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Abstract

This study focuses on the algorithm RBSC-SubGen, which is originally offered for genera-
tion of vocabulary decks but can potentially be applied for a variety of problems. We first 
study the resilience of RBSC-SubGen against various hyper-parameters by testing it under 
various constraints. Our results indicate that RBSC-SubGen is sensitive to subset size S, fol-
lowed by desired RBSC coefficient ρ∗, permissible disparity ε  and, finally, parent set size L. 
We then offer a simple modification for reducing the computational load of RBSC-SubGen 
and avoiding saturation. In particular, we offer to carry out an intermediate-level verification 
of the desired conditions. Additional tests show that the rate of saturation and the number 
of iterations decrease, whereas the disparity in the RBSC coefficient i ncreases w ithin ac-
ceptable limits.
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1 Introduction and Motivation

Real-world processes involve a certain degree of randomness. In modeling and estimation, 
the observations obtained from such processes are often treated as random variables and 
represented in terms of stochastic models.

The problem of Ranking-and-selection (R&S) from the computational statistics re-
search field, focuses on processes involving random factors [ 1]. In particular, the objective 
is to choose the best of two (or sometimes more) processes (or items), which bear a certain 
degree of randomness, according to a given metric or measure. For reliably solving the 
R&S problem, it is necessary to take as many measurements as possible. However, this also 
implies that numerous physical experiments need to be carried out, which in certain cases 
may not be possible (e.g. vehicular traffic safety a nalysis). In addition, in certain other cases 
(e.g. pharmacological studies), they may cost a long time and/or financial resources.

In that matter, a convenient way of exploring process performance is to make simu-
lations of stochastic models on computer platforms. Simulations enable the extension of
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the data set and investigation of complex phenomena without the need for analytical so-
lutions [2]. Nevertheless, although they are easier to perform than physical experiments,
they are not zero-cost either. Namely, since the stochastic models of real-world processes
are often highly complex, simulating them may require significant time and computational
resources.

Therefore, R&S algorithms try to find good solutions efficiently, namely, without mak-
ing too many simulations. Most R&S algorithms target finding the (single) optimal process
out of two or more processes according to a certain performance criteria [1]. Certain other
R&S algorithms search for a subset of processes rather than a single one, which are termed
as subset selection problems [3].

This study focuses on the subset selection problem and deploys the RBSC-based deck
generation algorithm offered by [4] (henceforth, referred to as RBSC-SubGen) to solve it
using a variety of hypothetical data sets under diverse constraints. Our contributions involve
a detailed performance assessment of RBSC-SubGen and the proposal of a modification to
enhance rate of saturations and number of necessary iterations.

To that end, by randomly sampling values out of a given distribution, we obtain various 
hypothetical data sets. In addition, by relaxing and tightening the desired specifications 
of the selected subset, we obtain a variety of constraints and assess the feasibility of the 
problem, rate of saturation, computational load and accuracy of the obtained solution. In 
this way, RBSC-SubGen is shown to be applicable to the subset selection problem and to be 
sensitive to subset size S, followed by desired RBSC coefficient ρ ∗, permissible disparity 
ε and, finally, parent set s ize L . N ext, we propose a  s imple modification on  the original 
algorithm defined b y [4] and carry out additional tests and observe the change in the afore-
mentioned performance indicators. Our results show that the proposed modification helps 
to reduce the rate of saturation as well as the number of iterations for successful completion. 
Although the disparity in the desired value of the RBSC coefficient increases, it still stays 
within the permissible range, which means that it is not a real drawback.

2 Background and Related Work

Historically, R&S problems are often formulated in agricultural and clinical scenarios (e.g. 
grain yields, drug treatments) [5]. However, recently their application has expanded to a 
large domain involving judicial system [6], traffic s afety [7], d igital p hoto s election [8] 
among many others.

As mentioned in Section 1, while most of the R&S algorithms aim choosing the (sin-
gle) best process [1, 9], certain others search for a subset of processes [10, 11, 3]. Subset 
selection is essential in evaluating the performance of complex systems using stochastic 
simulation. Namely, when optimizing system performance with such simulations, the final 
decision is taken by considering various simulation results. However, since simulations of 
complex systems are computationally expensive and time-consuming, it is desirable to first 
eliminate non-competitive designs and then study the remaining ones in detail [12], which 
can be addressed by subset selection.

Subset selection problems may have various purposes. For instance, if the measure-
ments are known to contain noise, the solution chosen as the single best performing process 
may not be the true best solution, thus choosing a subset and studying them deeper may 
yield better results [13]. Another potential purpose of subset selection can be posthoc anal-
ysis. For instance, suppose that a group of patients is found to react to a test drug in a

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

P. Supitayakul, K. Furuya, Z. Yucel, A. Monden, P. Leelaprute2



certain way based on a set of low-cost medical exams. If one wants to investigate better the 
pharmacological effects with a reasonable cost, he/she may carry out additional high-cost 
medical exams on a proper (i.e. diverse as well as representative) subset of patients and 
achieve reliable results, while keeping cost-efficiency. Moreover, a second-stage algorithm 
or a follow-up simulation of a subsequent process can be tested in conjunction with a subset 
of solutions (of a preceding process) to achieve more accurate and realistic results (i.e. more 
robust against measurement noise or variations due to stochasticity).

The chosen subsets are often required to attain the largest or smallest performance mea-
sures and be homogeneous [12]. Nevertheless, depending on the application, various other 
conditions can be imposed as in [4] and [14]. Namely, in [4] the chosen subsets of vocab-
ulary are desired to be uniform within the subset and diverse between the varying subsets, 
whereas in [14] the chosen subsets are desired to be as diverse and inclusive as possible to 
satisfy the ethical requirements on fairness.

Various R&S algorithms and subset selections approaches have been proposed includ-
ing the indifference-zone approach (IZ), maximization of the probability of correct selection 
(PCS), optimal computing budget allocation (OCBA) and expected value of information 
(EVI) [15, 16, 9]. Since R&S requires pairwise comparison of performance metrics [17], 
some studies focus on this aspect and try to optimize R&S further by decreasing the number 
of pairwise comparisons [18].

3 Fundamentals of Simple Difference Formula

In this section, based on a simple hypothetical example, we will explain the simple differ-
ence formula of Kerby [19] and the computation of the RBSC coefficient.

Assume that we want to quantify the validity of the hypothesis that Males are taller 
than females. One way to do this is to compute the Rank-biserial correlation (RBSC). 
Essentially, RBSC defines the correlation concerning a dichotomous variable and a ranking 
variable. In the case of this example, the statement that Males are taller than females is 
a dichotomous variable (rated as either True or False). On the other hand, the height of 
each person in the sample population can easily be transformed into a ranking variable.

To evaluate the validity of the above-mentioned hypothesis based on RBSC, initially, 
the height of each pair of persons from opposite genders is compared. Suppose that a male 
person from the sample population has a height of hm, where hm is a real number. Similarly, 
let the height of a female person from the sample population be h f . Let NS stand for the 
number of evidence supporting the hypothesis, (i.e. the male is taller than the female). 
Then, NS can simply be computed as

NS = 0.5 · ∑
∀m, f

(sign(hm−h f )+1) , (1)

where sign(·) denotes signum. Similarly, let NC represent the number of evidence contra-
dicting the hypothesis (i.e. the female is taller than the male),

NC = 0.5 · ∑
∀m, f

(sign(h f −hm)+1) . (2)

After obtaining the number of evidence supporting and contradicting the hypothesis as
shown in Equations 1 and 2, we employ Simple Difference Formula proposed by Kerby [19],
which yields the RBSC coefficient denoted with ρ .
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Specifically, according to Kerby [19], the non-parametric correlation equals the simple
difference between the proportion of “favorable” and “unfavorable” evidence, where favor-
able stands for the pairs supporting the hypothesis and unfavorable for the ones disagreeing
with the hypothesis. Thus, RBSC coefficient ρ can be computed in explicit terms as,

ρ =
NS−NC

NS +NC
. (3)

It is clear from Equation 3 that ρ is bounded in the range [−1,1]. If the data are all
favorable, then ρ will be exactly 1. On the contrary, if the data are all unfavorable, then ρ

will be -1, whereas a correlation of 0 indicates an equal amount of favorable and unfavorable
evidence. In that respect, if ρ > 0, it can be said that the hypothesis holds, and the level of
validity can be measured by taking into account how close ρ is to 1.

3.1 Outline of the original RBSC-SubGen algorithm

Generally speaking, the purpose of RBSC-SubGen is to build a desired number (2 or possibly
more) subsets (out of a large parent set). The parent set X involves certain items, each of
which is associated with a score. The score can be an objective value (e.g. the height
of a person as in the aforementioned example) or a subjective value (e.g. evaluation of a
product in an online retail store). In the case of [4], the parent set is a lexicon, the subsets
are vocabulary decks and the scores are the number of occurrences of the words in daily
language.

Since the purpose of our work is not to adapt RBSC-SubGen to a certain data set or to try
it with a certain set of constraints, in what follows, we avoid specifying the parent set (i.e.
its items or how they are scored) and work on randomly generated sets from the standard
normal distribution.

The essential condition of RBSC-SubGen is to build the subsets so as to attain the desired
ranking relation, which is quantified in terms of rank-biserial correlation. In that respect,
the inputs of RBSC-SubGen are composed of the parent set, the size of the output subsets,
the desired RBSC coefficient ρ∗ and a tolerable disparity on ρ∗, ε . Namely, any pair of
subsets with an RSCB coefficient within the range [ρ∗− ε,ρ∗+ ε] is considered to be an
output of RBSC-SubGen1.

Specifically, [4] proposes building two initial (i.e. potential) subsets in an arbitrary man-
ner and then updating them in an iterative fashion (by inserting and removing elements)
such that the RBSC coefficient of the subsets converge to the desired value at each update.
The algorithm ceases the update as soon as an RSCB coefficient within the acceptable range
is attained and returns the subsets.

The most crucial step of RBSC-SubGen is the iterative update (see Lines 4-8 of Alg. 1).
In realizing the update, firstly the current state of the subsets is assessed by calculating ρ

(see Line 3 of Alg. 1). Then, based on the disparity of ρ in relation to ρ∗ (i.e. whether it is
too high or too low), the sort of necessary update (i.e. insertion/removal) is determined.

Suppose that between the subsets A and B, the one with lower scores (on average) is A.
Further suppose that ρAB is lower than the desired value ρ∗ than a maximum permissible
disparity ε , i.e. ρ∗− ρAB > ε . In this case, A has to be updated such that an item with a
relatively low score needs to be inserted into it and an item with a relatively high score
needs to be removed (i.e. returned from A to X ′, where X ′ is the remaining elements of the

1In that respect, the solution is not unique.
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Algorithm 1: RBSC-SubGen
Input: X , S, ρ∗, ε , Nmax
Output: A, B⊂ X

1 sample(A⊂ X ,B⊂ X | |A|= S, |B|= S) // Build potential subsets

2 X ′, ρAB, n := X−A−B, RBSC(A,B), 0 // Available items X ′

3 while |ρ∗−ρAB| ≥ ε ∧n < Nmax do
4 UA, UB = GetRequiredUpdate(A, B, ρ∗, ε)
5 A, X ′ = UpdateSubset(A, UA, X ′)
6 B, X ′ = UpdateSubset(B, UB, X ′)
7 ρAB = RBSC(A,B)
8 n = n+1

9 return A, B

Algorithm 2: GetRequiredUpdate
Input: A, B, ρ∗, ε

Output: UA, UB

1 UA, UB, ρAB = 0, 0, RBSC(A,B)
2 if ρAB < ρ∗− ε then UA, UB = -1, 1
3 else if ρAB > ρ∗+ ε then UA, UB = 1, -1
4 return UA, UB

parent set X). Moreover, B has to be updated such that an item with a relatively high score 
needs to be inserted into it and an item with a relatively low score needs to be removed 
(i.e. returned from B to X ′). We code the aforementioned update on A and B with UA = −1 
and UB = 1. If ρAB is higher than the desired value ρ∗ beyond ε (i.e. ρAB − ρ∗ > ε), the 
updates will be opposite. On the other hand, if ρAB is within the acceptable range, no action 
is necessary (coded as UA = UB = 0).

The procedure illustrated in Alg. 3 details the update operation. Specifically, each up-
date amounts to the removal of a single item from the subset and the insertion of a single 
item from the parent set into the subset. The item to be inserted or removed is chosen in an 
arbitrary fashion such that it provides a change on ρAB in the desired direction.

In Alg. 3, the random sampling of an item a with a high score from the subset A is 
denoted with sample(a ∈ A | sa > mA), where sa denotes the score of the item a and mA
is the median score of the items in A. Obviously, an arbitrary element a may not satisfy 
sa > mA, and the sampling operation may need to be repeated several times. In addition, 
in order to avoid extremely long running times (or divergence), a maximum number of 
iterations Nmax needs to be defined. After carrying out the update operation i llustrated in 
Alg. 3 for both subsets A and B (see Lines 6, 7 in Alg. 1), the new value of RBSC coefficient 
is computed. If it turns to out be within the satisfactory range, the updates are ceased and 
the subsets are returned.

4 Exploring Convergence Properties of RBSC-SubGen

In this section, we quantify convergence properties of RBSC-SubGen in relation to a set of 
hyper-parameters.
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Algorithm 3: UpdateSubset
Input: A, UA, X ′

Output: A, X ′

1 if UA =−1 then // Decrease scores in A
/* Pick a high-score item a ∈ A and a low-score item x ∈ X ′ */

2 sample(a ∈ A, x ∈ X ′ | sa > mA, sx < mA)

3 else if UA = 1 then // Increase scores in A
/* Pick a low-score item a ∈ A and a high-score item x ∈ X ′ */

4 sample(a ∈ A, x ∈ X ′ | sa < mA, sx > mA))

5 A = A
⋃
{x}\{a} /* Move a from A to X ′ and x from X ′ to A */

6 X ′ = X ′
⋃
{a}\{x}

7 return A, X ′

4.1 Hyper-parameters

The hyper-parameters of RBSC-SubGen are presented in Table 1. In what follows, we dis-
cuss the impact of each hyper-parameter on performance.

As the desired value of the RBSC coefficient ρ∗ increases, there will be a larger margin
between the scores of the items in the subsets. In addition, since the parent set is assumed to
come from a normal distribution, the bulk of the items have medium scores. Retrieving an
item from one of the two extremes advances ρ much more quickly in the desired direction,
but the chance of sampling such a value is lower due to the normal distribution assumption.
Thus, higher values of ρ∗ indicate more challenging problems, which are likely to terminate
after a larger number of iterations. If ρ∗ is significantly high (or low), the algorithm is likely
to get saturated, i.e. reach the maximum number of iterations Nmax without a successful
completion.

Table 1: Hyper-parameters of the algorithm.

Variable Description Min Max Step size Default

ρ∗ Desired value of RBSC coefficient 0.3 0.7 0.04 0.5
ε Maximum permissible disparity on ρ∗ 0.05 0.15 0.01 0.1
L Size of the parent set (|X |) 100 900 50 500
S Size of subsets (|A|, |B|) 100 500 20 300

In most R&S problems, the parent set X is collected through physical or simulated
experiments and thus has a limited size. This implies that it may not be possible to achieve
the exact value of ρ∗. In that case, it is necessary to define a maximum permissible value
ε for the disparity on ρ∗, ∆ρ = |ρ∗− ρ|. Provided that ∆ρ ≤ ε , ρ is considered to be
sufficiently close to ρ∗. Clearly, if ε is low, a more accurate solution is desired, which
may require a larger number of iterations and may even result in a failure in achieving
convergence.

The challenge due to the limited size of the parent set deserves a devoted hyper-parameter,
which we denote with L. If L is large, the algorithm is expected to have sufficient freedom
in choosing the scores and is likely to converge (provided that the other hyper-parameters
are not too strict). Nevertheless, if L is too small, even if the other hyper-parameters are not
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strict, the algorithm is likely to terminate without achieving convergence.
The size of the output subsets S are also hyper-parameters of RBSC-SubGen. Note

that although an increase in S has a limiting effect on the freedom of choosing the scores,
provided that L is large enough, this effect can be expected to diminish. It is also interesting
that an increase in S can somewhat make the effect of individual scores less significant.
Namely, since the number of possible pairs is proportional to S2, as S increases, the number
of possible pairs increases even with a larger margin2. In that respect, the potential impact
of a single insertion/removal decreases with increasing S.

4.2 Specifics of testing

To understand the limits of RBSC-SubGen, we tested it with several combinations of hyper-
parameter values. Specifically, in our tests, each hyper-parameter takes the values at the
given step sizes between the Min and Max values presented in Table 1.

In addition, in order to visualize the interplay of two hyper-parameters (i.e. the pair-wise
relations), the values of these hyper-parameters are varied at intermediate steps as defined
before, while the remaining two hyper-parameters are set to pre-determined (i.e. default)
values. For instance, while examining the interaction between L and S, ρ∗ and ε are fixed
at 0.5 and 0.1, respectively (see Table 1). In specific, each default value is set to the median
of the corresponding range.

If L > 2 · S, there is always some item that is not yet assigned to any of the subsets.
Thus, such items are available to update the subsets. However, in certain cases (e.g. too
little freedom in sampling or too little impact of modifying a single item), the algorithm
may go into an infinite loop, Therefore, it is necessary to limit the maximum number of
iterations Nmax for identifying such bottlenecks (see Line-4 of Alg. 1).

In addition, in order to get stable results, the algorithm is executed I times for each com-
bination of hyper-parameters. At each execution, a fresh parent set is generated randomly.
In addition, concerning each execution, we compute the performance indicators described
in Section 4.3 and report their average values in Sections 4.4∼4.6.

4.3 Quantification of performance

The performance of RBSC-SubGen is assessed in terms of three indicators as (i) rate of
saturation, (ii) number of iterations until convergence and (iii) disparity on desired RBSC
coefficient (see Table 2).

Table 2: Performance indicators.

β0 Rate of saturation
M0 Number of iterations until successful completion
∆ρ Actual disparity on ρ∗

If the algorithm reaches Nmax iterations without achieving ∆ρ < ε , it is said to get satu-
rated. In that respect, one of the indicators in assessing the performance of the algorithm is
the rate of saturation β0, which is defined as the ratio of the number of saturated attempts

2 In other words, the modification of an individual score may affect at most S cases.
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to the number of all attempts (i.e. I executions). In that respect, β0 quantifies how often
RBSC-SubGen fails to build the subsets.

If two subsets are built in less than Nmax iterations successfully, the algorithm is said
to converge. In addition, the number of iterations until convergence denoted with M0) is
considered to be another performance indicator. Specifically, M0) expresses how quickly
RBSC-SubGen builds the subsets3.

As mentioned in Section 3.1, ε defines the maximum permissible disparity on ρ∗. If
two subsets are built successfully, ρ is certainly closer to ρ∗ than ε . This actual value of
disparity ∆ρ is considered as another performance indicator. The observed disparity ∆ρ

ideally depends strictly on ε . In that respect, the reason for computing ∆ρ is for making
sure that the maximum number of iterations Nmax is sufficiently high. In other words, if it
can be observed that ∆ρ depends solely on ε , it can be claimed that the values β0 and M0)
are likely to grasp the general characteristics, and additional test runs are not necessary.

4.4 Results concerning rate of saturation

If the algorithm ceases without yielding an outcome (i.e. it is saturated), there is no point in
studying most performance indicators. In that respect, the rate of saturation β0 is considered
to be the most important marker of performance.
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Figure 1: The effect of each possible hyper-parameter pair on β0.

Figure 1 illustrates the rate of saturation β0 for each possible hyper-parameter pair. In
particular, the hyper-parameter pair (ρ∗,S) often poses a challenge. Namely, there is a

3If the algorithm gets saturated, it does not converge and thus the number of iterations is not considered in
computing M0). Moreover, in the case that the algorithm gets constantly saturated for a certain set of hyper-
parameters, M0) is not available.

Copyright c© by IIAI. Unauthorized reproduction of this article is prohibited.

P. Supitayakul, K. Furuya, Z. Yucel, A. Monden, P. Leelaprute8



higher risk that the algorithm gets saturated when both the desired value of RBSC coeffi-
cient ρ∗ and the size of target subsets S are large.

One may see in Figures 1-(d), (e) that large values of ρ∗ pose a risk of saturation, also
when they are coupled with small values of ε . In particular, the algorithm is observed to be
more sensitive to ε than L (see also Figures 1-(b) and (d)).

In addition, a similar observation is valid also for S. Namely, when large values of S are
coupled with small values of ε , a risk of saturation emerges. In addition, such a risk is more
serious for ε than L (see Figures 1-(c) and (e)). Moreover, concerning the hyper-parameter
pair of (ε,L), the risk of saturation is not serious (see Figure 1-(a)).

4.5 Results concerning number of iterations
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Figure 2: The effect of each possible hyper-parameter pair on M0).

Figure 2 illustrates our results concerning the number of iterations M0) that it takes
RBSC-SubGen to terminate successfully. In this figure, the yellow regions indicate either
(i) the cases where the problem is not feasible (i.e. L < 2 · S) or (ii) that all I runs are
found to be saturated. If (i) is the case, there exists no solution due to an ill definition of the
problem statement. However, if (ii) is the case, then one may try to improve the algorithm to
overcome saturation. In Figures 2-(a), (b), (c), the yellow regions arise due to infeasibility.
However, in Figures 2-(e), (f), they arise due to constant saturation.

Omitting the aforementioned cases (i) and (ii), we focus on successful executions. It is
interesting that although the hyper-parameter pair of (ρ∗,S) has the largest number of satu-
rations (see Figure 1-(f)), a higher number of iterations is required to solve most problems
relating to the hyper-parameter pair of (ε,S). This observation is somewhat valid also for
the hyper-parameter pair of (ε,ρ∗). As a consequence, the number of iterations is higher
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for most (ε,S) and (ε,ρ∗) pairs, although saturation is not as common as in the case of
(ρ∗,S).

4.6 Results concerning disparity on desired RBSC coefficient
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Figure 3: The effect of each possible hyper-parameter pair on ∆ρ .

Finally, the evolution of disparity ∆ρ on the desired RBSC coefficient ρ ∗ is investigated 
relating to the six hyper-parameter pairs. It is observed in Figures 3-(a), (d), (e) that as long 
as ε is one of the hyper-parameters under investigation, ∆ρ depends solely on it and the 
other hyper-parameter under investigation does not introduce a prominent effect on ∆ρ . 
This is not surprising since the termination of iterations is decided based on ε .

5 Improving Convergence Characteristics of RBSC-SubGen

In Alg. 1, the subsets are updated in turn at each iteration (see Lines 6, 7 in Alg. 1). Specif-
ically, an insertion/removal is performed first on the subset with the lower ranks A, and then 
on the subset with higher ranks B. In that respect, the RBSC coefficient is modified already 
once after updating A. Therefore, it is worth checking whether it is within the acceptable 
range after this first update.

In that respect, we propose repeating the computation of ρ (see Line 8 of Alg. 1) be-
tween the updates of A and B (i.e. between Lines 6 and 7 of Alg. 1). This modification 
is expected to reduce β0 and M0, whereas ∆ρ is expected not to be affected. We test the 
modified a lgorithm w ith t he s ame r ules a s d efined in  Se ctions 4. 1 an d 4. 2 an d evaluate 
its performance with the same indicators defined i n S ection 4 .3. We p resent t he results 
concerning this modification in Sections 5.1∼5.3.
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5.1 Results concerning rate of saturation
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Figure 4: The change induced by the modified algorithm on β0 for each possible hyper-
parameter pair.

Figure 4 shows the change induced by the modified algorithm on β0 for each possible 
hyper-parameter pair. Specifically, we run the modified algorithm I times and compare the 
number of saturated cases to the average number of saturated cases of the original algorithm. 
The improvement or deterioration is decided in a binary manner. Namely, if at a particular
execution, the modified algorithm has less saturations than the original algorithm, the result
is registered as 1, and otherwise, as a -1. This process is repeated I times and the averages
corresponding to each hyper-parameter pair are illustrated in Figure 4. Excluding the cases
where there is no difference, we can see in Figure 4 that positive values are in majority. In
particular, we have improvement rates between 0.51 and 0.69.

5.2 Results concerning number of iterations

Figure 5 depicts the change induced by the modified algorithm on M0 for each possible
hyper-parameter pair. We carry out additional tests as explained in Section 5.1. We assess
the change in performance in a binary manner. Namely, comparing the number of iterations
of the modified algorithm concerning a particular hyper-parameter pair at a particular exe-
cution, to the average number of iterations of the original algorithm for the same pair, we
register the result as a 1, if the former is larger, and otherwise, as a 0. We then take the
average of th registered value for the I executions. Excluding the cases where there is no
difference, we can see in Figure 5 that most M0 values are positive, and only in a small
number of cases the number of iterations increases. In particular, we have improvement
rates between 0.57 and 0.69.
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Figure 5: The change induced by the modified algorithm on M0 for each possible hyper-
parameter pair.

5.3 Results concerning disparity on desired RBSC coefficient

Figure 6 depicts the change induced by the modified algorithm on ∆ ρ . The details of ex-
perimentation and the method of assessment of improvement or deterioration are similar 
to Sections 5.1 and 5.2. Excluding the cases where the problem is not feasible and where 
there is no difference, we can see that there is a fair degradation. Note that since ε is the 
determining factor on ∆ρ as shown in Section 4.6, it is not surprising that a smaller number 
of iterations lead to subsets with slightly larger disparity on ρ∗. It is important to note that 
the disparity is still smaller than the maximum permissible value ε .

6 Conclusions

This study focuses on RBSC-SubGen, which is originally designed for building vocabulary 
decks (out of a large corpus) with the desired level of word frequency relation. Exploiting 
the fact that this objective shares many common aspects with the generic subset selection 
problem, we tried RBSC-SubGen in generating subsets out of different hypothetical parent 
sets. We also imposed varying constraints on subset size, desired ranking relation, and per-
missible disparity. Our results indicate that RBSC-SubGen can be used in subset selection, 
provided that it is formulated as a ranking relation. In addition, RBSC-SubGen is found to 
be sensitive to subset size S, followed by desired RBSC coefficient ρ ∗, permissible dispar-
ity ε and, finally, parent set size L . We then proposed a simple modification to the original 
algorithm such that the value of the RBSC coefficient is checked once after each update. 
Our results indicate to a decrease in the rate of saturation as well as the number of iterations,
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Figure 6: The change induced by the modified algorithm on ∆ρ for each possible hyper-
parameter pair.

whereas the disparity in the RBSC coefficient degrades slightly.
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