
A Proposal of Value Trace Problem for Algorithm Code
Reading in Java Programming Learning Assistant System

Khin Khin Zaw ∗ , Nobuo Funabiki∗ , Wen-Chung Kao †

Abstract

To assist Java programming educations, we have developed a Web-based Java Program-
ming Learning Assistant System (JPLAS). JPLAS provides the element fill-in-blank prob-
lem to help novice students self-study Java programming by filling in blanked elements in a
code. However, it is a pity that this problem can be solvable without reading the algorithm
in the code, especially if students are familiar with grammar. In this paper, we propose the
value trace problem to answer the changing values of important variables in a Java code
that implements a fundamental data structure or algorithm, so as to improve the code read-
ing capability. To verify the effectiveness, we generated five problems using Java codes for
sorting and asked 10 students in our group to solve them.

Keywords: Java programming education, JPLAS, code reading, value trace problem, algo-
rithm, fill-in-blank.

1 Introduction

The programming language Java has high reliability and portability with excellent learning
environments provided. Java has been extensively used for various practical systems in
industries, even at mission critical systems in large enterprises and small-sized embedded
systems. Thus, the industries have a strong demand to cultivate more Java programmers. In
fact, a lot of universities and professional schools are offering Java programming courses to
deal with the demands. A Java programming course usually combines grammar instructions
of classroom lectures and programming exercises performed in a computer operations.

To help Java programming educations, we have developed the Web-based Java Pro-
gramming Learning Assistant System (JPLAS) [1]. JPLAS provides the element fill-in-blank
problem to support self-studies of students. It intends for novice students to learn the Java
grammar and basic programming. In this problem, a high-quality Java code with blanked
elements is exhibited for students to fill in the blanks with correct elements. An element
represents the least unit in a Java code such as a reserved word, an identifier, and a control
symbol [2]. Any answer is marked by string matching with the correct element.

∗ Department of Electrical and Communication Engineering, Okayama University, Okayama, Japan
† Department of Electrical Engineering, National Taiwan Normal University, Taipei, Taiwan

Information Engineering Express
International Institute of Applied Informatics
2015, Vol.1, No.3, 9 – 18



In addition, we proposed the graph-based blank element selection algorithm to assist
generating a feasible element fill-in-blank problem from a Java code, where the unique
answer exists for any blank element. This algorithm first generates a compatibility graph
by selecting every candidate element in the code as a vertex, and connecting any pair of
vertices by an edge if they can be blanked together. For this algorithm, we defined the
conditions that a pair of elements can be blanked simultaneously. Then, the blank elements
are selected by extracting a maximal clique of a compatibility of a graph.

Unfortunately, this element fill-in-blank problem can be solved mechanically without
reading out the algorithm in the Java code, especially when students are familiar with this
problem and the Java grammar. Due to the unique answer constraint, limited choices of
elements may exist for many blanks. Actually, we observed that with the increase in the
number of solving element fill-in-blank problems, students could reach correct answers
much faster than in the beginning. Thus, a new problem that keeps the nature of filling in
blanks and marking answers by string matching but requires much deeper code reading is
necessary for such students.

In this paper, we propose the value trace problem as a new type of an element fill-in-
blank problem in JPLAS. In this problem, students are questioned about actual values of
important variables in a Java code implementing a fundamental data structure or algorithm
[3]. Basically, we present the blank line selection algorithm to blank the whole data in the
line of the output data through executing the code where at least one data is changed from
the previous one. To verify the effectiveness, we generated five sorting problems, and asked
10 students who have various Java programming skills in our group to solve them.

The rest of this paper is organized as follows: Section 2 presents the generation pro-
cedure for the value trace problem in JPLAS. Section 3 presents the blank line selection
algorithm as the core part in the procedure. Section 4 shows evaluations of our proposal.
Section 5 discusses related works. Section 6 provides the conclusion with future works.

2 Generation Procedure for Value Trace Problem

In this section, we present the generation procedure for the value trace problem in JPLAS.

2.1 Overview of Generation Procedure

The goal of the value trace problem in JPLAS for Java programming educations is to give
students training opportunities for profound reading and analyzing a Java code that imple-
ments a fundamental data structure or algorithm by asking to trace real values of important
variables in the code. The code reading plays an essential role in writing high-quality codes
for any programmer. It is also indispensable in modifying existing codes for some systems,
which is common in real worlds. A value trace problem is generated by a teacher with the
following steps:

1. Select a high-quality class code for a fundamental data structure or an algorithm.

2. Create the main class to instantiate the class in 1) if it does not contain the main
method.

3. Add the functions to write values of important variable in questions into a text file.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

10 K. K. Zaw, N. Funabiki, W.-C. Kao



4. Prepare the input data file to be accessed by algorithm Java code and the teachers can
modify the data in the input data file if necessary.

5. Run the algorithm Java code to obtain the set of variable values in the output text file.

6. Blank some values from the output text file to be filled in by students.

7. Upload the final Java code, the blanked text file, and the correct answer file into the
JPLAS server, and add the brief description on the algorithm and the problem, to
generate a new assignment.

2.2 Details of Procedure Using Insertion Sort

In this subsection, we describe the detail of each step in the value trace problem generation
procedure using a Java code for Insertion sort [4][5]. Insertion sort always maintains the
sorted data list at the lower positions of the input data list. A new data in the input data list
is inserted into the sorted list such that the largest data is located at the last position of the
expanded sorted list. Thus, the input data list after k iterations has the property where the
first k+1 entries are sorted. In this paper, we adopt the following code for Insertion sort:

2.2.1 Selecting Java Code for Insertion Sort

In this paper, we select the following Java code for Insertion Sort in [6].

1: class InsertionSort{
2: ɹɹ//input data is arr[]
3: ɹɹ public static void insertionSort(int[] arr){
4: ɹɹɹɹ int i, j;
5: ɹɹɹɹ int tmp; //item to be inserted
6: ɹɹɹɹ//start with 1 (not 0)
7: ɹɹɹɹ for (i=1; i<arr.length; i++){
8: ɹɹɹɹɹɹ tmp = arr[i];
9: ɹɹɹɹɹɹ//smaller values are moving up
10: ɹɹ for (j=i ; j>0 && arr[j-1]> tmp; j--){
11:ɹɹɹɹɹɹɹɹ arr[j] = arr[j-1];
12: ɹɹɹɹ }
13: ɹɹɹɹɹ arr[j] = tmp;
14: ɹɹɹɹɹ for(int k:arr){
15: ɹɹɹɹɹɹɹ System.out.print(k);
16: ɹɹɹɹɹɹɹ System.out.print(",");
17:ɹɹɹɹ ɹ }
18: ɹɹɹɹɹ System.out.print();
19: ɹɹɹ }
20: ɹ }
21: }

2.2.2 Creating Main Class

Some Java codes may not contain main method but simply classes similar to the code in
Section 2.2.1. For reference, we call it algorithm class. Then, we need to create the main
class and instantiate the algorithm class, read input data of the algorithm as well as write
the output data [7].

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

11A Proposal of Value Trace Problem for Algorithm Code Reading



2.2.3 Adding Output Functions

An algorithm is regarded as a well-defined computational procedure of a sequence in com-
putational steps that transform the input values to the output values [8]. Thus, students can
study and understand the procedure of the fundamental data structure or algorithm in a Java
code by tracing the values of important variables during the transformation of the input val-
ues to the output values. It becomes necessary to add the functions of writing such variable
values in a text file under main class and algorithm class. In Insertion sort, the values of the
variables for sorted data are essential for understanding the algorithm, and should be traced
at each iteration by students. Thus, writing these values of variables into a text file is added
as functions to complete the problem code in generating a value trace problem.

2.2.4 Preparing Input Data file

An input data file should be prepared to be accessed by the problem code:

2,1,3,5,4,7,6,8,9,10

2.2.5 Obtaining Output Data file
After running the problem code, the complete output text file for the value trace problem is as follows:

1: 1,2,3,5,4,7,6,8,9,10
2: 1,2,3,5,4,7,6,8,9,10
3: 1,2,3,5,4,7,6,8,9,10
4: 1,2,3,4,5,7,6,8,9,10
5: 1,2,3,4,5,7,6,8,9,10
6: 1,2,3,4,5,6,7,8,9,10
7: 1,2,3,4,5,6,7,8,9,10
8: 1,2,3,4,5,6,7,8,9,10
9: 1,2,3,4,5,6,7,8,9,10

2.2.6 Blanking Values for Problem Generation

For students to trace the data values, we blank the whole line in the output text file called
change line where some data is changed from the previous line. Here, the blank line se-
lection algorithm is used to select change lines to be blanked properly. The detail of this
algorithm will be discussed in Section 3. By choosing blankRate = 50 for this algorithm,
we can obtain the following result:

1:___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___, ___
2: 1 , 2 , 3 , 5 , 4 , 7 , 6 , 8 , 9 , 10
3:___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___, ___
4:___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___, ___
5: 1 , 2 , 3 , 4 , 5 , 7 , 6 , 8 , 9 , 10
6:___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___, ___
7: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
8:___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___, ___
9: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10

2.2.7 Generating Assignment

After preparing the problem code, the blanked text file, and the correct answer file, we
upload them to the JPLAS server using the existing function. Then, brief descriptions of
this problem is added to help students better understand it.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

12 K. K. Zaw, N. Funabiki, W.-C. Kao



3 Blank Line Selection Algorithm
In this section, we present the blank line selection algorithm for Section 2.2.6 .

3.1 Idea

In this algorithm, we blank the whole data in one line in the output text file from the problem
code. To create a more difficult problem, we preferentially select the line where at least
one data is changed from the previous line, which is called change line. Nevertheless, the
number of lines to be blanked or target lines, can be specified by the teacher. If the number
of change lines is smaller than the number of target lines, select all the change lines and
randomly select the remaining number from non change lines. If the number of change
lines is larger, randomly select change lines by this number.

3.2 Procedure

The procedure for the blank line selection algorithm is described as follows:

1. Calculate the number of target lines to be blanked (targetLine) from the algorithm
input parameter (blankRate) and the total number of lines in the output text file
(totalLine) by targetLine=blankRate/100∗ totalLine.

2. Count the number of changed data in each line from the previous one in the output
text file.

3. Count the number of change lines in the output text file (changeLine) such that the
number in 2 is not zero.

4. If changeLine=targetLine, then select all of the change lines for blanks.

5. If changeLine<targetLine, then select (targetLine− changeLine) non change lines
to be blanked by repeating the following procedure:

1) Calculate the selection rate (selectRate) by selectRate=(targetLine−changeLine)
/(totalLine− changeLine).

2) Initialize the number of the selected blank lines (selectLine) by changeLine.
3) Repeat the following steps:

(1) Visit the first line in the output text file.
(2) If this line has been selected to be blanked, go to (4).
(3) If random<selectRate, then select this line to be blanked, and count up by

selectLine++, where random returns a 0-1 random real number.
(4) If selectLine=targetLine, then terminate the procedure.
(5) If the current line is not the last line in the output text file, then visit the

next line and go to (2).
(6) Go to (1).

6. If changeLine>targetLine, then select (targetLine) change lines to be blanked by
repeating the following procedure:

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

13A Proposal of Value Trace Problem for Algorithm Code Reading



1) Calculate the selection rate (selectRate) by selectRate=targetLine/changeLine.
2) Initialize the number of the selected blank lines (selectLine) by 0.
3) Repeat the following steps:

(1) Visit the first line in the output text file.
(2) If this line has been selected to be blanked, go to (4).
(3) If random<selectRate, then select this line to be blanked, and count up by

selectLine++.
(4) If selectLine=targetLine, then terminate the procedure.
(5) If the current line is not the last line in the output text file, then visit the

next line and go to (2).
(6) Go to (1).

3.3 Example Problem for Insertion Sort

In the example of Section 2.2.6, this algorithm calculates targetLine = 5 (=50/100∗9). It
first selects the three change lines, then randomly selects the two non change lines.

4 Evaluation
In this section, we evaluate our proposal by generating five value trace problems using Java
codes for sorting algorithms and apply them to students.

4.1 Applications of Five Value Trace Problems

First, we generated five value trace problems by using the Java codes for Shell sort [9],
Quick sort [10], Bubble sort, Insertion sort, and Selection sort. These algorithms are com-
mon and are usually taught in universities. Table 1 shows problem outlines.

Table 1: Five value trace problems for evaluations.

ID algorithm LOC # of blanks
P1 Shell sort 39 17
P2 Quick sort 47 43
P3 Bubble sort 32 10
P4 Insertion sort 29 23
P5 Selection sort 29 24

Then, we asked 10 students in our group who have different skills and knowledge in
Java programming to solve them in JPLAS. After that, we requested them to answer the
five questions in Table 2 of the questionnaire. For Q1, students should reply with five
levels, where 1 is the easiest and 5 is the most difficult. For Q2, they should reply with four
levels, where 1 is less than 10 min., 2 is about 15 min., 3 is about 20 min., and 4 is longer
than 25 min. Then, for Q3-Q5, students should reply with yes or no for all five problems.

Table 3 shows the results for the individual problems. Here, the results show the number
of students who solved each problem correctly and the average number of their answer

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

14 K. K. Zaw, N. Funabiki, W.-C. Kao



Table 2: Questions in questionnaire.

ID question
Q1 How difficult is each problem ?
Q2 How long did you spend to answer each problem ?
Q3 Do you understand the algorithm in the code by solving the problems ?
Q4 Do you think the value trace problem is useful for Java code reading ?
Q5 Can you implement the algorithm in Java code by solving the problems ?

submissions where JPLAS can record the submission numbers. This table indicates that
among the five value trace problems, the problem for Quicksort is the most difficult since
two students were not able to solve it and the average number of submissions as well as
the average difficulty/spending time levels are the highest. The reason will be analyzed in
Section 4.2.

Table 3: Solution and questionnaire results.

ID # of solving ave. # of ave. level ave. level
students submissions for Q1 for Q2

P1 10 4.7 2 2.4
P2 8 12.8 3.2 3.5
P3 10 1.8 1.5 1.8
P4 9 3.2 1.3 1.6
P5 10 2.5 1.3 1.5

Table 4 shows the results for Q3-Q5. From Q3 and Q4, nine students among 10 replied
that the value trace problem in JPLAS is effective in understanding the algorithm in the Java
code and the code reading. However, for Q5, only seven students replied that they have
confidence in writing a code for the algorithm even after solving them. From these results,
we conclude that the value trace problem is useful and effective for Java code reading, but
may not be sufficient for Java code implementations of algorithms.

Table 4: Questionnaire results on effectiveness of value trace problem.

Q3 Q4 Q5
yes 9 9 7
no 1 1 3

4.2 Difficulty Analysis of Quick Sort
In the previous subsection, the value trace problem for Quick Sort is the most difficult. Our
analysis on the reason is that Quick sort employs the divide-and-conquer strategy. It starts
by picking an element from the data list as the pivot. Then, it reorders the data list so that

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

15A Proposal of Value Trace Problem for Algorithm Code Reading



all the elements with values less than the pivot come before the pivot and the other elements
come after it, called partitioning. Then, it recursively applies the same procedure to each
sub-list at the left side and the right side of the pivot, until the whole list is sorted [10].

In the following problem for Quick Sort, the codes from line 1 to line 38 describe the
algorithm class with added output functions to a text file, the codes from line 39 to line 44
describe main class, while the codes from line 46 to line 60 depicts the problems yet to be
solved by students. 43 blanks are prepared for students to fill in the correct values. The
pivot p is the most important parameter. For each p, the data arrangement is applied for
each data set. Thus, to understand the code, students should trace the values of p from the
first one to the last and the data arrangement results for each p.

1: class Quicksort{
2: public static int partition(int array[], int left, int right){
3: int p,tmp,i,j;
4: p=array[left];
5: i=left;
6: j=right+1;
7: System.out.println("pivot: "+p);
8: for(;;){
9: while (array[++i]<p) if (i>=right) break;
10: while (array[--j]>p) if (j<=left) break;
11: if (i>=j) break;
12: tmp=array[i];
13: array[i]=array[j];
14: array[j]=tmp;
15: }
16: if (j!=left){
17: tmp=array[left];
18: array[left]=array[j];
19: array[j]=tmp;
20: }
21: System.out.print("output: ");
22: for (int k:array){
23: System.out.print(k);
24: System.out.print(" ");
25: }
26: System.out.println();
27: return j;
28: }
29: public static void quicksort(int a[], int left, int right){
30: int i;
31: if (right>left){
32: i=partition(a, left, right);
33: System.out.println();
34: quicksort(a, left, i-1);
35: quicksort(a, i+1, right);
36: }
37: }
38: }
39: public class Quickmain{
40: public static void main (String[] args){
41: int [] arr={65,70,75,80,85,60,55,50,45};
42: QuickSort.quicksort(arr,0,arr.length-1);
43: }
44: }
45: <Problem>
46: pivot: _1_

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

16 K. K. Zaw, N. Funabiki, W.-C. Kao



47: output: _2_,_3_ ,_4_ ,_5_,_6_, _7_ ,_8_ ,_9_ ,_10_
48: pivot: _11_
49: output: _12_,_13_,_14_,_15_,_16_,_17_,_18_,_19_,_20_
50: pivot: _21_
51: output: 50 , 45 , 55 , 60 , 65 , 85 , 80 , 75 , 70
52: pivot: _22_
53: output: _23_,_24_,_25_,_26_,_27_,_28_,_29_,_30_,_31_
54: pivot: _32_
55: output: _33_,_34_,_35_,_36_,_37_,_38_,_39_,_40_,_41_
56: pivot: _42_
57: output: 45 , 50 , 55 , 60 , 65 , 70 , 80 , 75 , 85
58: pivot: _43_
59: output: 45 , 50 , 55 , 60 , 65 , 70 , 75 , 80 , 85

5 Related Works

In this section, we briefly introduce some related works of the value trace problem. In our
survey, no work has been reported for the same problem.

In [12], Smulders presented the Annotate Code project for explaining algorithms in in-
troductory programming courses to students that have not yet developed a mental image of
them. It allows teachers to create visualizations based on code stepping. As Web applica-
tions, users can submit codes and steps through a browser. Each step can be accompanied
by a user-generated drawing to creating a step-by-step animation like a debugger.

In [13], Quinson et al. presented the Programmer’s Learning Machine (PLM) as an
interactive exerciser aimed at learning programming and algorithms. It targets students in
(semi-)autonomous settings, using an integrated and graphical environment that provides
a short feedback loop. This generic platform also enables teachers to create specific pro-
gramming microworlds that match their teaching goals. PLM provides two main panels to
provide information for students to solve exercises.

In [14], Sykes et al. presented the Web-based Java Intelligent Tutoring System (JITS)
for students in first programming courses. By bringing together recent developments in
intelligent tutoring systems, cognitive science, and AI, it constructs an intelligent tutor to
help students learn Java programing.

In [15], Osman et al. introduced a visualized learning system to enhance the education
of data structure course. It has the capability to display data structure graphically as well as
allow its graphical manipulation for students to observe the execution result and track the
algorithm execution.

6 Conclusion

In this paper, we propose the value trace problem for algorithm code reading in the Java
Programming Learning Assistant System (JPLAS). For evaluations, we generate five value
trace problems by using Java codes for different sorting algorithms, and ask 10 students
to solve them in JPLAS. Then, we analyze their solution and questionnaire results, and the
difficulty of the problem forQuick Sort. In future studies, we will generate value trace prob-
lems under a variety of data structures or algorithms, and apply them to Java programming
courses for its effectiveness in Java programming educations.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

17A Proposal of Value Trace Problem for Algorithm Code Reading



References

[1] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano,ʠ A Java programming
learning assistant system using test-driven development method,ʡIAENG Int. J. Com-
puter Science, vol. 40, no. 1, Feb. 2013, pp. 38-46.

[2] Tana, N. Funabiki, and N. Ishihara,ʠA proposal of graph-based blank element selec-
tion algorithm for Java programming learning with fill-in-blank problem,ʡProc. Int.
MultiConf. Eng. Comput. Sci., March 2015, pp. 448-453.

[3] Data Structures Tutorials, http://cs-fundamentals.com/data-structures/

data-structures-tutorials.php.

[4] Insertion, http://interactivepython.org/courselib/static/pythonds/

SortSearch/TheInsertionSort.html.

[5] InsertionSort, http://mycodinglab.com/insertion-sort-algorithm/.

[6] Java code, http://www.journaldev.com/585/

insertion-sort-in-java-algorithm-and-code-with-example.

[7] JavaMain, http://csis.pace.edu/~bergin/KarelJava2ed/ch2/javamain.

html.

[8] Algorithm, http://http://pepole.cis.ksu.edu/~tamotoft/CIS775/F08/

Slides/01.pdf.

[9] ShellSort, http://www.thelearningpoint.net/computer-science/

arrays-and-sorting-shell-sort-with-c-program-source-code.

[10] QuickSort, http://www.algolist.net/Algorithms/Sorting/Quicksort.

[11] K. K. Zaw and N. Funabiki,ʠA concept of value trace problem for Java code reading
education,ʡProc. Int. Cong. Adv. Appl. Inform., July 2015, pp. 253-258.

[12] B. Smulders,ʠ Annotate Code, introducing a system for code-stepping based visual-
ization,ʡMaster Thesis, Leiden Univ., August 2014.

[13] M. Quinson and G. Oster,ʠA teaching system to learn programming: the programmerʟ
s learning machine,ʡProc. ITiCSE ʟ15, July 2015.

[14] E. R. Sykes and F. Franek,ʠ An intelligent tutoring system prototype for learning to
program Java,ʡProc. Int. Conf. Adv. Learn. Tech., 2003.

[15] W. I. Osman and M. M. Elmusharaf,ʠ Effectiveness of combining algorithm and
program animation: a case study with data structures courses,ʡIssue. Inform. Sci.
Inform. Tech., vol. 11, 2014, pp. 155-168.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

18 K. K. Zaw, N. Funabiki, W.-C. Kao


	38-99-1-RV
	39-108-1-RV
	40-111-1-RV
	44-119-1-RV
	45-128-1-SP
	46-122-1-RV
	iiai-journal



