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Abstract 

This study proposes a deterministic particle swarm optimization method that introduces a 

periodic function (DPSOP). Particle swarm optimization (PSO) is an evolutionary algo- 

rithm. The agents have positions and velocities that are updated according to the global 

and local best solutions. The moving length of agent is generally randomly determined. In 

the proposed DPSOP method, the moving length of agent is determined by trigonometric 

function. Each agent has different phases, and the moving length of agent to the global and 

local best solutions changes according to the cosine and sine waves, respectively. Moving 

for the global best solution is out of phase with the local best by π. Depending on the phase 

difference, the agent’s movement is divided into a time period when it is maximally near the 

global and local best solutions. Therefore, DPSOP can perform an efficient solution search. 

We confirm the performance of the proposed DPSOP method using the search solutions of 

five benchmark functions. 

Keywords: Particle swarm optimization, sine-cosine wave, deterministic, optimization. 

1 Introduction 

Currently, many types of artificial intelligences (AI) have proposed. In the AI, evolutionary 

computation algorithms obtains constant evaluation because it does not need derivative for 

optimization, such as the genetic algorithm (GA), firefly algorithm (FA), and particle swarm 

optimization (PSO) [1]–[5]. They are characterized by their ability to perform optimization 

without differentiation and can be adapted to various optimization problems. Among them, 

PSO is a well-known swarm intelligence method based on moving swarms of fish or birds 

[5][6]. PSO does not use the derivative in searching for the solution and converges rapidly. 

Therefore, many researchers have proposed improving PSO and have applied it to various 

optimization problems [7]–[11]. PSO is constructed using many agents that have a position 

(x) and velocity (v). The position is an optimization target with high dimensions, according

to the task. The velocity is a moving vector in the solution space. The position of each

agent is updated based on the current velocity. The current velocity is calculated using the

momentum of the previous velocity, the distance between the current position and global

best (xgbest), and the distance between the current position and local best (xpbest). The global



best is the best solution found by all agents before the current iteration. The local best is the
best solution obtained by each agent before the current iteration. In standard PSO, the length
of the update vector is randomly determined; therefore, standard PSO is a stochastic search
solution. Moreover, some researchers have proposed deterministic PSO. Deterministic PSO
does not use a random vector; thus, the convergence of deterministic PSO is faster, and the
search result is more stable than that of standard PSO [12]–[16]. However, deterministic
PSO often falls into a local minimum because the solution search depends only on the
deterministic value.

This study presents a deterministic PSO method based on periodic function (DPSOP).
DPSOP is updated by the velocity and position according to the global and local best solu-
tions same as standard PSO. In DPSOP, the length of the update vector that is near the global
and local best is determined by cosine and sine waves. We provide cosine and sine waves to
move near the global and local best solutions, respectively. Therefore, the length of moving
near the global and local best solutions has a quadrature phase. In addition, each agent has
a different initial phase, which is shifted at the same speed between agents with iterations.
As mentioned, the agents approach only the global or local best within a certain period in
the proposed DPSOP. The moving distance of the original PSO approach is determined at
random with each iteration. In DPSOP, the moving distance changes smoothly with each
iteration. Therefore, DPSOP particles can be expected to continue moving while maintain-
ing their velocity, which is an advantage of DPSOP over the original PSO approach. We
believe that the orthogonal phase between approaching the global and local best improves
the solution searching ability of PSO. We compared the proposed DPSOP with the standard
PSO using five benchmark functions, including unimodal and multimodal functions.

2 Proposed Method

In this section, we explain the PSO algorithm and proposed DPSOP. PSO is a well-known
swarm-intelligence method. This algorithm has been applied to various optimization tasks,
because it does not use the derivatives of the target function for optimization. In general,
the position of standard PSO updates according to the xgbest and xpbest, and these updating
distances are determined by random values. We introduce the following periodic function.

2.1 PSO

The standard PSO algorithm is as follows.

(1) The agents are randomly distributed at position x(t) in a multidimensional solution
space (dimensionality D) and given an initial velocity v(t) of random size and orien-
tation.

(2) Each agent obtains the evaluation value of the target function at the current position
x(t).

(3) The evaluation value is compared with the best solution xpbest that the agent has de-
termined thus far. If the current value is better than xpbest, it is updated to the current
position x(t).

(4) The evaluation values are compared among all agents, and the position of the best
agent determined thus far is updated as xgbest.
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(5) The update of v and x for each agent follows Eq. (1):
vid(t +1) =w(t)vid

+C1rand()[xpbest,id − xid(t)]

+C2rand()[xgbest,d(t)− xid(t)],

xid(t +1) =xid(t)+ vid(t +1),

(1)

where w is the momentum term, rand() is a uniform random number between 0 and 1,
i is a agent number, d is a dimensionality, and C1 and C2 are constants that determine
the amplitude of the random number. The momentum term, w, decreases linearly
with the number of updates within a certain range.

(6) Repeat steps (2)–(5) for each iteration.

Figure 1 shows an example of a moving agent in standard PSO. The agents move according
to three vectors: the momentum term, global best, and local best.

Figure 1: Updating position of agent in PSO.

2.2 DPSOP

In the proposed DPSOP, we change the velocity update equation in step (5) of standard
PSO: 

vid(t +1) =w(t)vid

+C1
cos[ϕid(t)]+1

2
[xpbest,id − xid(t)]

+C2
sin[ϕid(t)]+1

2
[xgbest,d(t)− xid(t)],

xid(t +1) =xid(t)+ vid(t +1),

(2)

where ϕ is the phase of the cosine and sine wave with different initial values among agents,
and

ϕid(0) =
2π
ND

× (i+d −2), (3)

where N is a number of agents, and D is the number of dimensions. In addition, each value
is (i = 1,2, ...N), (d = 1,2, ...D). The time step of the phase was 2π

ND with one iteration.
Figure 2 shows an example of a moving agent in DPSOP. The agents move according to
three vectors: the momentum term, global best, and local best. Agents move differently
depending on their phases. In general, when the agents are strongly attracted to the global
best, PSO has a high convergence, and when the agents are strongly attracted to the local
best, PSO has a high escaping ability from the local minimum. In DPSOP, the agent is
strongly attracted to the global best at ϕ = 0, and strongly attracted to the local best at
ϕ = π

2 .
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Figure 2: Updating position of agent in DPSOP. (a) Moving vector at ϕ = 0. (b) Moving
vector at ϕ = π

4 . (c) Moving vector at ϕ = π
2 .

3 Experiments

We compared the performance of DPSOP with standard PSO using five types of benchmark
functions: the sphere function ( f1), Rosenbrock function ( f2), Rastrigin function ( f3), the
Ackley function ( f4), and the Styblinski and Tang function ( f5) [17]. The minimum costs
of f1– f4 were zero, and the minimum cost of f5 was −39.16599×D. Equations(4)-(8)
express these benchmark functions:

f (x1 · · ·xD) =
D

∑
d=1

x2
i . (4)

f (x1 · · ·xD−1) =
D

∑
d=1

(100(xd+1 − x2
d)

2 +(xd −1)2). (5)

f3(x1 · · ·xD) = 10n+
D

∑
d=1

(x2
d −10cos(2πxd)). (6)

f2(x1 · · ·xD) = 20−20exp
(
−0.2

√
1
d

D

∑
i=1

x2
d

)
+ e− exp

(
1
d

d

∑
i=1

cos(2πxd)

)
. (7)

f5(x1 · · ·xD) =
∑D

d=1 x4
d −16x2

d +5xd

2
. (8)

Table 1 lists the simulation conditions and parameters [18][19]. The average error, mini-
mum error, maximum error, standard deviation, and average calculation time were obtained
from 10 trials. The settings for the initial position and velocity of each PSO model were the
same.

3.1 Results

The experiment was divided into two conditions; C1 and C2 are parameters that determine
the moving distance of the particles.
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Table 1: Simulation Conditions
Trial 10

Iteration 10000
Population 30 and 100
Dimensions 30 and 100

w 1.0-0.6
C1 1.6, 2.0
C2 1.6, 2.0

3.1.1 C1 = C2 = 1.6

Tables 2–6 present the simulation results for the five PSOs with C1 = C2 = 1.6. Overall, the 
proposed DPSOP (M2) obtains better solutions than standard PSO (M1). For a populations 
of N = 100 and dimensions D = 30, standard PSO determined better solutions than the 
proposed DPSOP for f3– f5.

Table 2: Simulation Results of Sphere Function (C1 = C2 = 1.6).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 2.63E+01 7.97E+00 4.70E+01 1.18E+00 4.43E+00
M2 5.48E-02 4.10E-03 2.29E-01 6.65E-02 4.80E+00
M3 9.98E-01 2.24E-01 2.16E+00 5.65E-01 4.78E+00
M4 1.68E+00 4.63E-01 5.37E+00 1.35E-01 4.77E+00
M5 2.31E+00 4.23E-01 4.54E+00 1.20E+00 4.80E+00

100

M1 1.76E+00 2.72E-3 7.12E+00 2.29E+00 1.43E+01
M2 6.21E-04 9.03E-05 2.06E-03 5.81E-04 1.49E+01
M3 1.57E-02 3.86E-03 5.98E-02 1.55E-02 1.48E+01
M4 1.30E-02 9.14E-04 3.51E-02 1.07E-02 1.52E+01
M5 2.49E-02 1.97E-03 1.61E-01 4.57E-02 1.51E+01

100

30

M1 4.03E+02 3.27E+02 4.65E+02 4.06E+01 1.42E+01
M2 2.78E+01 1.96E+01 3.71E+01 5.78E+00 1.42E+01
M3 4.27E+01 2.36E+01 5.65E+01 9.28E+00 1.42E+01
M4 6.91E+01 4.01E+01 1.05E+02 1.80E+01 1.42E+01
M5 7.39E+01 3.96E+01 1.02E+02 2.13E+01 1.43E+01

100

M1 1.75E+02 1.32E+02 2.12E+02 2.75E+01 4.68E+01
M2 7.55E+00 5.65E+00 1.10E+01 1.79E+00 4.58E+01
M3 1.26E+01 8.64E+00 1.62E+01 2.49E+00 4.56E+01
M4 1.72E+01 1.48E+01 2.09E+01 1.96E+00 4.66E+01
M5 1.51E+01 1.05E+01 1.99E+01 3.20E+00 4.65E+01

3.1.2 C1 = C2 = 2.0

Tables 7–11 present the simulation results for the five PSOs when C1 = C2 = 2.0. PSO with 
cos and cos implies that we used only the cosine for the length of the agent moving equation, 
Eq. (2). The results of the proposed DPSOP are overall better than those of the other 
methods. For the Ackley function with D = 30 and N = 100, the result of PSO was better 
than that of the DPSOP. The Ackley function has many local minima and narrow optimal-

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Investigation of Deterministic Particle Swarm Optimization with Periodic Function 5



Table 3: Simulation Results of Rosenbrock Function (C1 = C2 = 1.6).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 2.63E+01 7.97+00 4.70E+00 4.70E+01 4.43E+00
M2 5.48E-02 4.10E-03 2.29E-01 6.65E-02 4.80E+00
M3 9.98E-01 2.24E-01 2.16E+00 5.56E-01 4.78E+00
M4 1.68E+00 4.63E-01 5.37E+00 1.35E+00 4.77E+00
M5 2.31E+00 4.23E-01 4.54E+00 1.20E+00 4.80E+00

100

M1 1.76E+00 2.72E-03 7.12E+00 2.29E+00 1.43E+01
M2 6.21E-04 9.03E-05 2.06E-03 5.81E-04 1.49E+01
M3 1.57E-02 3.86E-03 5.98E-02 1.55E-02 1.48E+01
M4 1.30E-02 3.86E-03 5.98E-02 1.55E-02 1.48E+01
M5 2.49E-02 1.97E-03 1.61E-01 4.57E-02 1.51E+01

100

30

M1 4.03E+02 3.27E+02 4.65E+02 4.06E+01 1.42E+01
M2 2.78E+01 1.96E+01 3.71E+01 5.78E+00 1.42E+01
M3 4.27E+01 2.36E+01 5.65E+01 9.28E+00 1.42E+01
M4 6.91E+01 4.01E+01 1.05E+02 1.80E+01 1.42E+01
M5 7.39E+01 3.96E+01 1.02E+02 2.13E+02 1.43E+01

100

M1 1.75E+02 1.32E+02 2.12E+02 2.75E+01 4.68E+01
M2 7.55E+00 5.65E+00 1.10E+01 1.79E+00 4.58E+01
M3 1.26E+01 8.64E+00 1.62E+01 2.49E+00 4.56E+01
M4 1.72E+01 1.48E+01 2.09E+01 1.96E+00 4.66E+01
M5 1.51E+01 1.05E+01 1.99E+01 3.20E+00 4.65E+01

Table 4: Simulation Results of Rastrigine Function (C1 = C2 = 1.6).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 1.12E+02 5.49E+01 1.76E+02 3.72E+02 1.67E+01
M2 7.44E+01 3.84E+01 1.29E+02 2.38E+01 1.68E+01
M3 6.77E+01 3.81E+01 9.29E+01 1.59E+01 1.68E+01
M4 9.26E+01 6.46E+01 1.28E+02 1.71E+01 1.67E+01
M5 7.83E+01 5.20E+01 1.12E+02 2.25E+01 1.69E+01

100

M1 1.61E+01 9.95E-01 3.39E+01 1.21E+01 5.84E+01
M2 4.64E+01 2.99E+01 6.87E+01 1.11E+01 5.93E+01
M3 6.11E+01 3.30E+01 8.70E+01 1.66E+01 5.91E+01
M4 6.82E+01 3.99E+01 9.26E+01 1.72E+01 5.96E+01
M5 5.79E+01 4.00E+01 8.07E+01 1.35E+00 5.89E+01

100

30

M1 1.10E+03 9.81E+02 1.22E+03 6.75E+01 5.75E+01
M2 4.37E+02 3.77E+02 5.46E+02 5.24E+01 5.69E+01
M3 5.23E+02 3.76E+02 6.03E+02 6.16E+01 5.83E+01
M4 6.06E+02 5.12E+02 6.77E+02 4.83E+01 5.75E+01
M5 6.01E+02 4.96E+02 6.99E+02 5.68E+01 5.77E+01

100

M1 5.60E+02 4.27E+02 6.46E+02 5.90E+01 1.90E+02
M2 3.22E+02 2.17E+02 3.76E+02 4.90E+01 1.87E+02
M3 3.68E+02 3.04E+02 4.14E+02 3.92E+01 1.87E+02
M4 4.36E+02 3.76E+02 4.96E+02 3.95E+01 1.84E+02
M5 4.15E+02 2.92E+02 5.25E+02 7.06E+01 1.89E+02
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Table 5: Simulation Results of Ackley Function (C1 = C2 = 1.6).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 1.20E+01 8.29E+00 1.69E+01 2.69E+00 1.71E+01
M2 1.14E+01 1.01E+01 1.28E+01 7.12E-01 1.74E+01
M3 1.14E+01 9.13E+00 1.37E+01 7.12E+01 1.74E+01
M4 1.24E+01 9.13E+00 1.37E+01 1.50E+00 1.73E+01
M5 1.27E+01 8.77E+00 1.39E+01 1.34E+01 1.70E+01

100

M1 5.56E-14 2.13E-14 1.56E-13 3.67E+01 5.66E+01
M2 7.84E+00 5.98E+00 9.42E+00 1.01E+00 5.74E+01
M3 8.14E+00 6.84E+00 9.90E+01 9.25E-01 5.51E+01
M4 8.15E+00 6.60E+00 1.02E+01 1.04E+00 5.63E+01
M5 8.44E+00 6.66E+00 1.01E+01 1.17E+00 5.52E+01

100

30

M1 1.86E+01 1.75E+01 1.92E+01 4.95E-01 5.26E+01
M2 1.45E+01 1.36E+01 1.58E+01 6.54E-01 5.25E+01
M3 1.43E+01 1.30E+01 1.56E+01 8.10E-01 5.30E+01
M4 1.57E+01 1.45E+01 1.71E+01 6.59E-01 5.32E+01
M5 1.58E+01 1.43E+01 1.67E+01 7.13E-01 5.42E+01

100

M1 1.53E+01 1.13E+01 1.71E+01 1.92E+00 1.64E+02
M2 1.17E+01 1.08E+01 1.25E+01 5.33E-01 1.67E+02
M3 1.17E+01 1.01E+01 1.30E+01 8.69E-01 1.62E+02
M4 1.31E+01 1.15E+01 1.44E+01 9.09E-01 1.63E+02
M5 1.31E+01 1.11E+01 1.49E+01 1.10E+00 1.62E+02

Table 6: Simulation Results of Styblinski-Tang Function (C1 = C2 = 1.6).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 -9.64E+02 -1.09E+03 -8.79E+02 5.57E+01 1.17E+01
M2 -9.97E+02 -1.05E+03 -9.48E+02 2.97E+01 1.18E+01
M3 -9.88E+02 -1.04E+03 -9.23E+02 4.28E+01 1.16E+01
M4 -9.73E+02 -1.07E+03 -9.28E+02 4.28E+01 1.16E+01
M5 -9.80E+02 -1.01E+03 -9.45E+02 2.18E+01 1.19E+01

100

M1 -1.16E+03 -1.18E+03 -1.12E+03 1.75E+01 3.84E+01
M2 -1.00E+03 -1.04E+03 -9.49E+02 2.34E+01 3.84E+01
M3 -1.04E+03 -1.10E+03 -9.91E+02 3.03E+01 3.92E+01
M4 -1.02E+03 -1.06E+03 -9.60E+02 3.07E+01 3.88E+01
M5 -1.03E+03 -1.09E+03 -9.86E+02 3.34E+01 3.87E+01

100

30

M1 -1.98E+03 -2.26E+03 -1.68E+03 1.60E+02 3.75E+01
M2 -2.72E+03 -2.80E+03 -2.60E+03 6.47E+01 3.79E+01
M3 -2.59E+03 -2.68E+03 -2.48E+03 5.61E+01 3.78E+01
M4 -2.58E+03 -2.75E+03 -2.49E+03 7.87E+01 3.79E+01
M5 -2.56E+03 -2.71E+03 -2.44E+03 7.19E+01 3.81E+01

100

M1 -2.95E+03 -3.13E+03 -2.58E+03 1.59E+02 1.26E+02
M2 -2.88E+03 -2.92E+03 -2.80E+03 3.19E+01 1.27E+02
M3 -2.80E+03 -2.93E+03 -2.66E+03 7.46E+01 1.27E+02
M4 -2.79E+03 -2.93E+03 -2.62E+03 9.88E+01 1.26E+02
M5 -2.81E+03 -2.89E+03 -2.69E+03 5.81E+01 1.26E+02
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solution areas. Standard PSO, which involves a large number of agents, can search widely in
the solution space because the moving length is randomly determined. Thus, standard PSO
can determine a narrower optimal solution area than that determined by DPSOP. In other
cases, the DPSOP has two characteristic phases: ϕ = 0 and ϕ = π

2 . At ϕ = 0, the agents of
the DPSOP is affected only by the global best solution; thus, the agents are rapidly gathered
to the global best. Therefore, the DPSOP can search the current global best solution in
detail. At ϕ = π

2 , the agent of the DPSOP is affected only by the local best solution; thus, it
moves away from the global best. We believe that the two characteristic phases are efficient
in searching for better solutions and escaping from the local minimum. In fact, the DPSOP
can determine better solutions in both unimodal and multimodal functions.

Table 7: Simulation Results of Sphere Function (C1 = C2 = 2.0).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 2.94E+01 7.07E+00 4.08E+01 9.38E+00 4.20E+00
M2 3.33E-02 4.31E-03 6.42E-02 2.23E-02 4.53E+00
M3 8.31E-01 1.97E-01 2.55E+00 6.98E-01 4.51E+00
M4 2.02E+00 4.04E-01 3.73E+00 9.76E-01 4.49E+00
M5 1.94E+00 5.01E-01 6.22E+00 1.57E+00 4.48E+00

100

M1 3.16E+00 1.94E-129 9.86E+00 3.52E+00 1.36E+01
M2 1.54E-03 1.81E-06 5.17E-03 1.68E-03 1.41E+01
M3 2.95E-02 5.40E-03 6.96E-02 2.15E-02 1.41E+01
M4 1.31E-02 1.22E-03 2.65E-02 8.57E-03 1.43E+01
M5 2.27E-02 4.79E-03 6.87E-02 1.93E-02 1.41E+01

100

30

M1 4.47E+02 3.90E+02 5.90E+02 5.90E+01 1.34E+01
M2 2.29E+01 1.32E+01 3.89E+01 6.91E+00 1.34E+01
M3 4.50E+01 3.39E+01 6.40E+01 8.48E+00 1.34E+01
M4 7.66E+01 5.80E+01 1.03E+02 1.49E+01 1.34E+01
M5 6.09E+01 4.93E+01 8.65E+01 1.08E+01 1.34E+01

100

M1 1.72E+02 1.37E+02 2.22E+02 2.37E+01 4.45E+01
M2 7.08E+00 4.46E+00 1.01E+01 1.50E+00 4.41E+01
M3 1.45E+01 1.05E+01 1.86E+01 3.03E+00 4.41E+01
M4 1.68E+01 9.53E+00 2.15E+01 3.26E+00 4.42E+01
M5 1.51E+01 8.50E+00 2.04E+01 3.64E+00 4.43E+01

3.1.3 Discussions

Table 12 compares the average error of the proposed DPSOP with that of standard PSO.
“W” in Table 12indicates when the average error of the proposed DPSOP is lower than that
of standard PSO. The performance of the proposed DPSOP is better than that of standard
PSO for every benchmark function when the population is 30. The proposed method can
efficiently search for solutions using a few particles. This is because the distance that was
moved towards the global best changes periodically, which allows for a wider solution
search. When the number of populations is 100, standard PSO improved the search ability.
Many particles are distributed to the search space, and the particles rapidly gather to the
global best position. The gathering speed of DPSOP to the global best is slower than that
of standard PSO; thus, the improvement ratio of DPSOP is lower than that of standard PSO
by population increasing.
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Table 8: Simulation Results of Rosenbrock Function (C1 = C2 = 2.0).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 1.12E+03 6.82E+02 2.55E+03 5.17E+02 1.27E+01
M2 2.70E+01 2.43E+01 3.10E+01 2.17E+00 1.29E+01
M3 5.21E+01 3.05E+01 7.29E+01 1.34E+01 1.28E+01
M4 7.31E+01 3.65E+01 1.29E+02 2.88E+01 1.28E+01
M5 8.62E+01 3.89E+01 1.64E+02 3.69E+01 1.29E+01

100

M1 8.10E+01 1.21E-01 2.91E+02 8.88E+01 4.07E+01
M2 2.33E+01 2.20E+01 2.71E+01 1.53E+00 4.26E+01
M3 2.62E+01 2.46E+01 2.83E+01 1.27E+00 4.29E+01
M4 2.38E+01 2.18E+01 2.66E+01 1.39E+00 4.28E+01
M5 2.50E+01 2.36E+01 2.88E+01 1.53E+00 4.26E+01

100

30

M1 1.91E+04 1.61E+04 2.25E+04 2.05E+03 4.22E+01
M2 5.42E+02 3.97E+02 6.59E+02 7.49E+01 4.24E+01
M3 8.31E+02 5.86E+02 1.09E+03 1.80E+02 4.28E+01
M4 1.72E+03 1.21E+03 2.39E+03 3.04E+02 4.25E+01
M5 1.95E+03 1.29E+03 3.27E+03 5.70E+02 4.23E+01

100

M1 4.65E+02 3.39E+02 6.93E+02 1.15E+02 1.42E+02
M2 2.60E+02 1.93E+02 3.04E+02 3.24E+01 1.46E+02
M3 3.19E+02 2.38E+02 3.86E+02 4.54E+01 1.46E+02
M4 4.69E+02 3.45E+02 6.11E+02 8.86E+01 1.43E+02
M5 4.27E+02 3.01E+02 6.05E+02 8.63E+01 1.42E+02

Table 9: Simulation Results of Rastrigine Function (C1 = C2 = 2.0).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 1.23E+02 9.46E+01 1.63E+02 2.23E+01 1.56E+01
M2 6.38E+01 3.41E+01 8.73E+01 1.63E+01 1.59E+01
M3 6.93E+01 3.64E+01 1.06E+02 2.16E+01 1.59E+01
M4 8.67E+01 4.59E+01 1.28E+02 2.77E+01 1.59E+01
M5 8.67E+01 6.37E+01 1.04E+02 1.37E+01 1.60E+01

100

M1 1.22E+01 9.95E-01 2.52E+01 8.52E+00 5.25E+01
M2 5.78E+01 3.68E+01 8.86E+01 1.75E+01 5.22E+01
M3 4.60E+01 1.61E+01 7.48E+01 1.62E+01 5.28E+01
M4 6.93E+01 5.38E+01 8.82E+01 9.88E+00 5.26E+01
M5 7.07E+01 4.13E+01 1.00E+02 1.62E+01 5.26E+01

100

30

M1 1.13E+03 1.01E+03 1.20E+03 5.85E+01 5.14E+01
M2 4.24E+02 3.53E+02 4.80E+02 4.79E+01 5.14E+01
M3 5.36E+02 4.25E+02 6.91E+02 7.49E+01 5.16E+01
M4 6.03E+02 4.79E+02 7.36E+02 7.39E+01 5.26E+01
M5 6.33E+02 5.44E+02 7.27E+02 6.39E+01 5.11E+01

100

M1 5.59E+02 4.53E+02 6.58E+02 6.08E+01 1.70E+02
M2 2.97E+02 2.46E+02 3.60E+02 3.83E+01 1.72E+02
M3 3.70E+02 3.33E+02 4.32E+02 3.43E+01 1.70E+02
M4 4.44E+02 3.72E+02 5.08E+02 4.69E+01 1.71E+02
M5 4.19E+02 3.23E+02 4.49E+02 3.43E+01 1.71E+02
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Table 10: Simulation Results of Ackley Function (C1 = C2 = 2.0).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 1.09E+01 6.13E+00 1.56E+01 3.08E+00 1.48E+01
M2 1.04E+01 8.97E+00 1.19E+01 8.84E-01 1.55E+01
M3 1.03E+01 8.55E+00 1.29E+01 1.36E+00 1.54E+01
M4 1.26E+01 9.25E+00 1.59E+01 1.82E+00 1.55E+01
M5 1.21E+01 1.00E+01 1.43E+01 1.32E+00 1.53E+01

100

M1 1.58E-13 2.13E-14 1.17E-12 3.39E-13 4.91E+01
M2 8.28E+00 5.79E+00 1.07E+01 1.53E+00 4.92E+01
M3 8.31E+00 5.88E+00 1.03E+01 1.60E+00 5.06E+01
M4 8.77E+00 6.26E+00 1.04E+01 1.18E+00 4.97E+01
M5 8.79E+00 6.33E+00 1.24E+01 1.62E+00 5.16E+01

100

30

M1 1.88E+01 1.78E+01 1.93E+01 4.18E-01 4.78E+01
M2 1.41E+01 1.34E+01 1.47E+01 3.72E-01 4.79E+01
M3 1.43E+01 1.36E+01 1.53E+01 5.84E-01 4.82E+01
M4 1.61E+01 1.53E+01 1.71E+01 5.29E-01 4.80E+01
M5 1.59E+01 1.49E+01 1.69E+01 6.70E-01 4.78E+01

100

M1 1.55E+01 1.33E+01 1.80E+01 1.39E+00 1.54E+02
M2 1.15E+01 1.01E+01 1.30E+01 7.30E-01 1.53E+02
M3 1.14E+01 1.09E+01 1.20E+01 3.62E-01 1.54E+02
M4 1.29E+01 1.11E+01 1.48E+01 1.20E+00 1.53E+02
M5 1.21E+01 1.03E+01 1.34E+01 8.49E-01 1.53E+02

Table 11: Simulation Results of Styblinski-Tang Function (C1 = C2 = 2.0).

Dim. Pop. Model Average Minimum Maximum Std. Dev. Time

30

30

M1 -9.86E+02 -1.08E+03 -9.00E+02 5.06E+01 1.16E+01
M2 -1.01E+03 -1.06E+03 -9.48E+02 4.73E+01 1.20E+01
M3 -9.88E+02 -1.07E+03 -9.37E+02 3.48E+01 1.20E+01
M4 -1.00E+03 -1.06E+03 -9.16E+02 3.80E+01 1.20E+01
M5 -1.01E+03 -1.07E+03 -9.50E+02 3.33E+01 1.20E+01

100

M1 -1.14E+03 -1.17E+03 -1.10E+03 2.28E+01 3.90E+01
M2 -1.02E+03 -1.06E+03 -9.63E+02 2.94E+01 3.94E+01
M3 -1.03E+03 -1.08E+03 -9.77E+02 3.12E+01 3.95E+01
M4 -1.00E+03 -1.08E+03 -9.61E+02 3.62E+01 3.97E+01
M5 -1.01E+03 -1.06E+03 -9.75E+02 2.87E+01 3.96E+01

100

30

M1 -1.86E+03 -2.11E+03 -1.62E+03 1.51E+02 3.90E+01
M2 -2.77E+03 -2.83E+03 -2.68E+03 5.31E+01 3.86E+01
M3 -2.59E+03 -2.73E+03 -2.46E+03 9.16E+01 3.89E+01
M4 -2.57E+03 -2.73E+03 -2.48E+03 6.85E+01 3.89E+01
M5 -2.61E+03 -2.84E+03 -2.46E+03 9.91E+01 3.93E+01

100

M1 -2.92E+03 -3.18E+03 -2.50E+03 1.79E+02 1.29E+02
M2 -2.91E+03 -2.99E+03 -2.80E+03 6.07E+01 1.27E+02
M3 -2.81E+03 -2.93E+03 -2.66E+03 8.37E+01 1.27E+02
M4 -2.83E+03 -2.98E+03 -2.71E+03 7.60E+01 1.26E+02
M5 -2.76E+03 -2.87E+03 -2.62E+03 8.99E+01 1.27E+02
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Table 12: Comparison of results between the standard PSO (M1) 
and the proposed PSO (M2).

Dim. Pop. C1,C2 f1 f2 f3 f4 f5

30
30

1.6 W W W W W
2.0 W W W W W

100
1.6 W W L L L
2.0 W W L L L

100
1.6

30 W W W W W
2.0 W W W W W

100
1.6 W W W L L
2.0 W W W L L

4 Conclusions

In this study, we proposed DPSOP, which introduces sine and cosine waves into the moving
equation of the agent. The movement of agents in PSO is attracted to the global and local
best solutions. In general, the length of the moving agent is determined at random. We
introduced cosine and sine waves to the length of the agent moving towards the global and
local best solutions, respectively. Thus, the length of the moving agent was determined
in a deterministic manner. The proposed DPSOP has two characteristic phases: ϕ = 0
and ϕ = π

2 . In these two phases, the agents are attracted only to the global or local best
solutions. We compared the searching ability of DPSOP with that of standard PSO using
five benchmark functions. From the results, DPSOP was determined to find a better solution
than standard PSO. We believe that these two phases are efficient in terms of the solution
searching ability of PSO.
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