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Abstract

A growing network like the Internet has a characteristic that the number of nodes is indef-
inite and may change with time. This characteristic makes it difficult to understand quan-
titatively and qualitatively how data are transferred among computers. In this article, we
propose TFGM, which is a dynamic graph model to describe data transfer inside a network
of indefinite size. The network is assumed to be time-dependent and allowed to change by
discrete events. TFGM enables us to depict how data are sent from a server and to clients
by using data densities, which depend continuously on time. As an application, fairness of
load balancing is formulated and theorems are proven concerning an upper bound for the
number of simultaneous clients for periodic polling.
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1 Introduction

In this article we develop a novel graph model, named TFGM (for Time Function Graph
Model), that is intended to describe a growing network like the Internet with an increasing
number of computers. The growth of a network makes it difficult to capture the nature of
the network as a whole — in practice and in theory as well. Everybody knows that there
are only finitely many computers connected to the Internet but nobody is able to tell the
actual number of them at any time. In other words, the network is time-dependent and
evolves with time. The problem addressed here is to develop a simple and practical theory
to describe the data transfer over such evolving networks.

2 Graph as a Snapshot of the Network

TFGM presented here is designed to depict a system consisting of an indefinite number of
nodes connected to each other by edges. The set of nodes and edges are denoted by V and
E, respectively. Nodes of V are, for instance, servers that are connected to the network.
The servers that will be connected to the network in the future are also contained in V . It is
reasonable to regard V as a countable set but not assumed to be finite. Similar consideration
applies to E.
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Nodes and edges are allowed to change with time but it is assumed that there is only a
finite number of them at each moment. A time-line is needed to put this assumption into
the theory. We use the set of real numbers R to represent the time-line with the origin fixed
at a certain point in time. A graph in TFGM is a (total) function G with the following type.

G : R�! P(V )⇥P(E)

Here ⇥ means a Cartesian product and P(X) is the powerset of X in general. At any time
t 2 R, the value G(t) represents the snapshot of the network at t. G(t) can be written as
G(t) = (V (t),E(t)) for subsets V (t)⇢V and E(t)⇢ E. It is assumed that G(t) is a directed
graph for any t, and also that V (t) and E(t) are finite for any t.

The snapshot G(t) may change at some time, for example by events like the connection
of a new node to the network. We assume that such events are sparse in time, meaning
that there is an increasing sequence {t

j

}
j2w

indexed by the set w = {0,1,2, · · ·} of natural
numbers such that G(t) is constant except at t

j

’s and that t

j

! • as j ! •.

3 Data Density for Modeling the Network

The data transfer among nodes can be modeled by introducing certain functions. To this
end, let us write (v ! w)2 E(t) to mean that there is an edge e starting from v to w at time t

(e and v!w are regarded identical). We suppose that the node v is sending data to w via the
connection e. The data density at the sender v is denoted by r

out
e

(t) (in bytes per seconds),
so that the size of the data emitted from v within a time interval [a,b] can be computed by
the integral below. Z

b

a

r

out
e

(t)dt

In a real network, the data transfer is subject to the delay, which is affected by factors, such
as protocols, bandwidth, transactions, routing, transformation, access concentration, and
others. In TFGM, the delay is modeled by the function `

e

(t), which depends on e and t.
One byte of data transmitted from v at time t, reaches w at time t = t+`

e

(t). It is convenient
to consider the function f

e

(t) = t + `
e

(t). The role of f

e

is to map the server time t to the
client time t . Let us call f

e

the client time function. The behavior of f

e

depends on the
network condition and it is unknown in general. We model a general setting by supposing
that f

e

(t) is a (strictly) increasing right-continuous function of R that satisfies f

e

(t)� t (or
`

e

(t)� 0 equivalently) for all t and f

e

(t)!�• as t !�•. We define r

in
e

(t) by
Z

b

a

r

out
e

(t)dt =
Z

f

e

(b)

f

e

(a)
r

in
e

(t)dt (1)

for all a and b with a < b (in this article we write
R

b

a

to mean the integral over the half open
interval (a,b]). The equation (1) means that no data are lost during the transactions. If f

e

(t)
is a smooth function, then the equation (1) can be written with differentials:

r

out
e

(t)dt = r

in
e

(t)dt, t = f

e

(t). (2)

This means that r

in
e

(t) is the data density received by w at client time t . In general, we
regard dt as the Lebesgue-Stieltjes measure [1] associated with f

e

, so that (2) holds in
the sense of measures. We call r

out
e

and r

in
e

the outgoing and incoming density functions,
respectively. If one knows either of them (by experiments for instance), then the other
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can be computed by the change of coordinates given in (2). For example, if we know the
incoming density, we can write

r

out
e

(t) = r

in
e

( f

e

(t)) f

0
e

(t).

Here f

0
e

is the Radon-Nikodym derivative of dt with respect to the Lebesgue measure dt.
One of the main difficulties of network-related problems is that we have to control the
clients and the servers without explicit knowledge of the function f

e

.
A node has, in general, limitations about the bandwidth of network connections and

about the number of edges that can be used simultaneously for data transfer. We model
these constraints for each node v by the following inequality:

sup
a2R

1
T

Z
a+T

a

r

out
v

(t)dt  K

v

, (3)

where
r

out
v

(t) = Â
e2E

v

(t)

r

out
e

(t)

and E

v

(t) is the set of all e 2 E(t) such that e = v ! w for some w 6= v. The time average
is used here to model an observation experiment of duration T starting at time a, which is
carried out to estimate the total outgoing data volume from v. The constant K

v

(in bytes
per seconds) represents the total capacity of the node v and r

out
v

(t) the total outgoing data
density. Let us refer to the inequality (3) as the average capacity constraint. A sufficient
condition for the average capacity constraint to be satisfied is the following inequality

sup
t

r

out
v

(t) K

v

. (4)

Let us refer to (4) as the strong capacity constraint. The condition (3) is easier to verify than
(4) in theory and in applications.

4 Achieving Load Balancing by Fairness

In this section we apply our framework to load balancing. We consider the situation where
multiple clients poll data periodically from a single server. This type of data transfer can
be used to distribute data — such as sensor data collected from various sources — by using
a pull-protocol like HTTP (Hyper-Text Transfer Protocol). A common problem about this
kind of data synchronization is the access concentration. We solve it by scheduling the
requests from the clients. It is shown below that our solution is fair for all clients, with the
fairness being rigorously formulated using the data density.

Suppose that v 2 V represents a server and that all other nodes are clients connected
directly to v. The server v is required to send data uniformly to all clients w 2V \{v} (see
Fig. 1). To achieve load balancing, the server must be fair in the sense that there is no
special client that has a higher priority than another. There are multiple options to define
what is meant by fair. In general, fairness is related with the behavior of clients regarding
when and how to retrieve data from the server. Ideal fairness would be achieved if one could
mediate all clients to cooperate so that r

in
e

(t) is constant for all t and e. This is unrealistic
since the quantity r

in
e

(t) is subject to the noise caused by the network conditions, the failure
of data transfer due to hardware and/or software, and numerous other reasons. We have a
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e

(t)

r
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e

(t)

Figure 1: Periodic data transfer from the server v to clients (the outgoing data density r

out
e

is related to the incoming data density r

in
e

via the client time function: t = f

e

(t))

reasonable alternative using the mean value. Namely, we say that the data transfer is fair if
the mean value

M

in(T,e,a) =
1
T

Z
a+T

a

r

in
e

(t)dt

is constant as a function of a 2 R for a certain fixed value T > 0. The time average on
the right hand side of the above definition can be observed at node w by recording the
number of bytes transferred from v. As before, the parameter T is the duration of the
observation. The mean value M

in(T,e,a) computed at each node w, can be used to audit the
status of load balancing — if it is varying rapidly with time, then the load balancing is not
working. The duration T should be chosen large enough so that such an audit experiment
can easily be carried out by any node. At least, T should be larger than all delays `

e

(t).
In application, the condition that M

in is constant can be implemented by the condition
M

in(T,e,a) 2 [M0 � e,M0 + e] for some fixed constant M0 and a small e > 0.

5 Fairness of Periodic Polling

We now model the periodic polling by specifying the incoming data density. Our key ob-
servation is that the outgoing data density can be estimated when we know the incoming
data density. In other words, if we could control the timing and the data density of the
requests from the clients, then we would be able to manage efficiently the data transfer for
the polling.

Let P be the polling period in seconds. Suppose that a client w 2 V \ {v} initiates the
k-th transaction at time t

w

+ kP for k = 0,1,2, · · · with t

w

2 [0,P). We only consider the
traffic from v to w, the communication in the other direction being ignored for simplicity.
We assume further that the transactions do not overlap in time and that P is chosen large
enough so that multiple transactions can be completed within the duration P. The incoming
data density r

in
e

(t) at w from the server v can be decomposed into the sum

r

in
e

(t) =
•

Â
k=0

r

in
w,k(t),

where r

in
w,k(t) is the incoming data density associated with the k-th transaction. Note that

this summation is effectively finite since there can be at most one request at a time over the
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connection e. The periodicity of the requests is modeled by the following relation

r

in
w,k(t) = y(t � t

w

� kP),

where y is a continuous and nonnegative function such that y(t) = 0 if and only if t /2 (0,d )
for some positive constant d ⌧ P. d is the duration of the transaction, which is assumed to
be independent of time. We remark that r

in
e

(t) is P-periodic with these settings. We further
suppose that `

e

(t) d (or equivalently f

e

(t) t +d ).

Lemma 1. Let g be a nonnegative periodic function on R with period P. Suppose that

0 < P  T . Then we have ����
1
T

Z
a+T

a

g(t)dt �g

���� g/n

with n = bT/Pc and g =
R

P

0 g(t)dt/P.

Applying this lemma to the incoming density function, we obtain the inequality

|Min(T,e,a)�µ| µ/n, µ =
Z

y/P

with the same n as in Lemma 1. This means that the load balancing is fair if P ⌧ T ,
provided that the total outgoing data density r

out
v

(t) satisfies the capacity constraint.

6 Average Capacity Constraint

We now derive an inequality to describe the relationship among the number of clients, the
network delay, and the total outgoing density function. To this end, let us denote by c

v

(T,a)
the maximum number of clients connected to v within the interval (a,a+T ], i.e.,

c

v

(T,a) = sup
t2(a,a+T ]

|E
v

(t)|.

The change of delay for each connection can be measured by the difference quotient of f

e

,
which we define by

q

e

(T,a) =
f

e

(a+T )� f

e

(a)

T

.

To describe the change of delay inside the whole network, it is convenient to use the supre-
mum

q

v

(T,a) = sup
e

q

e

(T,a).

Remark that q

e

and q

v

are nonnegative. Moreover, by assumption on f

e

, we have q

e

(T,a)
1+ d

T

and thus q

v

(T,a)  1+ d

T

. We have q

v

= 1 when the network has no delay at all. A
larger value of q

v

means greater change of delay.
The periodicity of r

in
e

implies

Z
f

e

(a+T )

f

e

(a)
r

in
e

(t)dt  ( f

e

(a+T )� f

e

(a)+P)
Z

y/P

and so the summation over e yields the following
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j = 0 j = 1 j = 2

0 Pd 2d P+d P+2d

Figure 2: The aligned incoming density functions r

in
e

(t) for periodic polling (m = 3)

Theorem 2. For the periodic polling model, the following inequality holds with any T,a >
0.

1
T

Z
a+T

a

r

out
v

(t)dt  c

v

(T,a)


q

v

(T,a)

P

+
1
T

�Z
y (5)

Theorem 2 has been formulated to facilitate the verification of the average capacity
constraint, which can be done by comparing the capacity K

v

with the right hand side of (5).
Also, this theorem enables us to estimate the upper bound for the number of clients, given
the capacity K

v

. For example, it tells us that the server can serve up to

K

v

L


q

v

(T,a)

P

+
1
T

��1

(6)

clients, where L =
R

y represents the data size of each transaction. It should be noted
that q

e

(T,a) can be computed at runtime by recording the timestamp of requests at the
server. This means that the quantity (6) can be used to alter the maximum number of clients
dynamically, depending on the delay observed at runtime.

Almost no property has been assumed so far about the start time t

w

for polling. We
consider here how to choose t

w

for each client w in order to suppress the peak throughput
of the network. It will be shown below that this can be achieved by aligning t

w

suitably.
The worst alignment is the case where t

w

is a constant, say t

w

= 0 for all w. In this case,
the data are sent from the server to all clients almost simultaneously. Such a concentration
is inefficient since we are assuming the duration of transaction d to be much smaller than
the period P. The idea is to split the polling interval [0,P) into the disjoint union

[0,P) = [md ,P)[
m�1[

j=0
[ jd ,( j+1)d ), m = bP/dc

of length at most d and to scatter the values of t

w

among these intervals. We model the
general case of such scattering by a function x : R⇥E �! w and set t

w

= x (t,e)d . The
value of x is the index j of the sequence of intervals {[ jd ,( j+ 1)d ]}m�1

j=0 (see Fig. 2). It
is convenient to have a quantity or an index to describe how uniformly the values of x are
distributed. For this purpose, we use the level sets of x . Namely, we denote by E

v

(t, j) the
set of all e 2 E

v

(t) such that x (t,e) = j. Now consider the following quantities

F
x

(t) = sup
j

|E
v

(t, j)|
|E

v

(t)| , Y
x

(t) = Â
j

sup
e2E

v

(t, j)
r

out
e

(t).
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The quantity F
x

(t) is the maximum number of collisions of x relative to the number of
edges. In general, a smaller value of F

x

(t) means better uniformity of x . Remark that

|imx |�1  F
x

(t) 1

for all t, where imx means the image (or the range) of x . With these quantities in hand, we
can estimate the outgoing density:

r

out
v

(t) = Â
j

Â
e2E

v

(t, j)

r

out
e

(t) |E
v

(t)|F
x

(t)Y
x

(t).

We have thus proven the

Lemma 3. Let x : R⇥ E �! w be a function. Then the outgoing density satisfies the

following inequality for all t > 0.

r

out
v

(t) |E
v

(t)|F
x

(t)Y
x

(t)

For the periodic-polling model, we can estimate Y
x

(t) from above. Indeed, if e, j and
t satisfy e 2 E

v

(t, j), then we have

r

out
e

(t) = r

in
e

( f

e

(t)) f

0
e

(t) =
•

Â
k=0

y( f

e

(t)� jd � kP) f

0
e

(t).

Note that the inequality t  f

e

(t) t +d implies

y( f

e

(t)� jd � kP) y•(t � jd � kP)+y•(t � ( j�1)d � kP),

where

y•(t) =

(
sup

t

y(t) t 2 [0,d ]
0 otherwise.

It follows that Y
x

(t) 2sup
e2E

v

(t) f

0
e

(t)sup
t

y(t). We have proven the following

Theorem 4. For the periodic polling model, the following inequality holds for all t > 0:

r

out
v

(t) 2|E
v

(t)|F
x

(t) sup
e2E

v

(t)
f

0
e

(t)sup
t

y(t).

In application, Theorem 4 can be used to verify the strict capacity constraint. Moreover,
the theorem tells that

K

v

2F
x

(t)sup
e2E

v

(t) f

0
e

(t)sup
t

y

clients can be served simultaneously under a given capacity K

v

. This means that one should
choose the scattering function x so that F

x

(t) is close to its lower bound |imx |�1 = 1/m.

7 Application to a Real Network

For implementing data distribution using periodic polling, one can define the scattering
function x by using the IP address assigned to each node in combination with a hash func-
tion [2]. A simplest implementation is to take an exclusive or, IP(v)� IP(w), of the server
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IPv4 address IP(v) (considered as a 32-bit unsigned integer), and the client IPv4 address
IP(w) and set

x (t,v 7! w) = h(IP(v)� IP(w)) mod m.

Here the function h maps a 32-bit unsigned integer to another such number, and can be
chosen from known hash functions [2]. The scattering function x is time-independent in this
case. The IPv6 addresses can be used similarly. For a hash function with good uniformity,
one expects F

x

(t)⇠ 1/m. Moreover, if the distribution of the values of IP(v) and IP(w) is
known, and if there are multiple options for the hash functions, then one can choose a hash
function that minimizes the time average of F

x

(t).

8 Related Work

TFGM proposed in this article falls into a class of dynamic edge networks [3]. Our approach
is original in that we have chosen the weight f

e

from functions and not from a number
system. The role of the client time function f

e

is to change time variables between the
ends of each edge. Although we have modeled the evolution of a dynamic graph using a
sequence of static graphs following [3], the data densities and the client time function can
depend continuously on time. These time-dependent quantities are crucial for describing
how data are transferred among nodes inside an evolving network.

One of the benefits of TFGM is that one can estimate the total outgoing density r

out
v

by
aggregating all the incoming densities r

in
e

. This fact has been exploited when modeling the
periodic polling and was a key to prove Theorems 2 and 4. Similar results for a different
model were shown by the first author in a previous work [4].

9 Conclusion

The outgoing and incoming data densities of TFGM describe how data are transferred be-
tween edges. They are important quantities that allow us to better understand networks con-
sisting of an indefinite number of nodes. Indeed, as we have seen above, the data densities
allow us to quantitatively formulate such notion as the fairness of load balancing. Although
we have focused on the data density in this article, the cost or value density of data can
equally be considered. For example, the value of data decays with time in a streaming sys-
tem like a video conference system — a ten-minute-old video frame is no longer relevant
to the users. TFGM can also be used to model such real-time communication systems.
TFGM is an optimistic model in the sense that no packets are assumed to be lost during
transmission. It is an interesting question as to how to extend the model to accommodate
for network with faults.
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