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Abstract

In programming education at higher education institutions, closed-ended assignments are
often presented to learners. Closed-ended tasks are used as a means of checking the learner’s
understanding level. A typical closed-ended problem in programming is a multiple-choice
fill-in-the-blank learning task. When this learning task is applied to a class, the teacher must
usually design the problem-solving procedure by themself in advance and verify its validity.
Preventing unintended correct answers due to the teacher’s oversight is essential, but this
task is not easy. Therefore, we developed a diagnostic tool in this study to verify the validity
of multiple-choice fill-in-the-blanks programming learning tasks. Using the proposed tool,
the teacher can enumerate patterns of input/output according to to answer combinations
when creating questions. Since variations in inputs and outputs and overlaps of inputs and
outputs are revealed in advance, the teacher can find the difficulty of the learning task and
the existence of unintended correct answers before the question is posed. In this paper, we
asked teachers to use the proposed tool on a trial basis and obtained feedback from them.
As a result, the proposed tool revealed correct answers that the teachers had not noticed
before. This defect was derived from a behavior peculiar to the C language and would have
been difficult to detect under normal circumstances. Furthermore, the teacher could easily
adjust the difficulty level of the problem by knowing the input/output variations results in
advance. These results demonstrate the usefulness of the proposed tool.

Keywords: programming education, C language, closed-ended questions, diagnostic tool,
fill-in-the-blanks program problem.

1 Introduction

In programming education at higher education institutions and corporate training programs,
the fill-in-the-blank programming questions [1][2] (FiB questions) are often presented as a
form of learning assignment. FiB questions is one of the closed-ended [4] tasks and is used
to check the learner’s level of understanding. Closed-ended means that there is always only
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one correct answer to a given problem. In a closed-ended problem, the learner does not cre-
ate all the source code from scratch but rather creates a finished product using pre-prepared
materials. Closed-ended problems include source code reading [5], description completion
for a part of the entire source code [3], reordering of some descriptions [6], and modifica-
tion of templates [7]. By nature, programming itself is an open-ended activity. Open-ended
means ”there is no correct answer” or ”a variety of correct answers can exist. However, the
open-ended question is difficult to determine the learner’s level of understanding of learning
tasks because it cannot clearly define the correct answers. Educational institutions need to
grasp the learner’s level of an understanding case-by-case. For this reason, closed-ended
problems are often used in programming education.

FiB questions consist of a test case with input/output examples and a program with
blanks in the source code. The learner gives appropriate instructions in the blanks to make
the program satisfy the test case. The blanks are based on free-text or multiple-choice.
FiB questions are widely used as programming learning tasks and are often employed in
certification exams and other paper-based examinations [3][8]. FiB questions allow learners
to concentrate on learning and think about the teacher’s composition because they do not
design the source code themselves. In addition, it is easy to learn, even for programming
beginners unfamiliar with computer operations. Therefore, FiB questions is positioned as
one of the effective teaching materials in elementary programming education.

While FiB questions are an effective learning tool, they may not promote understanding
or make FiB questions too difficult. Adjusting its difficulty level is difficult. The variety of
inputs and outputs determines difficulty. The difficulty is also determined by the number
of possible response patterns that can yield the correct answer. The inappropriate difficulty
level can cause learners to be overloaded or confused, prevent them from concentrating on
what the teacher wants them to learn, or give them a sense of overwhelming programming
weakness. Therefore, devising a method of setting up the blanks is necessary to success-
fully promote and deepen the program’s understanding when presenting the blanks to the
learners.

To deal with the problem of generating appropriate FiB questions, a method to automat-
ically set blanks has been proposed in a previous study [8]-[10], and the proposed method
could reduce teachers’ burden to create questions. Such a system is useful for teaching the
grammar of the program and its basic principles when the learning task does not need to
include the knowledge of algorithm learning which is problem-solving procedures in the
program’s background. However, the teacher has to intervene in setting up the blanks when
including an element of semantic content, such as the knowledge of algorithms, is neces-
sary. Specifically, the teacher must select the blanks according to the teaching materials’
content by the teacher’s intention, so teaching materials are manually prepared in common.
When creating such questions, preventing unintentional correct answers due to teachers’
overlooking is important in advance. An unintended correct answer may not produce the
expected learning effect because the learner may not be active in the teacher’s thinking orig-
inally envisioned. In particular, when judging comprehension, unintended correct answers
may cause learners to acquire the wrong way of thinking. Therefore, avoiding unintended
correct answers is necessary as much as possible, but there is limited manual confirmation.

Therefore, this study develops a diagnostic tool to confirm the appropriateness of FiB
questions in advance. We asked teachers to use the proposed tool on a trial basis and
obtained feedback from them. As a result of practicing the diagnostic tool, we received high
evaluations from teachers. The proposed tool revealed correct answers that the teachers had
not noticed before. In addition, we could find correct answers that teachers did not intend.
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Figure 1: An example of fill-in-the-blank programming question

This defect was derived from a behavior peculiar to the C language and would have been 
difficult to detect under normal circumstances. Furthermore, the teacher could easily adjust 
the problem’s difficulty level by knowing the input/output variations results in advance. 
These results demonstrate the usefulness of the proposed tool.

2 Fill-in-the-Blank Programming Question

2.1 Outline

FiB question is considered a useful method to grasp the level of understanding at an early 
stage [8][10]. As mentioned above, FiB question is a task in which the learner is given 
a program with input/output examples (test cases) and some blanks in the source code. 
Then, the learner is asked to think of appropriate instructions to fill in the blanks so that the 
program behaves as in the test cases.

Figure 1 shows a multiple-choice FiB question. A typical fill-in-the-blank program 
problem gives learners incomplete source code, as shown in Figure 1, and an input/output 
example along with the requirement as a problem sentence. Usually, the learner can edit 
only the blanks and fill the syntax to the presented source code as they deem appropriate. In 
some cases, the blanks are in free-text format, while in others, they are given in a multiple-
choice format. Another method is for incomplete source code to be delivered to the editor 
as a template, in which case the learner can edit all but the blank spaces.

2.2 Practical examples

In FiB questions, blanks are usually given in the form of choice or the form of an open-
ended response. In the case of a program, filling in the blanks by memory is impossible. 
The assignment requires the learners to collect the necessary information while following 
the processing flow before and after blanks. Therefore, FiB questions are said to increase the 
opportunity to think about the program process and promote understanding. FiB questions 
are also helpful for novices because they are easier to learn than open-ended questions. 
Indeed, several previous studies have already demonstrated its learning effect, as mentioned 
below. In some cases, learning tasks are given in an environment where the compiler can
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interact with them, and in other cases, they can be completed only on paper or in an LMS. 
All the presentation methods have confirmed a certain amount of learning effect.

FiB questions are effective in reducing the grading burden on the teacher. FiB ques-
tions limit areas to be scored, so automatic grading is easily possible [11]. Other reasons 
include the immediacy of feedback (the ease of operation when practicing in an LMS such 
as Moodle) and the ease of learning and evaluation by limiting the structures that teach-
ers can build. If we can automate the grading of FiB questions and the analysis of the 
results, the teacher can immediately reveal the various levels of learners’ understanding. 
For teachers to provide appropriate instruction to learners in programming, identifying the 
learners’ level of performance is important [12]. For this reason, some exams are conducted 
to measure learners’ programming comprehension. Such exams are used to measure learn-
ers’ learning outcomes and are administered in various question formats. Among them, FiB 
questions are one of the most popular question formats. FiB questions are actually used in 
the prestigious exam for information technology conducted by the Information-technology 
Promotion Agency, Japan 1.

3 Related Works

Research on FiB questions can be divided into two main categories. One is educational 
support through system development and practical use [13][14], and the other is research 
on automatic problem generation [8][15][16].

Kakeshita et al. have developed a support system for FiB learning and have demon-
strated its usefulness through practical use [13]. Tana et al. proposed a graph-theoretic 
blank-element selection algorithm for generating FiB problems and clarified its learning 
effectiveness through practical use [14].

When creating a FiB question, how to decide the position of blanks is important. Some 
methods have been proposed to determine the efficient position of blanks. These methods 
automatically generate FiB questions by deciding which parts of the text should be blanks.

Kashiwabara et al. have proposed a method to identify the key points of the processing 
flow in a program and designate those parts as blanks using a program-dependent graph 
(PDG) [9]. PDG is a directed graph showing the dependency between each statement in 
a program and the data flow. PDG can judge data flow quantitatively, so their proposal 
method formally sets the blanks without going into the program’s semantic content. How-
ever, their proposed method is not possible to set the blanks according to the intention of 
the question’s editor. In addition, questions that do not depend on meaning cannot rely 
on external knowledge. Therefore, the FiB questions generated by their proposed method 
seem for advanced students who understand grammar. Here, external knowledge means the 
content the teacher intends for the learners to acquire in the class. For beginners who are 
the main target of this study, the teacher themselves must design the blanks to reflect their 
intentions.

Uchida et al. [15] propose a method for automatically extracting keywords and iden-
tifiers and filling in the blanks. The target language is Java. First, the teacher registers a 
question and its description in the system. Then, the system extracts keywords and identi-
fiers from the registered program and generates a FiB question by replacing some parts with 
blanks. Since the number of blanks is random, different blanks are generated in different

1https://www.jitec.ipa.go.jp/index-e.html
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places each time, so the same program can generate different questions. This method al-
lows learners to practice repeatedly. But, this method has the disadvantage of not allowing 
identifiers or reserved words to be specified. Only such capability is difficult to allow for 
the detailed specification of learning intentions by the questioner’s intentions. Besides, this 
method’s blanks do not consider the respective situations of learners and teachers.

Ariyasu et al. ([16]) propose a method for generating FiB exercises based on the 
teacher’s intentions. They generate the questions by analyzing the program and apply-
ing the question writer’s intentions to it. However, it was unclear whether their proposed 
method could express the intentions of the problem creators through the experimental re-
sult. Also, their study did not mention how to implement the multiple-choice method. As 
described above, various methods for generating FiB questions have been proposed, but re-
search focused on evaluating the appropriateness of FiB questions created by teachers has 
not been adequately addressed.

4 The Proposed Tool

Checking the existence of unintended correct answers in a FiB question is not easy in ad-
vance. Commonly, the existence of an unintentional correct answer can only be found when 
a learner’s answer, the combination of choices they set, passes the test case. The answer 
may be correct in extreme cases, even if the choice is completely arbitrary. Though we know 
that such behavior is always likely to occur, distinguishing which combination of alterna-
tives will contain an unintended correct answer is practically impossible for the teacher. In 
other words, given a source code with blanks and multiple choices for each blank as a FiB 
question, the only way to determine if the FiB problem has only one unique correct answer 
is to fit all the alternative combinations and run them to see. Therefore, we cannot reveal an 
unintended correct answer without examining all possible response patterns.

Based on the above idea, we newly developed a diagnostic tool to evaluate the FiB 
question’s appropriateness (i.e., to give choices that uniquely determine the answer) by se-
quentially generating a program to which all possible response patterns are applied and 
checking the execution results. The number of patterns becomes huge according to the 
number of blanks in the choices and the problem sentence (the generated source code = 
the number of choices multiplied by the blanks), so manual verification by teachers is im-
possible. Therefore, our system first generates source codes with all of the combinatorial 
patterns. Next, the proposed tool automatically compiles and executes all possible answers 
to the FiB questions. In this case, all input/output patterns are output to text files. With 
this diagnostic tool, each choice combination’s execution results can be mechanically com-
pared with the teachers’ execution examples. As a result, the presence of unintended correct 
answers can be easily confirmed. The number of source codes generated depends on the 
number of combinations. If the number is large, unfortunately, it may not be possible to 
obtain results quickly. in such cases, the teacher must be able to diagnose FiB questions in 
plenty of time. Despite such limitations, for a typical size FiB problem, the teacher can pro-
cess it overnight and obtain verification results the following day. Therefore, the proposed 
tool is useful enough for teachers.

The processing procedure of the proposed tool is shown in Figure.2. First, the teacher 
prepares the input data (in JSON format) corresponding to the diagnostic tool. The data 
that needs to be prepared is the problem statement, the choice, the model answer, and the 
input/output result of the program execution.
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The flow of the procedure is as follows.

1. Create the source code using the model choices (input data) and save the execution
result (Execution results intended by the question creator) as a character string.

2. Create an overlapping permutation that takes into account the number of choices and
the number of blanks. In the case of a problem with three choices and two blanks for
each blank, we have the following.we have the following permutation.
{11},{12},{13},{21},{22}{23},{31},{32},{33}

3. Insert the permutation made in 2) into the filled-in-place problem, and generate the
filled-in-place problem.

4. Run the generated problem and compare it with the teacher’s intended run that cre-
ated the FiB problem. Only patterns with matching execution results are treated as
”Unintended Correctness.”

5. Record the choices made for each blank, the generated source code, and the output
(or error message if it cannot be executed) on each line.

6. Level the selection pattern for each blank. Details of the level assignment are de-
scribed in the next section.

7. Display a list of correct answers, including model answers.

First, to find an unintended correct answer in the generated source code, we execute the
teacher’s model choices and make a model execution result. It is treated as a criterion for
comparison with the execution results generated by the brute force method. Next, we create
a single matrix of all choice combinations in the input question to generate the source code
for all response patterns. For this reason, the number of choices for each blank field has to
be the same in the source code verified in this study.

The response patterns for the FiB questions are huge and take a lot of time. Therefore,
we thought it was necessary to reduce the processing time. This system uses the standard
node.js library ”child process” to generate, compile, and execute the source code in parallel.
However, since the number of CPU cores is the limit of simultaneous processes, the number
of parallel processes depends on the execution environment.

The execution results are compared with the exemplary execution results as shown in
Figure.2 below. Since the execution results are stored as strings, they are added to the
correct answers if the results of the comparison match perfectly. Because the brute force
method is used to select alternatives, some alternatives contain infinite loops or errors that
cannot be compiled. Therefore, in the compilation and execution process, the compilation
error source code returns the string ”error” as the execution result. The choices are excluded
from the correct answer list without exception processing when comparing the execution re-
sults. Besides, when the execution result is not returned after a certain period, the proposed
tool skips this pattern by processing the execution result in the same way as a compilation
error. This study set the time to 100 milliseconds, although it is necessary to change the
fixed time in the abovementioned depending on the problem.

Finally, the execution of the generated program’s results is compared with the program’s
execution created using the teacher’s model answers. Then, it stores the choices used in the
perfectly matched source code as a list of correct answers, outputs them as a result, and
tries to find unintended correct answers from the output results.
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Figure 2: Flowchart
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Figure 3: An Example of FiB Question to Show the Usefulness of the Proposed Tool

5 Results

In order to validate and evaluate this diagnostic tool, we used the FiB problem used for
programming learning in the lecture to convey the fundamentals of algorithms at a College.
Figure 3 shows an example. The question of Figure 3 is a program to sort the inputted
values in ascending order. This question has five blanks, each shown in (a)-(e). Figure
shows the source code that corresponds to the correct answer choices. This pattern is the
choice intended by the teacher. The teacher usually creates dummy choices after defining
the correct answer. Finally, the assignment shown in Figure is completed.

The assignment of Figure 3 has five blanks with four choices. Thus, there are 1024
possible patterns, and 1024 source codes are executed by the proposed tool. After the
execution, each source code is leveled as described above. The level is determined based
on the execution results or on each choice’s set. Details of the levels are described below.
First, Level 1 is set if either execution does not return results (e.g., infinite loop), a compile
error is found, or an out-of-range array index is accessed. Level 1 is the most inappropriate
state, which is not satisfactory for execution. If the pattern is not Level 1, it is set to Level 2
or higher. In the case of Level 2 or higher, the level is determined by choice of each blank.
The higher the priority blank choice differs from the correct answer, the lower the level.
The priority of each blank is given in advance by the teacher. Usually, the blank with the
1st priority is the easiest because most students should answer correctly, and the blank with
the last priority is the most difficult. In the case of Figure 3, the priority of blanks is (c),
(e), (d), (b), (a). So, if (c) is wrong, the answer is Level 2; otherwise, it is Level 3 or higher.
The highest level is 7, the pattern intended as the correct answer. This procedure can be
summarized as follows. First, set the initial value of priority as n = 1. Then, set the level

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

H. Shigematsu, A. Ohno, S. Matsumoto8



n+ 1 for patterns with the incorrect choice in the blank with nth priority. Otherwise, set
n = n+1 and repeat this process until there are no more unconfirmed blanks.

Table 1: Relative Frequencies of Each Level

Level Relative frequency
Level 1 0.496
Level 2 0.363
Level 3 0.098
Level 4 0.031
Level 5 0.009
Level 6 0.001
Level 7 0.002

Table 1 shows each level’s relative frequencies of all patterns in the learning assignment
in Figure 3. As shown in Table 1, the higher the level, the smaller the relative frequency
value. However, the value for level 7 is larger than that for level 6. This result suggests
that there are two correct answers. That is, Table 1 shows that there exist correct answers
that the teacher did not imagine, and that the proposed tool was able to discover them.
The combination of choices the proposed tool newly found is (a-3), (b-3), (c-2), (d-3), (e-
4), apart from the original correct response pattern (a-4), (b-3), (c-2), (d-3), (e-4). The
proposed tool would be useful in that it was able to support such a discovery.

By the way, there was one pattern at level 6. The combination is (a-2), (b-3), (c-2), (d-
3), (e-4), and the output results were sorted by value in descending order. In this case, since
there is only one way to get level 6, it may be more appropriate to give this combination as
the correct answer. We can say that the proposed tool is also useful in that it allows us to
present such new perspectives.

The output obtained by the response patterns is used as the explanatory variable to clar-
ify the relationship between the response patterns. Explanatory variables were generated
from the strings of the output results. The frequency of each number in the output was tab-
ulated and used as an explanatory variable. With the explanatory variables, the relationship
between the patterns was visualized by t-SNE. Patterns that did not return any execution
results or compile errors were assumed to be at the origin (vector with all 0 elements). The
frequency of invalid values obtained by accessing more than the number of array elements
was also added as an explanatory variable. For example, in the case of the learning task in
Figure 3, each pattern has 11 elements, and the elements were vectorized by the frequency
of each of the ten numbers and one illegal value. t-SNE processed and visualized 1024 vec-
tors. As the hyperparameters of t-SNE, we used 30 for ”Perplexity,” 1 for ”exaggeration,”
and 15 for ”PCA Components,” referring to the document [17].

The results are shown in Figure 4. This means that the output of Level 2 and the correct
answer are composed of similar strings. Therefore, many students who obtain the output
of Level 2 may expect their answers to be close to the correct answers. In reality, however,
they are giving answers of Level 2 that are far from correct. If there is a gap between the
learner’s self-assessment and the actual situation, some feedback should be given to inform
the learner of the actual situation. Otherwise, smooth learning may not take place. In this
study, the levels of all response patterns were identified. By using the proposed tool, we
can resister the information on the levels of all response patterns in the system in advance.
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Level 6, 7

Figure 4: Visualization of Response Patterns by t-SNE

So, when the learner responds to the learning support system of FiB questions, the level
of that response can be immediately fed back. This feedback, including the level and its
associated information, will be helpful as a scaffold. Scaffolding is useful to support learn-
ers’ individual learning. For example, the next goal is to show the learner the requirements
needed to move up a level (correct answers in the n priority columns) and the output pattern
for that level. This information is useful when learning in small steps. Small steps are cer-
tainly beneficial for learners who cannot learn by themselves. The diagnostic tool presented
new possibilities for this learning in this study. Therefore, this paper has also clarified the
pedagogical significance of the proposed tool.

6 Conclusions

In this study, we developed a diagnostic tool to check the appropriateness of FiB questions,
including algorithmic learning elements. As a result of testing the usefulness of the pro-
posed tool on a learning task used in an actual class, the proposed tool contributed to the
discovery of inadequacies in the learning task. Specifically, the proposed tool pointed out
that an response pattern that the teacher had not anticipated could be the correct answer.
Furthermore, the proposed tool found a better assignment than the one the teacher had ini-

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

H. Shigematsu, A. Ohno, S. Matsumoto10



tially thought of. The teacher was able to actually use the proposal tool and appreciated its
usefulness. From the above results, we can firstly confirm that the Proposal Tool is enough
useful. Next, this paper confirms the usefulness of the proposed tool for learners. Specif-
ically, this paper showed the possibility of the proposed tool to realize small steps. These
results suggest that the proposed tool would be useful not only as a support for tutors, but
also as a support mechanism for students. Therefore, the paper concluded that the proposed
tool is useful.
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