
A Proposal of Statement Fill-in-blank Problem Using Pro-
gram Dependence Graph in Java Programming Learning
Assistant System

Nobuya Ishihara∗ , Nobuo Funabiki ∗ , Wen-Chung Kao †

Abstract

To assist Java educations, we have developed a Web-based Java Programming Learning
Assistant System (JPLAS), that provides the element fill-in-blank problem and the code writ-
ing problem. The former problem is designed for novice students to study the grammar and
coding style of Java by filling in correct words to the blanks in a given Java code which are
marked automatically through checking for coincidences of correct ones. The latter prob-
lem is for students to study writing Java codes for given specifications described in natural
language that are automatically verified using the test-driven development (TDD) method.
Unfortunately, rough transition exists due to different difficulties found between the two
problems. In this paper, we propose the statement fill-in-blank problem in JPLAS by asking
students to fill in the gap and write one whole statement in a code where the correctness is
verified by the TDD method. The blank statement is selected by generating the Program
Dependence Graph (PDG) of the code and finding the statement that has the largest depen-
dence in PDG. We verify the effectiveness through applications of the Java programming
course in our department.

Keywords: JPLAS, Java programming education, statement fill-in-blank problem, test-
driven development method, program dependence graph.

1 Introduction

Java has been used as a reliable, portable, and practical programming language among
many important practical ICT systems, including Web systems, enterprise servers, smart
phones, and embedded systems [1]. As a result, Java has been educated in many univer-
sities and professional schools to foster professional Java programmers into societies. The
effective education of Java programming has been essential in meeting strong demands for
high-quality Java programmers and engineers from societies.

To enhance educational effects of Java programming courses, we have developed a
Web-based Java Programming Learning Assistant System (JPLAS) that can assist self-study
∗ Department of Electrical and Communication Engineering, Okayama University, Okayama, Japan
† Department of Electrical Engineering, National Taiwan Normal University, Taipei, Taiwan

Information Engineering Express
International Institute of Applied Informatics
2015, Vol.1, No.3, 19 – 28

students and reduce workloads of teachers. JPLAS provides the element fill-in-blank prob-
lem [2] and the code writing problem [3]. The former problem is designed for novice
students to study the grammar and writing style of Java by filling in correct words to the
blanks in a given Java code, which are marked automatically through checking for coinci-
dences of correct ones. The latter problem is for students to study writing Java codes for
given specifications described in natural language, which are automatically verified using
the test-driven development (TDD) method [4]. A software tool called JUnit [5] is adopted
here to test whether submitted Java codes from students satisfy the test cases in the test code
that is prepared by the teacher.

Unfortunately, the transition from the first problem to the second is not smooth due to
difference of the difficulties. For the element fill-in-blank problem, a student can mechani-
cally solve it by selecting a possible element for each blank without thinking of completing
the statements. As a result, a student may not reach the level of writing a code from scratch,
even though he or she has solved many element fill-in-blank problems. However, it is nec-
essary for such a student to write a whole statement by himself or herself.

In this paper, we propose the statement fill-in-blank problem in JPLAS to fill in the
gap between the two problems. To address this problem, a student needs to write one
whole statement that is blanked in a given Java code. Because there can be multiple correct
answers even to one statement, the correctness of the answer is verified using the TDD
method. To generate a proper problem, the blank statement is selected by using the Program
Dependence Graph (PDG) of the code [6][7] and in finding the statement that has the largest
dependence with other ones.

The statement fill-in-blank problem can help a student to study the code reading that is
an essential way of mastering proper writing styles of Java codes by following them in high
quality codes. It is also indispensable for a student to understand and modify existing codes
that can happen in real worlds.

To evaluate the proposed statement fill-in-blank problem in JPLAS, we generated 39
problems which were assigned to 45 students who are currently taking the fundamental
Java programming course in our department. Through observing reduced time in solving
problems by students and the correlation between the number of solutions as well as the
average of final grades, these results confirm the effectiveness of our proposal in this paper.

The rest of this paper is organized as follows: Sections 1 and 2 review JPLAS and the
related works respectively. Section 3 shows the test-driven development. Section 4 pro-
poses the statement fill-in-blank problem. Section 5 discusses evaluation results. Section 6
concludes this paper with some future works.

2 Related Works

In this section, we survey some studies of computer-aided instruction (CAI) systems that
offer automatic marking functions of answers. No CAI system provides the similar problem
like the statement fill-in-blank problem from our survey.

In [8], Delev et al. introduced E-Lab for solving and auto-grading programming prob-
lems for introductory programming courses to C, C++, and Java. E-Lab only provides the
code writing problem. Students submit codes in a Web browser using a Web-based code
editor. The codes are stored, compiled, and executed on the server, and are assessed by
a simple black-box testing method using input and output text files. This system keeps
records of all the attempts from students using the version control system (Git).

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

20 N. Ishihara, N. Funabiki, W.-C. Kao

In [9], Kitaya et al. proposed a Web-based system that automatically scores Java pro-
gramming assignments. This system receives a code submitted by a student and returns the
test result immediately. The test consists of the compiler check, the JUnit test for a code
with multiple classes/methods, and the result test for a code with only a main method which
reads/writes data from/to the standard input or output devices.

In [10], Verdú et al. proposed EduJudge that integrates the existing on-line program-
ming trainer UVA On-line Judge into the e-learning platform Moodle along with the com-
petitive learning tool QUESTOURnament. The EduJudge system allows teachers to apply
different pedagogical approaches, makes problems become easy to search through an effec-
tive search engine, and provides an automated evaluation of the solutions.

In [11], Teramoto et al. developed a Problem Solving Environment (PSE) for education
and learning support called TSUNA-TASTE that collects the system-usage information of
the students and stores them in the database. It can collect process names, active window
titles, typing information of the key-board, the mouse information, and the starting and error
information of the C compiler.

In [12], Klas̆nja-Milićević et al. presented an idea of integrating a recommender system
into an existing Web-based Java tutoring system that introduces intelligence and is made
adaptive to meet every learner’s need and interactions. The architecture contains elements
of two different categories for e-Learning systems.

In [13], Joy et al. described a Web-based submission and assessment system called
BOSS that supports coursework assessments through collecting submissions, performing
automatic tests for correctness and quality, checking for plagiarism, and providing an inter-
face for marking and delivering feedback. They described how automated assessments are
incorporated into BOSS. They also defined measures of a good program: comments in code,
code style, correctness of code, code structure, code testing, use of external libraries, doc-
umentation, choice and efficiency of algorithm and code as well as attempts to incorporate
tools to support automatic measurements.

In [14], Caiza et al. reviewed latest automatic tools for programming assignment as-
sessments. They depicted requirements and key features of these tools. These assessments
also carried out comparisons and analysis where the results indicate that the major issue is
the lack of a common grading model.

In [15], Shamsi et al. presented a grading system for Java introductory programming
courses. The system can both dynamically and statically grade submitted codes based on
JUnit framework and their graph representations. The target of their system is similar to
our system, but it is rather complex.

3 Test-driven Development Method

In this section, we review the TDD method and its features because the statement fill-in-
blank problem uses it to verify answers from students.

3.1 JUnit

In JPLAS, we adopt JUnit as an open-source Java framework to support the TDD method.
JUnit can assist an automatic unit test of a Java code unit class. Since JUnit has been
designed with the Java-user friendly style, including the use of test code programming is
rather simple for Java programmers. In JUnit, a test can be performed by using a method in

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

21A Proposal of Statement Fill-in-blank Problem Using Pro-gram Dependence Graph

the library whose name starts with ”assert”. This paper adopts the ”assertEquals” method
to compare the execution result of the source code with its expected value.

3.2 Test Code
A test code should be written by using libraries in JUnit. Here, we use the following
MyMath class source code and introduce how to write a test code. MyMath class returns the
summation of two integer arguments.

1: public class MyMath{

2: public int plus(int a, int b){

3: return(a + b);

4: }

5: }

Then, the following test code can test the plus method in the MyMath class.

1: import static org.junit.Assert.*;

2: import org.junit.Test;

3: public class MyMathTest {

4: @Test

5: public void testPlus(){

6: MyMath ma = new MyMath();

7: int result = ma.plus(1, 4);

8: asserEquals(5, result);

9: }

10:}

The test code imports JUnit packages containing test methods at lines 1 and 2, and de-
claresMyMathTest at line 3. @Test at line 4 indicates that the succeeding method represents
the test method. Then, it describes the procedure for testing the output of the plus method.

This test is performed as follows:

1. An instance ma for MyMath class is generated.

2. The method of the instance ma.plus is called with given arguments.

3. The result result is compared with its expected value using the assertEquals method.

3.3 Features in TDD Method
In the TDD method, the following features can be observed:

1. The test code represents the specifications of the source code, because it must de-
scribe every function which will be tested in the source code.

2. The testing process of a source code becomes efficient, because each function can be
tested individually.

3. The refactoring process of a source code becomes easy, because the modified code
can be tested instantly.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

22 N. Ishihara, N. Funabiki, W.-C. Kao

4 Proposal of Statement Fill-in-blank Problem

In this section, we propose the statement fill-in-blank problem in JPLAS.

4.1 Flow of Statement Fill-in-blank Problem

In a statement fill-in-blank problem, a Java code with one blanked statement is presented to
each student. Then, the student is asked to fill the statement that satisfies the specifications
for the code that are described by the teacher. The teacher must write the test code repre-
senting the specifications, so that the blanked code filled with the answer statement can be
tested by using JUnit. We adopt the TDD method, because many variations can exist for
the answer statement that satisfies the specifications.

The following steps describe the flow of the statement fill-in-blank problem in JPLAS:

1. Assignment registration: a teacher registers the title, statement description, Java
code, and test code for the assignment.

2. Blank statement selection: a teacher selects the blank statement in the Java code
using the PDG-based algorithm in Section 4.2.

3. Assignment answer: a student fills in one or multiple statements for the blank state-
ment.

4. Answer verification: JUnit installed at the Web server tests the Java code combined
with the answer using jQuery [17], and returns the test result.

5. Solving status confirmation: both the teacher and the student can confirm the solv-
ing status of any student for the assignments. This interface intends for students to
compete with each other by knowing the solving situations of other students.

4.2 Blank Statement Selection Algorithm Using PDG

A statement that plays the critical process in the Java code should be selected for the blank
one. For this goal, we adopt the PDG to represent the relationships between the statements
in the control flows of the code. In the PDG, a vertex represents a statement and an edge
serves as the dependency between the corresponding statements in the code. Then, a vertex
with the maximum degree is selected as the blank statement.

4.2.1 Basic Rule for PDG Generation

Due to the data flow dependence, an edge is generated between the two vertices for state-
ment s1 and statement s2 when the following conditions are satisfied:

1. A variable v1 is defined at s1.

2. v1 is referred at s2.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

23A Proposal of Statement Fill-in-blank Problem Using Pro-gram Dependence Graph

4.2.2 Modification of PDG Generation for Java

As an object-oriented language, an object or instance in Java can be used in addition to a
variable. Thus, we modify the rules for generating the PDG:

1. An object is considered as a variable in the data flow dependence. When a variable in-
side an object (member variable) is accessed, it is regarded that the object is accessed
there.

2. The following two cases are regarded as the insertion to an object: 1) the object
appears at the left side of an assign statement, and 2) the object is called.

3. The following two cases are regarded as the access to an object: 1) the object appears
at the right side of an assign statement, and 2) the object is used as an argument of a
method.

4.3 Example of PDG

Figure 1 illustrates the PDG for a simple Java code that transfers the data from the input
stream ”is” to the file ”out”. Each node represents a statement or vertex, and each directed
edge represents the data dependency between statements. Line 2 is selected as the blank
statement because it has the maximum degree of seven.

Figure 1: Sample PDG.

5 Evaluation
In this section, we evaluate the statement fill-in-blank problem in JPLAS through applica-
tions of 45 students taking the Java programming course in our department. Most of them
are sophomores who have studied C and C++ programming for half year respectively.

5.1 Statement Fill-in-blank Problems for Evaluations

For this course, we generated 39 statement fill-in-blank problems using the proposed blank
statement selection algorithm.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

24 N. Ishihara, N. Funabiki, W.-C. Kao

Table 1: Statement fill-in-blank problems for evaluations.

code topic # of problems ave. LOC ave. # of classes ave. # of methods
Java basic syntax 5 11.8 1.0 1.3
numeric operation 4 31.3 1.0 1.3
Java OOP syntax 4 28.8 1.0 1.3
strings operation 5 24.8 1.0 1.0
file operation 5 50.0 1.4 3.6
parameter check 5 10.4 1.0 1.0
GUI 4 28.8 1.5 5.0
design pattern 7 58.6 3.6 6.7

5.2 Solving Results by Students

Figure 2 shows the distribution of the spending time to solve each problem by students,
depicted byʠdotsʡ, and the number of students who solved each problem correctly, depicted
byʠ barsʡ. The dotted line represents the average spending time where it decreases as
students solve more problems. Note that the spending time is limited within 10min, to
exclude the resting time by students.

Figure 2: Solving results by students.

Unfortunately, no student could solve Problem 34 that uses a code to implement RSS
reader, where the following statement was blanked:

119ɿ temp.appendChild(document.createTextNode(dfmt(fd.mp3s.get(i).pubDate)));

For this blank statement, fourfold arguments and fourfold dot operations are requested,
which can be very hard for students.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

25A Proposal of Statement Fill-in-blank Problem Using Pro-gram Dependence Graph

5.3 Variations in Answer Codes

In these statement fill-in-blank problems, only one statement was blanked and to be filled
in by students. Nevertheless, we observed a variety of answer codes in some problems.
Actually, among 38 correctly solved problems, 22 problems had two or more correct answer
codes to them. We note that if two codes have the simple difference in use of spaces, we
regard them as the same one.

5.3.1 Equation

First, there are several variations in describing an equation. Here, the appearing order of
variables in the equation is changed, or the different calculation method for the average
value is used, or the cast statement is inserted. We note that the number in a bracket repre-
sents the number of students who gave the corresponding answer code.

original code (31): int middle = (low + high) / 2;

answer A (1): int middle = (high + low) / 2;

answer B (1): int middle = low + (high - low) / 2;

answer C (1): int middle = (int)((high + low) / 2);

5.3.2 Constant Definition

Then, there are several variations in defining a constant. Here, the white is specified by the
color code, or white is given by Capitals.

original code (19): Color c = Color.white;

answer B (9): Color c = new Color(255,255,255);

answer C (2): Color c = Color.WHITE;

answer D (1): Color c = (Color.white);

5.4 Correlation Analysis with Final Assignment

As the final assignment, every student was assigned to write a complete Java code for some
service function. A student may freely select to write a game, a sound scale player or even
a drawing tool, for example. Then, the code was evaluated by the teacher and the students
in terms of the code’s uniqueness, its complexity, and completeness. To evaluate the ef-
fectiveness of the statement fill-in-blank problem in JPLAS, we analyzed the correlations
between the grades of the final assignments and the solving results of statement fill-in-blank
problems among students.

To simplify this correlation analysis, we calculated the average grade among the stu-
dents who solved the same number of problems in JPLAS correctly, and plotted them in a
graph. Then, we calculated the correlation coefficient between the two factors.

Figure 3 shows the relationship between the number of correctly solved problems and
the average grade of the final assignment. The correlation coefficient is 0.737, which in-
dicates the strong correlation between them. By solving the larger number of statement
fill-in-blank problems correctly, students can improve the grade of the final assignment.
This result supports the effectiveness of the statement fill-in-blank problem in JPLAS in the
Java programming study.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

26 N. Ishihara, N. Funabiki, W.-C. Kao

Figure 3: Relationship between statement fill-in-blank problem solving results and final
assignment grades.

6 Conclusion
This paper proposes the statement fill-in-blank problem in Java Programming Learning As-
sistant System (JPLAS) of filling in the blank statement in a Java code. The blank statement
is selected by using the Program Dependence Graph (PDG) of the code and in finding the
statement that has the largest dependence with other ones. The correctness of the answer
is verified at the JPLAS server by the test-driven development (TDD) method. The effec-
tiveness is verified through applications of the Java programming course at our department.
The future works may include the selection of multiple blank statements, the construction
of the problem database, and continuous applications in Java programming courses.

References
[1] The 2015 Top Ten Programming Languages, http://spectrum.ieee.org/

computing/software/the-2015-top-ten-programming-languages/?utm_

so, IEEE Spectrum, July 2015.

[2] Tana, N. Funabiki, and N. Ishihara,ʠA proposal of graph-based blank element selec-
tion algorithm for Java programming learning with fill-in-blank problems,ʡProc. Int.
MultiConf. Eng. Comp. Sci. (IMECS 2015), March 2015, pp.448-483.

[3] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano,ʠ A Java programming
learning assistant system using test-driven development method,ʡ IAENG Int. J.
Comp. Sci., vol. 40, no.1, Feb. 2013, pp. 38-46.

[4] K. Beck, Test-driven development: by example, Addison-Wesley, 2002.

[5] JUnit, http://www.junit.org/.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

27A Proposal of Statement Fill-in-blank Problem Using Pro-gram Dependence Graph

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren,ʠ The program dependence graph and
its use in optimization,ʡACM Trans. Program. Lang. Syst., vol. 9, no. 3, July 1987,
pp. 319-349.

[7] A. Kashihara, A. Kashihara, and J. Toyoda,ʠMaking fill-in-blank program problems,ʡ
IEICE Tech. Report, vol. 99, no.81, May. 1999, pp. 9-16.

[8] T. Delev and D. Gjorgjevikj,ʠE-Lab: Web based system for automatic assessment of
programming problems,ʡProc. ICT Innov. 2012 Web, 2012, pp. 75-83.

[9] H. Kitaya and U. Inoue,ʠAn online automated scoring system for Java programming
assignments,ʡInt. J. Info. Edu. Tech., vol. 6, no. 4, April 2016, pp. 275-279.

[10] E. Verdú et al.,ʠ A distributed system for learning programming on-line,ʡComp.
Edu., vol. 58, 2011, pp. 110.

[11] T. Teramoto, T. Okada, and S. Kawata,ʠAn education-support PSE system: TSUNA-
TASTE,ʡJ Conv. Info. Tech., vol. 5, no. 4, June 2010, pp. 216-223.

[12] A. Klas̆nja-Milićević et al.,ʠ Integration of recommendations and adaptive hyperme-
dia into Java tutoring system,ʡComp. Sci. Info. Sys., vol. 8, no. 1, Jan. 2011, pp.
211-224.

[13] M. Joy, N. Griffiths, and R. Boyatt,ʠ The BOSS online submission and assessment
system,ʡJ. Edu. Res. Comput. (JERIC), vol. 5, no. 3, Sep. 2005, pp. 1-28.

[14] J. C. Caiza and J. M. Del Alamo, ʠ Programming assignments automatic grad-
ing: review of tools and implementations,ʡProc. Int. Tech., Edu. Develop. Conf.
(INTED2013), March 2013, pp. 5691-5700.

[15] F. Shamsi and A. Elnagar,ʠ An intelligent assessment tool for students ʟJava sub-
missions in introductory programming courses,ʡJ. Intel. Learn. Syst. App. (JILSA),
vol. 4, no. 1, 2012, pp. 59-69.

[16] CodePress, http://sourceforge.net/projects/codepress/.

[17] jQuery, http://jquery.com/.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

28 N. Ishihara, N. Funabiki, W.-C. Kao

	38-99-1-RV
	39-108-1-RV
	40-111-1-RV
	44-119-1-RV
	45-128-1-SP
	46-122-1-RV
	iiai-journal

