
Tsukasa Endo, Hasitha Muthumala Waidyasooriya,
Masanori Hariyama

Abstract

Recently, C-based OpenCL design environment is proposed to design FPGA (field pro-
grammable gate array) accelerators. Although many C-programs can be executed on FP-
GAs, the best c-code for a CPU may not be the most appropriate one for an FPGA. Users
must have some knowledge about computer architecture in order to write a good OpenCL
code. To solve this problem, we propose an automatic optimization method. We accurately
predict the kernel performance using the log files generated at the initial stage of the com-
pilation. Then we find the optimized FPGA architecture by searching all possible design
parameters. We implement the proposed method to find the optimized architecture for sten-
cil computation. According to the results, the design time has been reduced to 4% ∼ 8% of
the conventional approach.

Keywords: OpenCL for FPGA, performance tuning, stencil computation, code optimiza-
tion.

1 Introduction

FPGAs (field programmable gate arrays) are reconfigurable devices, where the user can
change the architecture by a program. Usually, FPGAs are programmed using hardware
description languages (HDL) such as Verilog [1] or VHDL [2]. However, this process is
very time consuming and the programmer must have an extensive knowledge about the
hardware design. Clock cycle-based simulations, timing and critical path analysis are re-
quired to design an FPGA accelerator. In addition, users have to design hardware for I/O
controllers. Moreover, users also have to write device drivers and software in order to com-
municate and transfer data between an FPGA and a host CPU.

Recently, OpenCL for FPGA [3] is introduced to solve these problems. An FPGA ac-
celerator can be designed by writing an OpenCL kernel in C-language [4]. The same kernel
can be executed on different FPGA boards. Although writing an OpenCL kernel is easy,
designing the optimal architecture is difficult. Works in [5, 6] considers several techniques
such as using shift-registers, loop-unrolling, vectorization, using constant memory, using
multiple compute units, etc to increase the processing speed of the OpenCL-based designs.
However, it is difficult to determine the best technique for a particular FPGA board and

Information Engineering Express
International Institute of Applied Informatics
2017, Vol.3, No.4, P.77 - 90

Automatic Optimization of OpenCL-Based Stencil Codes
for FPGAs and Its Evaluation

an application. Since there are many FPGA boards with different amount of resources and
memory bandwidths, we may have to compile many different kernels by applying various
combinations of different techniques. Since the compilation time is very large, the kernel
design time could increase significantly. Moreover, neither of these works consider an opti-
mization problem. Therefore, it is difficult to know whether the designed kernel is optimal.

The OpenCL-based design method can be divided into two stages: OpenCL to HDL
code generation (stage 1) and HDL to FPGA bit-stream generation (stage 2). In our previous
work in [7], we proposed a method to find a near-optimal architecture based on the predicted
performance in stage 1. As a result, we can significantly reduce the design time in stage 2. In
this paper, we extend our work to further reduce the design time by applying a binary search
approach instead of the exhaustive search used in [7]. Moreover, we optimize the compiler
options to increase the processing speed further. We provide a comprehensive evaluation
of the proposed method by applying it for stencil computation kernels. We achieved the
optimized architecture in 4% ∼ 8% of the design time compared to conventional methods.

2 OpenCL-based FPGA accelerator design

The conventional OpenCL-based FPGA accelerator design-flow is shown in Figure 1. It
can be divided into three main phases. The emulation phase starts with a kernel program
written in OpenCL. We can emulate the behavior of the kernel on a CPU to find whether
the desired outputs are achieved. The next phase is the estimation phase. We compile the
OpenCL kernel to get an HDL code, and we call it the “intermediate compilation”. After
the intermediate compilation, offline compiler provides an estimated resource usage report.
Usually, there is a small difference between the estimated resource usage and the actual re-
source usage. If the resource usage is acceptable we can proceed to the last phase, which is
the performance tuning phase. We compile the HDL code to generate a bit-stream that is ex-
ecutable on an FPGA. We call this the “full compilation”. The full compilation takes many
hours of compilation time, since it involves time consuming processes such as placement,
routing, etc. After the full compilation, we get the actual area usage and the frequency in-
formation. Using those, we can determine whether the performance is acceptable or not. If
the performance is not acceptable, we can identify the bottlenecks by recompiling the ker-
nel for profiling. Then we can re-write the kernel to avoid the bottlenecks, and this whole
process repeats again from the emulation phase.

As explained above, there is no concrete way for the user to know that the performance
is optimal or even close to that. The profiling provides limited information about the bot-
tlenecks of the kernel code. However, a different code could produce completely different
performance. Therefore, the performance usually depends on the skill and the experience
of the designer. Moreover, changing one part of the code could worsen the performance
of the other parts. Therefore, it could be difficult to find how and which part should be
corrected in order to increase the performance. In addition, the compilation takes many
hours of processing time. If the compilation is done many times by re-writing the code, the
accelerator design time could be increased significantly.

78

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Endo, H. M. Waidyasooriya and M. Hariyama

!"#$%&$'()#$*+,&-(.)#(,"

/0#(&)#$'*%$0,1%+$*

10)2$*%$-,%#

3$0,1%+$*10)2$*

)++$-#)4.$*5

61..*+,&-(.)#(,"

3$0,1%+$*10)2$*

%$-,%#

7$%8,%&)"+$*

)++$-#)4.$*5

/&1.)#(,"

9,&-(.$*8,%*-%,8(.("2

!'$"#(8:*-%,4.$&0*

)"'*4,##.$"$+;0

3$<=%(#("2*#>$*

;$%"$.*-%,2%)&
3$0,1%+$*10)2$*

)++$-#)4.$*5

/"'

?)"1)..:*#1"$*

-$%8,%&)"+$

@%(#$*;$%"$.*-%,2%)&
/&1.)#(,"*

->)0$

/0#(&)#(,"*

->)0$

7$%8,%&)"+$

#1"("2

->)0$ A$0

A$0

6%$B1$"+:* %$-,%#

A$0

C,

C,

C,

Figure 1: Conventional OpenCL-based FPGA accelerator design flow.

3 Automatic optimization methodology

3.1 Performance prediction of the OpenCL codes

In OpenCL for FPGA, There are two types of OpenCL kernels, single work-item kernels
and NDRange kernels. The OpenCL codes of the NDRange kernels are quite similar to
GPU kernels, and multiple work-items (corresponds to the threads in GPUs) are executed
in a pipelined manner in an FPGA. The single work-item kernels follow a natural coding
style similar to a typical c-program, where the loop-iterations are processed in a pipeline
manner. In this paper, we consider only the single work-item kernels. However, similar
approach could be used for NDRange kernels in future works. Generally, OpenCL code
of a single work-item kernel consists of multiple loops. Listing 1 shows an example of an
OpenCL kernel code. It has a hierarchical loop structure, where the outer loop contains
multiple inner loops. After doing the first stage compilation, we get a log file that contain
information such as the loop number, “initiation interval (II)”, pipelining details, resource
usage estimation, etc. Note that, II stands for the number of clock cycles between outputs.
For example, if II = 1, an output is produced in every clock cycle.

We analyze the log file and the kernel code file to generate a block structure, where each
block corresponds to a loop in the kernel code. Figure 2 shows such a block structure
generated for the code in Listing 1. Each level in the block structure is associated with the
loop hierarchy of the kernel code. A block is associated with a loop. A block contains
information such as pipeline details, the number of loop-iterations, the number of clock
cycles, etc. The number of clock cycles required by the loop is shown by BI in a block. It is
defined by BI = II × iterations. Block information is used to predict the kernel performance.

79

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Optimization of OpenCL-Based Stencil Codes for FPGAs and Its Evaluation

__kernel void sample (__global const float * restrict A,

__global const float * restrict B,

__global float * restrict C)

{

float a, b;

for(int i = 0; i < N; i++) {

for(int j = 0; j < N; j++) {

a += A[j];

}

for(int k = 0; k < M; k++) {

b *= B[k];

}

C[i] = a + b;

}

}

Listing 1: Loop structure of an OpenCL kernel

!"#"$%&

!"#"$%'

($)*+%&

,-."$-/"0%%%%%%%%%%%%%%%%%11%2%&

13"453-)/6%2%7%%%%%%%%%(1%2%7

($)*+%8

,-."$-/"0%%%%%%%%%%%%%%%%%11%2%9

13"453-)/6%2%7%%%%%%%%%(1%2%97

($)*+%:

,-."$-/"0%%%%%%%%%%%%%%%%11%2%;

13"453-)/6%2%<%%%%%%%(1%2%;<

Figure 2: The block structure corresponds to the kernel in Listing 1.

If the parent block m of level t is denoted by pt
m and its child blocks at level t + 1 are

denoted by ct+1
1 ...ct+1

n , the number of clock cycles required to execute the parent block
(pt

m[cycle]) is given by Eq.(1). Note that, ct+1
n [BI] is the number of clock cycles required

by the loop of the child block ct+1
n . When the parent block is pipelined, child blocks are

executed in parallel so that the number of clock cycles depend on the largest BI of the child
blocks. When the parent block is not pipelined, child blocks are executed in one by one so
that the number of clock cycles depend on the sum of BI of all child nodes. This process is
continued for all parents from the bottom level to the top level (level 0). The total number
of clock cycles equals to the sum of the number of clock cycles in the parent nodes of level
0.

pt
m[cycle] =

max

{
ct+1

1 [BI], ...,ct+1
n [BI]

}
× pt

m[BI] if pt
m is pipelined

∑n
k=1 ct+1

k [BI]× pt
m[BI] if pt

m is not pipelined
(1)

For example, the number of clock cycles of the kernel code in Listing 1 is given by follows,
assuming N = 100 and M = 200.

max {8 × 100,6 × 200} × 100 = 120,000

Using this method, we can predict the number of clock cycles of any OpenCL kernel code.
If we assume the clock frequency is constant, we can compare the number of clock cycles

80

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Endo, H. M. Waidyasooriya and M. Hariyama

!!"

!

!!#$%&'()*+#%,+-*.)/(0

1*
.
23
*(
'
)

!"##$%&'(
)*+

, -+!"##$%&'.+(
) / -0!"##$%.+&'(

) /-1!"##$%*+&'(
) / -2!"##$%&'*+(

)

!"##$%&'(

3

4

Figure 3: Stencil computation using a 2-D 4-point stencil.

required by different codes and select the one with the minimum number of cycles as the
best one.

3.2 Stencil computation kernels

Stencil computation [8] is an iterative computation method used in many fields such as
fluid dynamics [9], electromagnetic simulations [10], etc. It is a well studied problem
and its FPGA oriented architectures have been proposed in many previous works such as
[11, 12, 13]. However, there are many different stencil computation applications and many
different FPGA boards, so that finding the optimal architecture for a given application and
an FPGA board is a difficult and time consuming problem.

We explain the stencil computation architecture briefly. Figure 3 shows the computation
of a 4-point 2-D stencil. The computations of the cells in a new iteration are done using the
computation results of the cells in the previous iteration. Figure 4 shows the stencil compu-
tation architecture proposed in previous work [13]. It has multiple pipelined computation
modules (PCMs) where each PCM processes one iteration. One stencil computation is done
in one PE and multiple PEs are used to compute multiple stencils in parallel. Shift registers
are used to carry forward the result of one iteration to the next PCM that computes the next
iteration.

Listing 2 shows a stencil computation kernel written in OpenCL. The number of PEs in
a PCM and the number of PCMs are denoted by nPE and nPCM respectively. Those are
the two design parameters of the stencil computation architecture. Increasing nPE requires
multiple computations done in parallel. As a result, more resources and more data are
required. Since more data are required in a clock cycle, the required bandwidth is increased.
Increasing nPCM increases the amount of resources.

81

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Optimization of OpenCL-Based Stencil Codes for FPGAs and Its Evaluation

!"#$%

&'(#

)*+,$-*./0,12

+3
45
,$
21
6
4+
,1
2+

!"#$7 !"#$!

8!9($:*;2<

!
=

!
=

!
=

!
=

!
=

!
=

!
=

!
=

!
=

Figure 4: Stencil computation architecture proposed in [13].

#define N ((HEIGHT*WIDTH +nPCM*(WIDTH +2))/nPE)

__kernel void stencil(global float * restrict frame_in ,

global float * restrict frame_out)

{

float rows[nPCM][...];

// manually unroll loop by nPE

for (int count=0, count <N, count ++)

{

#pragma unroll

for (int i+..; i>0; --i) {

#pragma unroll

for (int j=0; j<nPCM; j++) {

rows[j][i] = rows[j][i-1];

}

}

rows [0][0] = frame_in[count];

#pragma unroll nPCM

for (int j=0; j<nPCM -1; j++) {

// computation

rows[j+1][0] = ...;

}

// computation of the final iteration

frame_out [...] = ...;

}

}

Listing 2: Stencil computation kernel

3.3 Automatic optimization for Stencil codes

We consider the following optimization problem to find the OpenCL kernel with the mini-
mum processing time.

82

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Endo, H. M. Waidyasooriya and M. Hariyama

Table 1: Resource constraints.

Constraints
85% of the total logic modules
90% of the total registers
80% of the total memory blocks
100% of the total DSPs
90% of the global memory bandwidth

Objective function :

Minimization of the total number of clock cycles.

Constraints :

i. Resource utilization.

ii. Global memory bandwidth.

Freedom :

i. Number of PCMs (nPCM).

ii. Number of PEs per a PCM (nPE).

The objective function is computed according to Eq.(1). As shown in Listing 2, there are
multiple loops in the stencil computation code. However, all the inner loops are completely
unrolled, so that only the outer loop is considered to determine the number of clock cycles.
Therefore, the number of clock cycles are “II × the number of loop iterations”. Note that,
to increase the number of PEs, we manually unroll the outer loop by a factor of nPE. This
reduces the number of clock cycles by a factor of nPE as shown in the first line of the
stencil code. If the clock frequency is a constant, the number of clock cycles is relative to
the processing time.

To compute the resource utilization, we consider all major resources of the FPGA, such
as logic blocks, memory blocks, DSPs, etc. Different FPGAs contain different amount of
resources. However, it may not be possible to achieve 100% utilization of all resources, due
to placement difficulties on an FPGA. Moreover, routing becomes difficult for large designs
and the clock frequency could drop considerably. Therefore, we often use less than 100%
utilization of resources in order to predict performance accurately. The resource constraints
we used in this paper are shown in Table 1. It is possible to achieve this resource utilization
without compromising on the clock frequency. According to our experience in many works
such as [13, 14, 15], large accelerators use around 80% of the FPGA resources. Therefore,
we can say that such large accelerators can be implemented, while satisfying the resource
constraint.

Figure 5 shows the proposed automatic optimization methodology. It has two stages. In
stage 1, the performances of the stencil computation kernels with different design parame-
ters are predicted. For each nPE value, we search for the optimum nPCM that provides the
smallest number of clock cycles. This process is done automatically using a python-based
program. According to the findings in [13], if nPE is a constant, the largest nPCM value
provides the best performance. This is because, the clock frequency remains the same for

83

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Optimization of OpenCL-Based Stencil Codes for FPGAs and Its Evaluation

!"#$%&'()$%*+',-'."#/'!"#$

0$12)'2#/)%' %)(-2%*)'*-#(,%$"#,

!"#$ % &'('!") % !")*'+

!"#$ % &''('!") % &

!$#/3"/,+'

$**)4,$51)'6'

7)(

8-

9)1)*,'*$#/"/$,)':)%#)1(

9)1)*,',+)'$**)1)%$,-%'3",+',+)'

;"#";2;' 4%-*)(("#<',";)

9,$%,

=#/

9
,$
<
)
'>

9
,$
<
)
'?

=@+$2(,"0)'()$%*+'2("#<'$11'

*-;4"1)%'-4,"-#(

9)1)*,',+)':)%#)1'3",+',+)'

;"#";2;' #2;5)%'-.'*1-*:'*&*1)(

A211'*-;4"1$,"-#

Figure 5: The proposed automatic optimization methodology.

different nPCM values. However, we cannot say which nPE value would provide the best
accelerator architecture. This is because, slightly changing nPE can have a significant af-
fect on nPCM and also the length of the pipeline. For example, if we reduce the nPE value
by half, we can double the nPCM value, while maintaining the same degree of parallelism.
According to our practical experience, offline compiler may not be able to maintain a high
clock frequency for very large pipelines. Therefore, accelerators with different nPE could
have different clock frequencies. Without knowing those clock frequencies, we may not be
able to compare the performance of different accelerators. After stage 1, we will get a few
candidate kernels where one of those is the optimal one. They have different nPE values
and for each nPE, nPCM is optimized. In stage 2, we perform the full compilation on all
candidate kernels. After that, we can find the best one by evaluation the processing time
of each. Since only a few kernels are compiled in stage 2, the design time is small. After
the best kernel is selected, we reduce its processing time further by optimizing the compiler
options.

In stage 1, we use a binary search method, compared to the exhaustive search used in
our previous work [7]. The binary search method is shown in Figure 6. At the beginning,
we use nPCM = 1 and do the intermediate compilation. If it meets the resource constraints,
we estimate the performance. Then we double the nPCMs and do the intermediate
compilation again. If a kernel violate the resource constraints, we reduce the nPCMs. If
there are n kernels, the exhaustive search requires n compilations, while binary search
requires only log(n) compilations. As a result, compilation time in stage 1 can be reduced
significantly.

84

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Endo, H. M. Waidyasooriya and M. Hariyama

!"#$%&$'()#$*+,&-(.)#(,"

/,0*1(.$*)").23(3

4$3

53#(&)#$*#,#).*+.,+6*+2+.$3

)"'*3#,%$*%$37.#3

8$3,7%+$*73)0$*

)++$-#)9.$:

;,
!"#$ % &!"#$'()* < !"#$=>?

!"#$'()*@*!"#$

!"#$@*!"#$+,-

./&,!"#$ 00 !"#$'()* =

A%,&*#B$*-%$C(,73*3#)0$

D!"#$ % 1=

E%,+$$'*#,*#B$*"$F#*3#)0$

Figure 6: Binary search.

Table 2: Resources of the FPGA boards used for the evaluation.

Board name DE5 DE5a
FPGA 5SGXEA7N2F45C2 10AX115N2F45E1SG
Logic modules 234,720 427,200
Internal memory 50.00 Mbits 65.6 Mbits
Memory blocks 2560 2713
DSP 256 1518
Theoretical bandwidth 25.6GB/s 25.6GB/s

To improve the performance further, we can optimize the compiler options. Compiler
options determine how the kernel is compiled. Some examples of compiler options are,
“non-interleaving”, “fpc” and “fp-relaxed”. Using the option “non-interleaving” generates
an accelerator that does not use memory interleaving. Using the option “fpc” allows fused
floating-point operations. The option “fp-relaxed” is used to rearrange the computation
order. Choosing the most efficient compiler options reduces the resource utilization and
increases the clock frequency. Figure 7 shows how to optimize compiler options. We
select the kernel with the smallest processing time, and re-compile it after changing the
compiler options. We try all combinations of compiler options and select the accelerator
with the minimum processing time. Since the re-compilation is done for a single kernel, the
compilation time is not large.

4 Evaluation

For the evaluation, we use two FPGA boards, DE5 [17] and DE5a [18]. The resources of
the FPGA boards are shown in Table.2. FPGAs are configured using Intel FPGA SDK for
OpenCL 16.1 [16]. Each example uses a 4096 × 32,768 grid. Computations are done for
1,632 iterations.

85

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Optimization of OpenCL-Based Stencil Codes for FPGAs and Its Evaluation

!"#$%&'(%)"(*+#,-%-&./(

01("2(3%4+&'%-$.33(-&%)"#-(55+2/ &+$(6

7(3(5&%.%5#$)+3("%#)&+#2% 5#$8+2.&+#2

!,33%5#$)+3.&+#2

9(.-,"(%&'(%)"#5(--+2/% &+$(

.2:%-&#"(%"(-,3&-

;"+(:%.33%5#$)+3("%

#)&+#2%5#$8+2.&+#2-<

=(-

>#

?"#5((:%&#%&'(%2(@&%-&./(

07(3(5&%&'(%.55(3(".&#"%4+&'%&'(%

$+2+$,$%)"#5(--+2/%&+$(6

Figure 7: Optimizing the compiler options.

Table 3: Estimated and measured number of clock cycles for different nPE while increasing
nPCM to the maximum.

nPE Estimated cycles Measured cycles Ratio of difference Frequency
(CE) (CM) (CM/CE) (MHz)

1 4,301,655,232 4,302,639,000 1.0002 297
2 4,432,567,524 4,434,804,934 1.0005 298
4 4,565,077,184 4,569,681,156 1.001 304
8 4,564,241,600 4,629,408,652 1.014 295

4.1 Accuracy of the processing time estimation

Figure 8 shows the ratio of measured cycle to estimated clock cycle for different parameter
values. In Figure 8(a), nPE = 1 and nPCM changes from 1 to 51. In Figure 8(b), nPE = 4
and nPCM changes from 1 to 12. The estimated clock cycles are obtained using Eq.(1)
as explained in section 3.3. The measured clock cycles are obtained by multiplying the
processing time by the clock frequency. The ratio of difference is very close to 1. Table 3
shows the estimated and measured clock cycles for different nPE values. The evaluation is
done for 2-D 5-point stencil on DE5 board. In this evaluation, we increased nPCM to the
largest possible value that satisfy the constraints. The ratio of difference is very close to 1.
According to these results, we can say that the estimation is very accurate.

4.2 Automatic optimization

The optimization is done using two design parameters, and two compile options. Table 4
shows the optimal parameters using different stencil computation examples and different
FPGA boards. We can see that the optimal parameters are quite different. As a result,

86

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Endo, H. M. Waidyasooriya and M. Hariyama

!
"
!!
#

"

"#$$$$%

"#$$$"

"#$$$"%

"#$$$&

"#$$$&%

"#$$$'

$ "$ &$ '$ ($ %$)$

*+,-./01203456783459

(a) nPE = 1.

!
"
!!
#

"

"#$$$%

"#$$$&

"#$$$'

"#$$$(

"#$$"

"#$$"%

$ % & ' ("$ "% "&

)*+,-./01/2345672348

(b) nPE = 4.

Figure 8: Ratio of measured cycles to estimated clock cycles.

the optimal accelerator architecture is also different. This shows that the optimization is
necessary to achieve the full potential of an FPGA board for a given application.

Table 5 shows the reduction of the amount of intermediate compilations using the binary
search. The evaluation is done using DE5a FPGA board. According to the results, over 76%
of the compilations can be reduced. This will reduce the accelerator design time.

Table 6 shows the comparison of the total design times of the previous work [7] and
the proposed method using DE5a board. The total design time is reduced by upto 55.1%.
This design time reduction is achieved by using a binary search to reduce the number of
compilations in the stage 1.

Table 7 shows the comparison of the total design time of the conventional method ex-
plained in section 2, and the proposed method. The evaluation is done using DE5 board.
In the conventional method, all possible stencil computation kernels have to be compiled

Table 4: Optimal parameters obtained for different applications and FPGAs

Application
DE5a (Arria 10) DE5 (Stratix V)

nPE nPCM fpc
fp-

nPE nPCM fpc
fp-

relaxed relaxed
Laplace equation 4 112 on or off on 8 18 off on
2-D 5-point Jacobi 4 57 on or off on 1 51 on on
2-D 9-point Jacobi 2 72 on or off off 4 7 on off

87

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Optimization of OpenCL-Based Stencil Codes for FPGAs and Its Evaluation

Table 5: Comparison of the number of compilations in the stage 1.

Number of compilations Reduction
Application Previous work [7] Proposed method percentage

(exhaustive search) (binary search) (%)
Laplace equation 372 47 87.3

2-D 5-point Jacobi 285 48 83.1
2-D 9-point Jacobi 191 45 76.4

Table 6: Comparison of the total design times of the previous work [7] and the proposed
method.

Total design time (hours) Reduction
Application Previous work [7] Proposed method percentage

(exhaustive search) (binary search) (%)
Laplace equation 235.5 105.7 55.1

2-D 5-points Jacobi 190.1 90.9 52.2
2-D 9-points Jacobi 103.5 75.3 27.2

in both stages and evaluated to find the best accelerator. The proposed method reduces the
number of compilations in stage 1 by using a binary search. It also reduces the number
of compilations in stage 2 by predicting the performance accurately using the compilation
results of stage 1. The design time of the proposed method is 4% ∼ 8% of that of the
conventional method.

5 Conclusion

In this paper, we proposed an automatic optimization method for OpenCL kernels. We pre-
dict the performance of an OpenCL kernel by analyzing the log files and resource utilization
reports. We use the proposed optimization methodology to implement stencil computation
kernels. According to the evaluation, the performance prediction is very accurate, and the
optimized design can be found in significantly smaller design time compared to the con-

Table 7: Comparison of the design time.

Application Design method Time (hours)

Laplace equation
conventional 528.0

proposed 19.5

2-D 5-points Jacobi
conventional 198.1

proposed 10.0

2-D 9-points Jacobi
conventional 161.5

proposed 12.3

88

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Endo, H. M. Waidyasooriya and M. Hariyama

ventional method. In future, it could be possible to enhance the proposed method for other
types of applications and also for NDRange kernels.

Acknowledgment

This work is supported by MEXT KAKENHI Grant Number 16K124040.

References

[1] S. Brown and Z Vranesic, “Fundamentals of digital logic design with Verilog Design”,
2007.

[2] S. Brown, “Fundamentals of digital logic design with VHDL Design”, 2008.

[3] T.S., Czajkowski, D. Neto, M. Kinsner, U. Aydonat, J. Wong, D. Denisenko, P. Yian-
nacouras, J. Freeman, D.P. Singh, S.D. Brown, “OpenCL for FPGAs: Prototyping a
compiler”, International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA), pp. 3-12, 2012.

[4] The open standard for parallel programming of heterogeneous systems. https://www.
khronos.org/opencl/, 2015.

[5] Q. Jia and H. Zhou, “Tuning Stencil Codes in OpenCL for FPGAs”, IEEE 34th Inter-
national Conference on Computer Design (ICCD), pp. 249-256, 2016.

[6] K. Krommydas, R. Sasanka, W. Feng, “Bridging the FPGA programmability-
portability Gap via automatic OpenCL code generation and tuning”, IEEE 27th In-
ternational Conference on Application-specific Systems, Architectures and Processors
(ASAP), pp. 213-218, 2016.

[7] T. Endo, H.M. Waidyasooriya, M. Hariyama, “Automatic Optimization of OpenCL-
Based Stencil Codes for FPGAs”. In: Lee R. (eds) Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing. SNPD 2017. Studies in
Computational Intelligence, Vol 721. Springer, Cham, 2017.

[8] G. Roth, J. Mellor-Crummey, K. Kennedy, R.G. Brickner, “Compiling Stencils in High
Performance Fortran”, Proceedings of the 1997 ACM/IEEE conference on Supercom-
puting, pp.1-20, 1997.

[9] G. Karniadakis, S. Sherwin, “Spectral/hp Element Methods for Computational Fluid
Dynamics”, Oxford University Press, 2013.

[10] K.S. Yee, “Numerical solution of initial boundary value problems involving Maxwells
equations in isotropic media”, IEEE Transactions on Antennas and Propagation, Vol.14,
No.3, pp.302-307, 1966.

[11] K. Sano, Y. Hatsuda, S. Yamamoto, “Multi-FPGA Accelerator for Scalable Stencil
Computation with Constant Memory Bandwidth”, IEEE Transctions on Parallel and
Distributed Systems, Vol.25, No.3, pp.695-705, 2014.

89

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Automatic Optimization of OpenCL-Based Stencil Codes for FPGAs and Its Evaluation

[12] K. Dohi, K. Okina, R. Soejima, Y. Shibata, K. Oguri, “Performance Modeling of Sten-
cil Computing on a Stream-Based FPGA Accelerator for Efficient Design Space Ex-
ploration”, IEICE Transactions on Information and Systems, Vol.E98-D, No.2, pp.298-
308, 2015.

[13] H.M. Waidyasooriya, Y. Takei, S. Tatsumi and M. Hariyama, “OpenCL- Based FPGA-
Platform for Stencil Computation and Its Optimization Methodology,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 28, no.5, pp.1390-1402, 2017

[14] H.M. Waidyasooriya, M. Hariyama and K. Kasahara, “Architecture of an FPGA Ac-
celerator for Molecular Dynamics Simulation Using OpenCL,” Proc. 15th IEEE/ACIS
International Conference on Computer and Information Science (ICIS 2016), pp.115-
119, 2016.

[15] H.M. Waidyasooriya, M. Hariyama and K. Kasahara, “An FPGA Accelerator for
Molecular Dynamics Simulation Using OpenCL,” International Journal of Networked
and Distributed Computing, Vol. 5, No. 1, pp.52-61, 2017.

[16] Intel FPGA SDK for OpenCL, https://www.altera.com/products/

design-software/embedded-software-developers/opencl/overview.html,
2016.

[17] Terasic, DE5-Net FPGA Development Kit, http://www.terasic.com.tw/

cgi-bin/page/archive.pl?Language=English\&CategoryNo=158&No=526

[18] Terasic, DE5a-Net Arria 10 FPGA Development Kit, https://www.terasic.

com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=231&

No=970&PartNo=2

90

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Endo, H. M. Waidyasooriya and M. Hariyama

