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Abstract

In this paper, some discussions about a pre-processing approach of fast approxi-
mation on stable pricing and allocation of resources in a combinatorial auction are
presented. On the discussions, an approximate auction which has VCG-like pric-
ing mechanism is used which considers the situation when a cancellation of winner
bid(s) could be occurred after its completion of winner determination. An analysis
about stable approximate pricing mechanisms against cancellation of a winner after
its winner determination is also presented, where a single-unit non-combinatorial
reserve price bidding on a combinatorial auction is employed on it. The pricing
algorithms employ a kind of approximate allocation and pricing algorithms that are
capable of handling multi-unit auctions with reserve price biddings. We consider a
scenario on the allocation of electricity power usage rights while considering elec-
tricity generation costs on the power suppliers as well as external conditions such as
violations of regulations done by some bidders outside the auction mechanism. An
experimental analysis is presented on the scenario and the presented algorithms effi-
ciently produced approximation allocations that are necessary in the pricing phase,
while keeping the same level of stability in the case of single-winner cancellation
scenario.
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1 Introduction

Since it is crucial to realize dynamic allocations of limited resources with rational and
self-interested attendees[17][1], numerous efforts have been done to provide better
criterion and associated mechanisms to stably assign those limited resources, e.g.,
by fair allocations without money[2], or by efficient allocations using money[4].

In the context of realizing stable allocations using money, there have been pro-
posed a number of variants of auctions to capture various conditions in the re-
source allocation problems[4]. For example, multi-unit auctions can handle amount
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of resources to be allocated for each bidder in an auction[22], and combinatorial
auctions can handle complex allocations among different types of resources[23][4].
There exist numerous works on giving important theoretical properties, i.e., in-
centive compatibility[19][20], strategy proofness and other related properties[28], or
considering locally envy free equilibrium[6] or similar properties[7] for more realistic
scenarios. In these cases, stability of allocations is rather discussed in the context of
how the allocations give the players incentives to follow the decisions made by the
mechanisms while there could be some exceptions as discussed below.

There might be cases that one or more winners have been cancelled for allo-
cating items that were auctioned[3], because of keeping revenue of the auctioneer,
or just some winners did not have the rights to have them on a regulation. Such
cancellations could be done by both buyers, sellers, and even by the auctioneers,
due to some misconduct of the buyers or sellers. Although there are some ideas
to prevent buyers from doing misconduct such as false name biddings, these mech-
anisms could not easily be realized when an auction would have other important
characteristics[26]. Furthermore, such cancellations could be caused from the rea-
sons that were completely outside of the mechanisms, e.g., a violation of low or
regulations by the bidders’ activities on the outside of the auction and its associated
punishment has been applied to the bidders’ rights that were also affected to the
auction, even after the decision about the allocation has been made. Therefore,
having considerations of such unexpected cancellations on an auction mechanism
and its underlying algorithms is still an important issue to be discussed[10].

Because of the nature of combinatorial optimization problem, only a small change
of its condition may affect to large parts of the allocation when we re-calculate its
(sub)optimal allocations from scratch. In the above-mentioned context, we would
say the allocation may not be stable for cancellations of bids. Although there is
an approach to realize such a stability for a cancellations of bids[12], there are still
some issues on its computation speed when it is applied to large-scale problems or
massively repeated simulations.

In this paper, a preprocessing-based fast and stable approximate pricing algo-
rithm against cancellation of a winner after its winner determination is presented1.
In there, a single-unit non-combinatorial reserve price biddings on multi-unit com-
binatorial auction can also be employed to consider the costs of producing resources
to be allocated. The approach should be helpful for numerous types of problems
on making consensus among entities in difficult situations, e.g., some conflicts ex-
isted among those entities[18], as well as assigning limited amount of resources to
self-interested entities (e.g., agents)[25].

2 Preliminary

2.1 Multi-unit Combinatorial Auctions

Combinatorial auction is an auction that allows bidders to place bids for a combi-
nation of items rather than a single item[4].

The winner determination problem on single unit combinatorial auctions is de-
fined as follows[4]: The set of bidders is denoted by N = 1, . . . , n, and the set of

1Initial idea has been presented in [10], and further discussion has been done in [12].
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items by M = {m1, . . . ,mk}. |M | = k. Bundle S is a set of items: S ⊆ M . We
denote by vi(S), bidder i’s valuation of the combinatorial bid for bundle S. An
allocation of the items is described by variables xi(S) ∈ {0, 1}, where xi(S) = 1 if
and only if bidder i wins bundle S. An allocation, xi(S), is feasible if it allocates
no item more than once, for all j ∈ M .

∀j ∈ M
∑

i∈N

∑

S�j

xi(S) ≤ 1

The winner determination problem is the problem to maximize total revenue for
feasible allocations X � xi(S).

max
X

∑

i∈N

∑

S⊆M

vi(S)xi(S)

When some items in auction can be replaceable each other, i.e., they are indis-
tinguishable, the auction is called multi-unit auction. Multi-unit combinatorial auc-
tion is the case when some items are indistinguishable in a combinatorial auction[4].
Multi-unit combinatorial auction can be applied to electricity allocation problems,
and other problems that considers quantitative or countable items in allocation
problem[22].

In [13],[14], and [15], it has been shown that the presented hill-climbing approach
outperforms SA[13], SAT-based algorithms[16], LP-based heuristic approximation
approach[29], and a recent LP solver product in the setting when an auction has a
massively large number of bids but the given time constraint is very hard.

2.2 Winner Approximation and Pricing

It is crucial for an auction mechanism to have a proper pricing mechanism to
incentivize bidders to reveal their true valuations of items appropriately[4]. In
VCG(Vickery-Clarke-Groves) mechanism[27][5], prices that winners will pay will
be given as follows[24]. A payment pn for a winner n is calculated by

pn = αn −
∑

i�=n,S⊆M

vi(S)xi(S)

Here, the right part of the right side of the equation denotes the sum of all bidding
prices of won bids, excluding the bids that are placed by the bidder n. The left part
of the right side of the equation, αn is defined by

αn = max
∑

i�=n,S⊆M

vi(S)xi(S)

for a feasible allocation X � xi(S). This means that the αn is the sum of all bidding
prices of won bids when the allocation is determined as if a bidder n does not place
any bids for the auction.

In [24], Nisan et al. showed that optimal allocations should be used for VCG-
based pricing to make the auction incentive compatible (i.e., revealing true valua-
tions is the best strategy for each bidders). Also, Lehmann et al. showed that VCG-
based pricing with approximate winner determination will not make the auction
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incentive compatible even when it is assumed that all bidders are single-minded(i.e.,
each bidder can only place single bid at each auction)[21].

To overcome this issue, Lehmann et al. prepared a special pricing mechanism
that can only be applied for their approximate greedy winner determination[21].
However, this pricing mechanism can only be applied to their allocation algorithm
but it cannot be applied to other approximation allocation algorithms. Also the
mechanism is incentive compatible only when single-minded bidders are assumed[21].

The main problem in which VCG-based pricing is applied to approximation
allocation of items is that there are the cases that: (1) the price for a won bid is
rather higher than the bid price, and (2) the price for a won bid is less than zero, it
means the bidder will win the items and also will obtain some money rather than
paying for it[24]. In the situation of (1), it breaks individual rationality (i.e., the
one will not pay a higher price than the placed bid when the one won the bundle of
items). Also the situation of (2) is not preferable for both auctioneers and sellers.

To overcome the inability results shown in [24] and [21], a more relaxed con-
dition called Strong Winner Price Monotonicity (SWPM) and an associated pric-
ing algorithm transformToSWPM have been introduced[8], rather than applying the
condition of strict incentive compatibility to a VCG-like pricing with approximation
allocations.

As mentioned in [8], the algorithm transformToSWPM is normally used with a
good winner determination algorithm for the preparation of initial allocations to
shorten the calculations for pricing. In the latter part of this paper, we assume that
the MHC algorithm is used for providing initial allocations of items to those pricing
algorithms, as described in [8].

2.3 Approximate Pricing with Reserve Prices

When approximately solving a combinatorial auction problem with reserve price
biddings, a naive approach may produce a winner bid which includes a set of items
whose prices are higher than the sum of reserve prices. For example, when we naively
apply the pricing mechanism transformToSWPM introduced in [8], the mechanism
does not satisfy reserve price conditions(i.e., each winner places the price which is
higher than the best combination of reserve price bids for the items in the bundle),
since the mechanism used Lehmann’s approximation allocation[21].

To overcome the issue shown in the previous part of this section, the algorithm
transformToSWPMRP that addresses the issue mentioned was presented[9][11].

2.4 Approximation on Locally-strong Winner Price Monotonicity

Here, we would consider a way to have a more relaxed condition than Strong Win-
ner Price Monotonicity for better stabilization of pricing and re-allocation on bid
cancellations. A weaker condition, Locally-strong Winner Price Monotonicity2, can
be defined as follows:

Definition 1. (Locally-strong Winner Price Monotonicity: LWPM) For
any non-empty bundle s′ ⊆ S for a bidder j ∈ N,Xj(s′) = 1 (i.e., a winner) and
whose bid price is vj(s′), the Lehmann’s greedy allocation of bids for the bundle of

2The idea has been initially presented in [10]
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items s′ by bids from bidders N ′ = i|i ∈ N, i �= j that satisfies Xi�=j(s′′) = 0 (i.e.,
not winners) for any s′′ ⊇ s′, always produces non-efficient allocation for the bundle
s′ (i.e., the total price of greedy allocation is less than vj(s′)).

Here, to satisfy this Locally-strong Winner Price Monotonicity, a modified ver-
sion of the algorithm transformToSWPMRP which is called transformToLWPMRP has
been introduced[10], as follows:

1: function transformToLWPMRP(Alloc, L, Stocks)

2: RemainedBids:= L - Alloc;

3: sortByLehmannC(RemainedBids);

4: clear(payment);

5: for each b ∈ Alloc

6: RestStocks:=getP lacedStocksInBid(b);

7: AllocForB:=greedyAlloc(RestStocks,RemainedBids);

8: NewAlloc:=Alloc-{b} + AllocForB;

9: if price(Alloc) < price(NewAlloc) then

10: return transformToLWPMRP(NewAlloc,L,Stocks);

11: else

12: RemainedReserveBids:=getReservedBids(RemainedBids)

13: AllocForR:=greedyAlloc(RestStocks,RemainedReserveBids);

14: NewAllocR:=Alloc-{b} + AllocForR;

15: if price(Alloc) < price(NewAllocR) then

16: return transformToLWPMRP(NewAllocR,L,Stocks);

17: else paymentb = price(NewAlloc)− price(Alloc − {b})
18: end for each

19: return (Alloc,payment)

The algorithm transformToLWPMRP applies its pricing and respective re-allocations
of winners in a similar way that the algorithm transformToSWPMRP does. The ma-
jor difference between them is which property is applied to justify the allocations and
calculate the price to pay for each winner. On the algorithm transformToSWPMRP,
it applied Strong Winner Price Monotonicity, while the algorithm transformToLW-
PMRP applied Locally Strong Winner Price Monotonicity, instead, as both algo-
rithms also applied Reserve Price Condition. For instance, the line 6 in the above
algorithm is different. Here, a function getP lacedStocksInBid(b) returns the bun-
dle of items that the bid b placed to, as a set of pairs of the items and their unites
to be won.

The two algorithms, transformToLWPMRP and transformToSWPMRP were com-
pared to see the differences on its allocation stability over pricing in the condition
that any single winner has been cancelled on each auction. Here, the comparison
has been done on how many winners have been removed from winners due to such
single winner cancellation had been made and re-pricing had been applied. The
auction problems that were used are the same datasets used in [11], one of which in-
cludes 1000 bidders and 100 percent of electricity production ratio, with 515024 bids
and 67392 reserve-price bids, and another of which includes 3566 bidders and 100
percent of electricity production ratio, with 1710967 bids and 238584 reserve-price
bids.

It is observed that the both algorithms produced the same number of winners for
those auction problems. In [10], the comparison result in the case of 1000 bidders for
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the above scenario has been presented to analyze how those winners will be shifted
when single winner has been cancelled and the respective pricing and allocation ad-
justment algorithms were applied. In this case, it was observed that the algorithm
transformToSWPMRP produced more losers that had been shifted from winners than
that in the algorithm transformToLWPMRP. On the algorithm transformToLWPMRP,
it produced approximately 87.5 percent3 of such winner-shifts compared with trans-
formToSWPMRP[10]. Also a comparison in the case of 3566 bidders for the same
scenario has also been done in the extended version of [10].

Although the algorithm transformToSWPMRP is tractable enough for a single
problem and it produces its result much faster than that on ordinary VCG-based
pricing mechanism, it still takes a long time when the scale of auction is huge.
Furthermore, this makes it difficult to analyze how these kind of mechanisms make
impacts to the behaviors of autonomous attendees in such auctions with a set of
repeated simulations.

3 Improving LWPM-checking Process of Stable Alloca-
tion with Winner Cancellations

3.1 Faster Approximation on transformToSWPMRP

To calculate Locally-strong Winner Price Monotonicity solutions faster, a modified
version of the algorithm transformToLWPMRP is proposed, which includes a mech-
anism to skip a part of its stability checking process in some conditions4.

1: Checked = φ

2: function transformToLWPMRPFast(Alloc, L, Stocks)

3: RemainedBids:= L - Alloc;

4: sortByLehmannC(RemainedBids);

5: clear(payment);

6: for each b ∈ (Alloc − Checked)

7: RestStocks:=getP lacedStocksInBid(b);

8: AllocForB:=greedyAlloc(RestStocks,RemainedBids);

9: NewAlloc:=Alloc-{b} + AllocForB;

10: if price(Alloc) < price(NewAlloc) then

11: return transformToLWPMRP(NewAlloc,L,Stocks);

12: else

13: RemainedReserveBids:=getReservedBids(RemainedBids)

14: AllocForR:=greedyAlloc(RestStocks,RemainedReserveBids);

15: NewAllocR:=Alloc-{b} + AllocForR;

16: if price(Alloc) < price(NewAllocR) then

17: return transformToLWPMRP(NewAllocR,L,Stocks);

18: else paymentb = price(NewAlloc)− price(Alloc − {b})
19: Checked := Checked + {b}
20: end for each

21: return (Alloc,payment)

3This means it has been decreased from 857 to 750.
4In [12], line 6 of the algorithm was accidentally wrongly printed without “- Checked” and it

has been fixed in this version.
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The algorithm transformToLWPMRPFast efficiently omits the checking process
of Locally-strong Winner Price Monotonicity once a winner has been checked in
the algorithm. If the algorithm transformToLWPMRPFast is applied to a single-unit
auction scenario, it guarantees Locally-strong Winner Price Monotonicity in case
the order of getting b in the line 6 is preserved as the order of allocation that has
been done by greedyAlloc. A sketch of proof is that, in case a winner bid b is
said to be Locally-strong Winner Price Monotonicity satisfiable, there are no set
of bids that can be replaced by the greedyAlloc function, since such bids should
not remain in the remained bids nor they should not be in the Alloc since they
should conflict to the winner b when they are in the Alloc. However, in the case
of multi-unit scenarios, the latter condition may not be guaranteed. Therefore, the
algorithm transformToLWPMRPFast does not guarantee Locally-strong Winner Price
Monotonicity by itself.

3.2 Preprocessing Approach to Satisfy LWPM on transformToLW-
PMRPFast

Even when the algorithm transformToLWPMRPFast does not guarantee Locally-
strong Winner Price Monotonicity, it can be used as a pre-processing to generate ini-
tial allocations for transformToLWPMRP. This will greatly improve the performance
of transformToLWPMRP. The improved algorithm transformToLWPMRPFastX can
be prepared as follwos5:

1: function transformToLWPMRPFastX(Alloc, L, Stocks)

2: (NewAlloc, X):= transformToLWPMRPFast(Alloc, L, Stocks)

3: return transformToLWPMRP(NewAlloc, L, Stocks)

When this approach is applied to the case used in [10], the execution performance
to complete its pricing process is improved. Table 1 shows how this transformToL-
WPMRPFastX can improve the computation performance while it also guarantees
LWPM as the transformToLWPMRP does. In the case of 3566 bidders, the whole
computation with transformToLWPMRPFastX to produce stable allocations has been
done on approximately 523 seconds, while the computation with the pure transform-
ToLWPMRP used in [10] could not complete its computation for this scale.

The proof of guaranteeing LWPM on transformToLWPMRPFastX is simply given
by the fact that the transformToLWPMRPFast in transformToLWPMRPFastX is used
as a pre-processing to generate an initial allocation for the computation in trans-
formToLWPMRP and thus the all properties kept on it is also effective on transform-
ToLWPMRPFastX.

Note that, in case the given initial solution (i.e., Alloc) is good enough and
there is no chance to reallocate any winners in both transformToLWPMRPFast and
transformToLWPMRP, the computation time for transformToLWPMRPFastX will be
roughly twice than that on just simply applying transformToLWPMRP. Since in that
case the behaviors of transformToLWPMRPFast and transformToLWPMRP are iden-
tical, we can eliminate this overhead by just skipping transformToLWPMRP in trans-
formToLWPMRPFastX and this can easily be implemented by adding a return value
that indicates the number of reallocations done in the transformToLWPMRPFast.

5Note that the value in the variable X will not be used since the same value will be computed
in transformToLWPMRP and returned from it.
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Table 1: Speed Improvement on Winner Cancellation Scenario with 1000 bidders

transformToLWPMRP transformToLWPMRPFastX

Winners 898 898
Time of Computation (sec) 1593 36.19

4 Conclusions

In this paper, discussions about the preprocessing-based approach to realize faster
computation of stable pricing and allocation of resources using an approximate auc-
tion which has VCG-like pricing mechanism when cancellation of winner bid(s) after
its winner determination is considered.

As shown in the experimental result, the algorithm efficiently produced approx-
imation allocations that are necessary in the pricing phase, while it keeps the same
stability in the case of single-winner cancellation. As discussed in [11], it could
behave as an approximation of VCG(Vickrey-Clarke-Groves) mechanism satisfy-
ing budget balance condition and bidders’ individual rationality without enforcing
the single-minded bidders assumption, while it does not guarantee strict strategy-
proofness.

In this paper, the presented analysis has been done only for a limited number of
allocation scenarios for electricity usage in industries, although the mechanisms and
the algorithms themselves could be applied to other problems such as bandwidth
and channel allocation problem in wireless networks[23]. Applying to other possible
scenarios and analyze how these pricing mechanisms affect the behaviors of atten-
dees in an auction is one of our future work. Also further analysis on theoretical
characteristics of the mechanism is future work.
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