generated response was evaluated using 
Dist-n[14], an automated metric, and the similarity to the reference response was evaluated 
using the BERT score[15]. “ The Open 2 Channel Dialog Corpus ”[16] was used as the 
dataset, and the experimental result showed improvements in the diversity of the generated 
responses.

2 VHRED Model with Added User-RNN

The VHRED model ensures the dialog flow with Context-RNN and uses it to generate re-
sponses. However, because utterances from two speakers are handled together, their princi-
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ples and assertions become mixed, and consistency may be lost during response generation.
Thus, we added User-RNN, which secures the utterance information of each speaker in
a two-person dialog to improve response consistency. User1-RNN and User2-RNN were
the two User-RNN. In a dialog, utterances with odd numbers were made by the User 1,
while those with even numbers were made by User 2. To keep track of each speaker’s
information, odd-number utterances were processed using User1-RNN, and even-number
utterances were processed using User2-RNN.

The model is depicted in Figure 1. User-RNN has the same structure as Context-
RNN, and the Encoder output was entered into User-RNN, and the output was entered
into Context-RNN. Further, for an utterance by User 1, the Encoder output was entered into
User1-RNN. For an utterance by User 2, Encoder output was entered into User2-RNN. In
addition to the Encoder and Context-RNN outputs, the output from each User-RNN was
used to generate a prior probability distribution and posterior probability distribution to
sample latent variables.

When utterance x1, . . . ,xn−1 was given as the context in response generation, utterance
xn was predicted and generated as follows. Here, n is the number of turns for the utterance,
and f enc

θ , f con
θ , f usr1

θ , f usr2
θ and f dec

θ are the calculations of the Encoder, Context-RNN,
User1-RNN, User2-RNN, and Decoder, respectively.

The utterance immediately before, xn−1, is entered into Encoder, it produces a hidden
layer vector, henc

n−1.
henc

n−1 = f enc
θ (xn−1) (1)

If n−1 was an odd number, henc
n−1 was used to update the hidden layer vector of User1-RNN

and produce husr1
n−1. Similarly, if n− 1 was an even number, henc

n−1 was used to update the
hidden layer vector of User2-RNN and produce husr2

n−1.

husr1
n−1 = f usr1

θ (husr1
n−3,h

enc
n−1) (2)

husr2
n−1 = f usr2

θ (husr2
n−3,h

enc
n−1) (3)

Furthermore, Context-RNN used the hidden layer vector of User-RNN to update the hidden
layer vector, resulting in hcon

n−1.

hcon
n−1 =

{
f con
θ (hcon

n−2,h
usr1
n−1) if n−1 is odd

f con
θ (hcon

n−2,h
usr2
n−1) if n−1 is even

(4)

Further, the latent variable zn−1 was sampled. It follows the normal distribution where
mean and variance are determined by functions, µprior and σprior,

pθ (zn−1|x<n) = N (z|µprior,σprior,I) (5)

where µprior and σprior are defined as follows. MLPθ indicates calculation by multilayer
perceptrons.

µprior =

{
MLPθ (hcon

n−1,h
usr1
n−1) if n−1 is odd

MLPθ (hcon
n−1,h

usr2
n−1) if n−1 is even

(6)

σprior =

{
So f t plusθ (MLPθ (hcon

n−1,h
usr1
n−1)) if n−1 is odd

So f t plusθ (MLPθ (hcon
n−1,h

usr2
n−1)) if n−1 is even

(7)
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Figure 2: Structure of the extended GVT model

Finally, Decoder generates a response, xn, using the Context-RNN output, hcon
n−1, and a latent

variable, zn−1.
pθ (x|x<n) = f dec

θ (x|hcon
n−1,zn−1) (8)

While learning, zn−1 follows a normal distribution where mean and variance are determined
by the functions µposterior and σposterior, where µposterior and σposterior are defined as follows.

µposterior =

{
MLPθ (henc

n ,hcon
n−1,h

usr1
n−1) if n−1 is odd

MLPθ (henc
n ,hcon

n−1,h
usr2
n−1) if n−1 is even

(9)

σposterior =

{
So f t plusθ (MLPθ (henc

n ,hcon
n−1,h

usr1
n−1)) if n−1 is odd

So f t plusθ (MLPθ (henc
n ,hcon

n−1,h
usr2
n−1)) if n−1 is even

(10)

henc
n = f enc

θ (xn) (11)

3 GVT Model with Information of Each Speaker Extended

The GVT model is one in which the CVAE model[17] and an RNN model used for dialog, 
has been rewritten as Transformer. In case of GVT, utterances are entered as a context 
without differentiating speakers. Thus, a latent variable is generated from the entire context, 
and the characteristics of each speaker are diluted. Therefore, in this study, we propose an 
extended GVT model in which utterances are separated and input for each speaker and the 
latent variable of each speaker is used to consider the characteristics of each speaker. In case 
of the extended GVT, the structure considers changes in speakers as well as past utterances. 
Figure 2 shows a diagram of the extended GVT model that considers speakers. In contrast 
to the regular GVT model, there is a part that differentiates utterances by each speaker and 
enters the context (dotted line in Figure 2), where latent variable z is sampled from Prior 
Net for each speaker.

In case of TRS Encoder, the CLS token is added to the beginning of the input series, 
where Transformer calculates the output vector. The entire context of the dialog is entered
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into the Context TRS Encoder to obtain the output vector. The context summarizes the
utterances by two people in a dialog and can separate each speaker. To obtain the output
vector, each speaker divides the context and inputs it to each Speaker TRS Encoder.

Prior and Recognition Net are used to sample z, where prior and posterior probability
distributions were approximated using multilayer perceptron (MLP). Prior Net estimates
the mean and variance of the context vector using MLP based on the output vector of the
Speaker TRS Encoder or Context TRS Encoder CLS token. z is sampled from the normal
distribution that follows the mean and variance. In case of Recognition Net, in addition
to the Speaker TRS Encoder and Context TRS Encoder, the output vector of the Response
TRS Encoder CLS token is also used to estimate the mean and variance of the vector of the
entire dialog using MLP. The latent variable z is sampled from a normal distribution, with
mean and variance estimated in the same way as the Prior Net. The output vector of the
TRS Encoder CLS token can be considered as a vector that expresses the entire input; thus,
prior and posterior probability distributions are generated from the output vector of the CLS
token to sample the latent variable z.

In case of TRS Decoder, latent variables are used to generate responses by inserting the
latent variable of the response speaker, as well as the normal latent variable of the SOS token
at the beginning of the input series. Further, TRS Decoder uses the latent variable sampled
by Recognition Net while learning, and uses the latent variable sampled from Prior Net
during generation.

The extended GVT model optimizes the model by maximizing the Evidence Lower
Bound (ELBO) below, where c denotes the context, cs1 denotes the speaker 1 context, cs2
denotes the speaker 2 context, x denotes the response, and z denotes the latent variable.

LELBO(x,c)

= log p(x|c)
≧ Eq(z|x,c)[log p(x|z,c)]
−KL(q(z|x,c)∥p(z|c))
−KL(s(z|x,cs1,c)∥r(z|cs1))

−KL(s′(z|x,cs2,c)∥r′(z|cs2))

(12)

where KL is the Kullback–Leibler divergence (KL divergence) between distributions and
the prior probability distribution, and p, r, and r′ can be defined using the following Equa-
tions,

p(z|c)∼ N (µp,σ2
p) (13)

r(z|cs1)∼ N (µr,σ2
r ) (14)

r′(z|cs2)∼ N (µr′ ,σ2
r′) (15)

where

[
µp, log(σ2

p)
]
= MLPp(c) (16)[

µr, log(σ2
r )
]
= MLPr(cs1) (17)[

µr′ , log(σ2
r′)
]
= MLPr′(cs2) (18)
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Figure 3: Structure of the extended GVTSC model

and posterior probability distribution, q, s, and s′ are defined by the following Equations,

q(z|x,c)∼ N (µq,σ2
q ) (19)

s(z|x,cs1,c)∼ N (µs,σ2
s ) (20)

s′(z|x,cs2,c)∼ N (µs′ ,σ2
s′) (21)

where [
µq, log(σ2

q )
]
= MLPq(x,c) (22)[

µs, log(σ2
s )
]
= MLPs(x,cs1,c) (23)[

µs′ , log(σ2
s′)
]
= MLPs′(x,cs2,c) (24)

KL annealing[18] and bag-of-words (BoW) loss[17][19] are incorporated as a result of 
KL vanishing, which occurs when the Decoder stops considering the information of the 
latent variable z as the learning progresses. KL annealing is a method in which the KL 
divergence value in Equation 12 is assigned a weight that increases linearly from 0 to 1 as 
the learning progresses. BoW loss is a method that includes subtasks that estimate the set 
of words that are included in the response to strengthen the relationship between the latent 
variable and words in the response.

4 Extended GVTSC Model with Added Speaker Clustering

We propose a model in which a speaker characteristic vector is prepared via clustering and 
used to encode the context. To consider the characteristics of each speaker and improve 
consistency and diversity, we propose a model in which a method that abstracts and adds 
speaker characteristics via clustering to the Encoder is added to the extended GVT model. 
Figure 3 shows the schematics of the extended GVTSC model. Compared to the extended 
GVT model, a part that prepares the speaker characteristic vector through clustering (dotted 
line in Figure 3) has been added to encode the context.

Next, let us discuss the processing of the extended GVTSC model. First, a speaker 
characteristic vector is prepared via clustering. The context summarizes the utterances of 
two people in a dialog and can be divided according to each speaker. Thus, the dialog
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context is divided in relation to each speaker for processing. Because the processing for
each speaker is the same, let us discuss the case for speaker 1. Speaker1 TRS Encoder
encodes the context of the speaker 1. In case of TRS Encoder, the CLS token is added to
the beginning of the input series, where Transformer calculates the output vector. The CLS
token vector is obtained as the context vector of the speaker 1 (Speaker1 Vector). Clustering
is performed for Speaker1 Vector. In this study, we used k-Means for clustering. Cluster
number k must be determined in an experiment, as in the hyperparameter. Based on the
clustering result, the cluster for Speaker1 Vector is predicted and the center vector of the
cluster (Speaker1 Cluster Vector) is acquired. To obtain the Speaker2 Cluster Vector, the
same procedure as for Speaker 1 is followed. TRS Encoder trained in response generation
is shared by TRS Encoder used for clustering. However, there is no training in the back
propagation of error during the clustering process.

The Context TRS Encoder uses the entire context of the dialog to obtain the output
vector. Tokens for each speaker (SPK1, SPK2) are added to the input series during context
encoding, with Speaker1 Cluster Vector being input to SPK1 and Speaker2 Cluster Vector
being input to SPK2. The context is divided in relation to each speaker, which becomes
the input for each Speaker TRS Encoder to obtain the output vector. At this point, the
token of speaker 1 (SPK1) is added to the input series, and the Speaker1 Cluster Vector is
entered. The token of the speaker 2 (SPK2) is added to the input series for the Speaker2
TRS Encoder and Speaker2 Cluster Vector is entered. When encoding the context for each
speaker, we used the characteristic vector of each speaker to encode speaker characteristics
that were further considered.

Latent variable z is sampled from Prior Net and Recognition Net, where the prior and
posterior probability distributions were approximated with MLP. Prior Net estimates the
mean and variance of the context vector with MLP based on the output vector of the CLS
token of the Speaker TRS Encoder or Context TRS Encoder. z is sampled from a normal
distribution with a mean and variance. Recognition Net estimates the mean and variance of
the entire dialog vector with MLP using the output vectors of the Response TRS Encoder
CLS token, Speaker TRS Encoder, and Context TRS Encoder. z is sampled from a normal
distribution that follows the mean and variance, which are estimated in the same way as in
Prior Net. Because the output vector of the TRS Encoder CLS token can be considered as
the vector that represents the entire input, prior and posterior probability distributions are
generated from the output vector of the CLS token and z is sampled.

The latent variable of the response speaker is entered into the TRS Decoder so that it can
be used as the latent variable for response generation, as well as the normal latent variable
of the SOS token at the beginning of the input series. At this point, TRS Decoder uses
the latent variable sampled from Recognition Net during learning and the latent variable
sampled from Prior Net during generation.

The extended GVTSC model optimizes the model in the same manner as the extended
GVT by maximizing the ELBO below, with c as the context, cs1 as the speaker 1 context,
cs2 as the speaker 2 context, x as the response, z as the latent variable, vs1 as the speaker 1
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cluster vector, and vs2 as the speaker 2 cluster vector.

LELBO(x,c)

= log p(x|c)
≧ Eq(z|x,c,vs1,vs2)[log p(x|z,c,vs1,vs2)]

−KL(q(z|x,c,vs1,vs2)∥p(z|c,vs1,vs2))

−KL(s(z|x,cs1,c,vs1,vs2)∥r(z|cs1,vs1))

−KL(s′(z|x,cs2,c,vs1,vs2)∥r′(z|cs2,vs2))

(25)

where KL is the KL divergence between distributions and the prior probability distribution,
and p, r, and r′, are defined with the following Equations,

p(z|c,vs1,vs2)∼ N (µp,σ2
p) (26)

r(z|cs1,vs1)∼ N (µr,σ2
r ) (27)

r′(z|cs2,vs2)∼ N (µr′ ,σ2
r′) (28)

where [
µp, log(σ2

p)
]
= MLPp(c,vs1,vs2) (29)[

µr, log(σ2
r )
]
= MLPr(cs1,vs1) (30)[

µr′ , log(σ2
r′)
]
= MLPr′(cs2,vs2) (31)

and posterior probability distribution, and q, s, and s′, are defined by the following Equa-
tions,

q(z|x,c,vs1,vs2)∼ N (µq,σ2
q ) (32)

s(z|x,cs1,c,vs1,vs2)∼ N (µs,σ2
s ) (33)

s′(z|x,cs2,c,vs1,vs2)∼ N (µs′ ,σ2
s′) (34)

where [
µq, log(σ2

q )
]
= MLPq(x,c,vs1,vs2) (35)[

µs, log(σ2
s )
]
= MLPs(x,cs1,c,vs1,vs2) (36)[

µs′ , log(σ2
s′)
]
= MLPs′(x,cs2,c,vs1,vs2) (37)

KL annealing and BoW loss are incorporated, as in the extended GVT.

5 Evaluation Experiment

5.1 Evaluation by Benchmark

“ Open 2 Channel Dialog Corpus”was used as the dataset. We used SentencePiece to
divide it into subwords as a preprocessing step. We used Dist-n to evaluate the diversity
of the generated response and the BERT score to evaluate the similarities to the reference
response as an automatic evaluation method. Dist-N calculates the proportion of the number
of types of N-grams relative to the total number of N-grams. When this ratio was higher, the
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Table 1: Automatic evaluation of each model
Open 2 Channel Dialog Corpus

Diversity Simirality
Model Dist-1 Dist-2 Dist-3 BERT Score

1-turn
VHRED 0.013 0.220 0.608 0.650
VHRED + User-RNN 0.013 0.225 0.632 0.651
GVT 0.008 0.392 0.935 0.643
Extended GVT 0.018 0.445 0.908 0.650
GVTSC 0.008 0.443 0.952 0.643
Extended GVTSC 0.020 0.567 0.967 0.649
Actual response 0.017 0.552 0.926 -

3-turn
VHRED 0.036 0.330 0.699 0.653
VHRED + User-RNN 0.038 0.347 0.724 0.653
GVT 0.007 0.361 0.911 0.643
Extended GVT 0.017 0.413 0.886 0.654
GVTSC 0.008 0.405 0.931 0.644
Extended GVTSC 0.017 0.515 0.949 0.652
Actual response 0.017 0.552 0.926 -

diversity was higher. The BERT score uses the pre-trained BERT embeddings to evaluate
the similarities of the responses generated by the model to the reference response.

Table 1 shows the results of the automatic evaluation of the responses generated by each
model. The GVTSC model adds speaker clustering to the GVT model in the same way as
the extended GVTSC model. The number of clusters in the clustering (k-Means) was 8
and 3 for the GVTSC model and the extended GVTSC model, respectively, based on the
preliminary experiment.

A model that included User-RNN in addition to the VHRED model, as presented in
Table 1, improved diversity for both 1-turn and 3-turn; however, there was no difference in
the evaluation of similarities.

Compared to GVT, the extended GVT model with an additional Encoder for each
speaker improved in Dist-1 and Dist-2 but declined in Dist-3. In the evaluation of simi-
larities, the 1-turn and 3-turn BERT scores improved by approximately 0.007 and 0.011,
respectively.

All diversity evaluations for the GVTSC model showed an improvement compared to
the GVT model. The GVTSC model outperformed the extended GVT model by approxi-
mately 0.045 in Dist-3.

However, there was little difference in the evaluation of the similarities between the
extended GVT model and GVTSC model. Further, in terms of diversity, both 1-turn and
3-turn evaluations improved. Dist-2, in particular, improved the evaluation by at least 0.1.
Considering the speaker characteristics in the encoding process by Encoder, it had an impact
on the sampling of the latent variables and output vector of each token that the Encoder used
for the attention of the Decoder.
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Table 2: Example of response

Context
Utterance1: 頑張ってくれ。有名どころばかり
だ
Utterance2: 分かるなら秒で答えるけどピンと
も来なくて...あんまり読書しないからなんだけ
ども...
Utterance3: おすすめばかりだから、このスレ
で出た小説は読んでくれ
Utterance4: なら暇だし読んでみようかな。一
番のオススメは?
Utterance5: 一番は難しいな

Response
GVT:ああ、下手で小説王室とか聞いて分やっ
てみる (出来そうとは言ってないそうか別にい
いと思うぞ。
Extended GVT: なんかありがとうございます
読んではみる。とヒゲの Hと
GVTSC: せやな、キンだ...どう全然、風知ら
なくて日本から探していいな気だろ。そういう
こと
Extended GVTSC:探してみるよ。でもその時
点でめっちゃくちゃ苦手かな。読み y
Actual response: えー。決めてよー

5.2 Comparison of Dialogue Generation

Examples of responses generated by each method to Open 2 Channel Dialog Corpus are
shown in Table 2. In Table 2, the top row represents the context that is the dialogue, and the
bottom row represents the response by each method when the context is input. The last row
in the bottom row is the actual response.

The extended GVT and extended GVTSC models are highly relevant to the context.
The GVT and GVTSC models produce responses with low fluency. The extended GVTSC
model produces a diverse response to the last utterance of the context, which is different in
direction from the reference response.

6 Conclusions

In this study, we proposed a method of using speaker information to improve consistency
and diversity in dialogue response generation. First, for RNN-based models, we proposed
a User-RNN that keeps speaker information separately and confirmed the improvement
in diversity. Next, we proposed an extended GVT model that adds an Encoder to the
Transformer-based GVT model to encode speaker-specific context and confirmed the im-
provement in diversity and similarity. Finally, we proposed an extended GVTSC model
that uses pre-clustering to abstract speaker features to improve diversity while maintaining

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

S. Onishi, T. Onishi, H. Shiina10



consistency. The abstracted speaker information is added as a vector to the input of the
Encoder so that the speaker information is considered in the Encoding process. The simi-
larity evaluation showed almost no difference between the two models. The highest rating
was obtained in the diversity evaluation, confirming that the diversity is close to the actual
response.

In the future, we intend to develop a dialogue model suitable for domains with lim-
ited speaker attributes. In this study, clustering by k-means was used as a method for
pre-creating speaker features, but the impact of other clustering and classification meth-
ods needs to be examined.
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