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Abstract

The amount of accessible raw data is ever-increasing in spite of the difficulty in obtaining 
a variety of labeled information; this makes semi-supervised learning a topic of practical 
importance. This paper proposes a novel regularization algorithm of an autoencoding deep 
neural network for semi-supervised learning. Given an input data, the deep neural network 
outputs the estimated label, and the remaining information called style. On the basis of the 
framework of a generative adversarial network, the proposed algorithm regularizes the label 
and the style according to a prior distribution, separating the label explicitly from the style. 
As a result, the deep neural network is trained to estimate correct labels by using a limitedly 
labeled dataset. The proposed algorithm achieved accuracy comparable with or superior to 
that of the existing state-of-the-art semi-supervised algorithms for the benchmark tasks, the 
MNIST database, and the SVHN dataset.

Keywords: Auto-encoder, Deep Learning, Generative Adversarial Networks, Semi-Supervised 
Learning

1 Introduction

While the amount of accessible data is ever-increasing, it often lacks auxiliary information 
such as class labels, and hand-labeling of the entire dataset is impossible or, at least, not 
economical. Therefore, there is considerable practical interest in semi-supervised learning. 
Semi-supervised learning deals with a classification task under the condition that only a 
small subset of a given dataset has corresponding class labels [1]. Semi-supervised algo-
rithms utilize a large amount of unlabeled data and enable a more accurate classification 
than classifiers trained only with labeled data. Neural networks with deep architectures, 
also known as deep learning, performed impressively on a wide range of machine learning 
tasks, including semi-supervised learning [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. 
Numerous approaches employed an unsupervised dimension reduction called autoencoder 
(AE) [4], consisting of two neural networks; encoder and decoder. The encoder is trained 
as a classifier in supervised learning, whereas the decoder is trained to reconstruct the given 
data, working as an additional penalty [5, 6, 7]. Some autoencoder-based approaches im-
plemented unsupervised Bayesian inference and a generative procedure of a given dataset
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on an autoencoder, along with supervised classification [8, 9, 17]. They naturally require
computation of the integral of the posterior distribution over latent variables or Monte Carlo
sampling from it, thereby increasing their computational time. Other methods were based
on the framework of the generative adversarial network (GAN) [10, 11, 12, 13, 14], ob-
taining latent representations of a given dataset by comparison with artificially generated
datasets. The objective function of the GAN is an additional penalty for supervised classifi-
cation. The learning procedure thereof is prone to destabilization, and thus requires careful
adjustment of architectures and parameters [18, 19].

Therefore, finding a good penalty is the key to success in semi-supervised learning
based on deep neural networks. Recently, a simple regularization approach for the autoen-
coder, called the adversarial autoencoder (AAE), was proposed for unsupervised dimension
reduction [20]: It regularizes the latent representations using the framework of the GAN.
This paper proposes a novel semi-supervised learning algorithm called adversarial regu-
larization for autoencoder based on the principle of the adversarial autoencoder. Given a
labeled data, the autoencoder is trained to estimate the correct label. Even without label
information, the autoencoder outputs the estimated label, and a latent representation called
style. The proposed algorithm regularizes the label and style according to a joint prior dis-
tribution on the basis of the framework of the GAN. As a result, a given data is decomposed
explicitly into the label information contributing to the classification task, and the remaining
style information. The proposed algorithm is evaluated using the semi-supervised tasks of
the MNIST database and SVHN dataset as a benchmark. It achieves impressive accuracy,
comparable or superior to the existing state-of-the-art semi-supervised algorithms based on
deep neural networks. The preliminary and limited results are presented in a conference
paper [21].

2 Related Works

While some semi-supervised learning algorithms focused on manifold learning [15, 16],
many studies on deep neural networks employed a combination of unsupervised dimen-
sion reduction and supervised classification [1]. Previous studies employed autoencoder
as an unsupervised dimension reduction. An autoencoder consists of two neural networks
(encoder and decoder) and is trained by minimizing the objective function called the recon-
struction error Lrec [5, 6, 7, 8, 9]:

Lrec(θq,θp) = Exxx∼pdata(xxx) [L(xxx, x̂xx)] , (1)

where pdata(xxx) denotes a given dataset; the encoder outputs the latent representation zzz =
q(xxx;θq) given an input; the decoder reconstructs the input x̂xx = p(zzz;θp); and L(·, ·) is a
distance function, which is typically the mean squared error. Previous studies proposed
a variational autoencoder (VAE), which is an implementation of unsupervised Bayesian
inference and generative procedure of a given dataset on the encoder q and decoder p [17,
8, 9]. The objective function Lvae is derived according to variational methods, as follows:

Lvae(θq,θp) = Exxx∼pdata(xxx)

[
DKL(q(zzz|xxx;θq)||pprior(zzz))−Ezzz∼q(zzz|xxx;θq)[log p(xxx|zzz;θp)]

]
, (2)

where DKL is the Kullback-Leibler divergence and pprior(zzz) is the prior distribution of the 
latent representations zzz. The first and second terms can be considered as regularization 
terms and a general form of the reconstruction error Lrec. The framework of the GAN
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provides a further unsupervised dimension reduction [10]. A GAN consists of two neu-
ral networks, generator G and discriminator D. Given a latent representation zzz randomly
chosen from a prior distribution pprior(zzz), the generator G outputs an artificial data x̂xx. The
discriminator D is trained to classify the real data xxx from the artificial data x̂xx, whereas the
generator G is trained to “trick” the discriminator D as follows:

min
θG

max
θD

Ladv(θD,θG), (3)

where

Ladv(θD,θG) = Exxx∼pdata(xxx)[logD(xxx;θD)]+Ezzz∼pzzz(zzz)[log(1−D(G(zzz;θG);θD))] (4)

The output of the discriminator D denotes the probability that the input is sampled from
the given dataset pdata(xxx) rather than from the generator G. At the end of the training, the
discriminator D is expected to output 0.5 for the input from both the given dataset pdata(xxx)
and the generator G, and the generator G is expected to output an artificial dataset that is
distributed as the distribution of the given dataset xxx. When an alternative neural network
is trained to estimate the latent representation zzz given an input artificial data x̂xx, the neural
network and generator G work as the encoder p and decoder q, respectively [22]. The
learning procedure is known to be prone to be destabilized because the distribution shape
of the given dataset xxx is complicated and it is difficult to model it using the generator G.
The GAN requires careful adjustment of its architecture and parameters [18, 19]. The
framework of the GAN can be used for regularization of the latent representation zzz of the
autoencoder; this is called the adversarial autoencoder [20]. In this case, the encoder q of
the autoencoder corresponds to the generator G of the GAN, and is expected to output latent
representations q(zzz|xxx;θq) that are distributed as in the prior distribution pprior(zzz). Since the
prior distribution p(zzz) is far simpler than that of the given dataset xxx, its learning procedure
is easier and more robust.

For semi-supervised classification tasks, these unsupervised dimension reductions are
combined with alternative supervised or semi-supervised learning algorithms. In some ap-
proaches, the latent representation zzz extracted from the input xxx by the encoder p is classified
using another supervised or semi-supervised classification algorithm [8, 11, 14]. However,
unsupervised dimension reduction is sometimes harmful to classification because it has a
risk of extracting only information useless for classification, e.g., penmanship of handwrit-
ten strings in a classification of characters. Alternative approaches employ the objective
function of the unsupervised dimension reduction as an additional penalty of supervised
classification [5, 6, 7, 8, 9, 12, 13]. In this case, the encoder p of the autoencoder and
the discriminator D of the GAN work as a classifier C and are trained with the following
objective function

Lcls(θc) = Exxx,y∼plabeled(xxx)

[
−∑

k
I(y = k) logC(y|xxx;θc)

]
, (5)

where y denotes the label corresponding to the input xxx; plabeled (xxx) is the labeled subset of 
the given dataset pdata(xxx); and I(cond) is the indicator function, which takes the value 1 
when the condition cond is satisfied and 0 otherwise. In these approaches, the latent 
representation zzz other than the label y is separated from the label y and is sometimes called 
style.
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Figure 1: Diagram of the proposed autoencoder and adversarial regularization.

3 Adversarial Regularization for Semi-Supervised Learning

In this section, we propose a novel adversarial regularization algorithm of semi-supervised
learning based on deep neural networks. First, we propose the autoencoder depicted in
Fig. 1. Given an input xxx, the encoder q, parameterized by θq, outputs two latent repre-
sentations denoted ŷyy and ẑzz. Using the softmax activation function, the summation of the
elements ŷk of the latent representation ŷyy is clamped to one, while the latent representation
ẑzz has no activation function, and thus its elements ẑ j are distributed over the real number.
The decoder p, parameterized by θp, accepts the latent representations yyy and zzz and outputs
an artificial data x̂xx to reconstruct the input xxx. As per ordinary autoencoders, encoder q and
decoder p are trained by minimizing the reconstruction error

Lrec(θq,θp) = Exxx∼pdata(xxx)
[
||xxx− p(x̂xx|q(ŷyy, ẑzz|xxx;θq);θp)||2

]
. (6)

Note that, in spite of their formulations, the encoder q and the decoder p are deterministic
in contrast to the variational autoencoder [17, 8, 9]. The encoder q works as a classifier and
is trained by minimizing the classification error

Lcls(θq) = Exxx,y∼plabeled(xxx,y)

[
−∑

k
I(y = k) logq(ŷk|xxx)

]
. (7)

The latent representation ŷyy denotes the posterior probability of the estimated label and the
latent representation zzz represents the style of the input xxx.

Here, we introduce the joint prior distribution pprior(yyy,zzz) of the label ŷyy and the style
ẑzz. In contrast to the original study of the adversarial autoencoder, the label yyy and the style
zzz are completely independent. The label yyy has only one element that takes one, with the
remaining taking zero; this follows a uniform categorical distribution. Each element zk of
the style zzz follows a normal distribution with zero-mean and a variance of 52. Therefore,

pprior(yyy,zzz) = pprior(yyy)pprior(zzz)

= 1
Ny

∏k(2×52π)− 1
2 exp

(
−

z2
k

2×52

)
,

(8)

where Ny denotes the number of the class label. Using the framework of the GAN, the 
encoder q is also trained to match the joint distribution of the latent representations ŷyy and 
ẑzz to the joint prior distribution pprior(yyy,zzz). The discriminator D, parameterized by θD,
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Table 1: Results of semi-supervised classification.
Test error (ave. (± std.) %)

Nl AE AAE [20] AR (ours)

100 3.41(±0.21) 1.90(±0.10) 0.98(±0.17)
300 2.54(±0.37) — 0.97(±0.02)

1,000 1.98(±0.22) 1.60(±0.08) 0.75(±0.05)
3,000 1.57(±0.21) — 0.70(±0.13)

Table 2: Comparison of error rates (%) between the adversarial regularization (AR) and
other published results on the MNIST database, with 100 labels.

Test error (ave. (± std.) %)

Methods Nl = 100

DGM (2014) [8] 3.33(±0.14)
VAT (2015) [16] 2.12
CatGAN (2016) [12] 1.39(±0.28)
AAE (2015) [20] 1.90(±0.10)
ADGM(10MC) (2016) [9] 0.96(±0.02)
Improved-GAN (2016) [13] 0.96(±0.07)
Ladder (2015) [7] 0.86(±0.89)

AR (ours) 0.98(±0.17)

accepts the latent representations ŷyy and ẑzz obtained from the encoder q or the samples yyy and
zzz from the joint prior distribution pprior(yyy,zzz). The encoder q is trained by minimizing the
adversarial regularization error

Lar(θD,θq) = Eyyy,zzz∼p(yyy,zzz)[logD(yyy,zzz;θD)]

+Exxx∼pdata(xxx)[log(1−D(q(ŷyy, ẑzz|xxx;θq);θD))],
(9)

while the discriminator D is trained by maximizing the adversarial regularization error Lar

Therefore, the objective function of the autoencoder with adversarial regularization is the
weighted summation of all of the aforementioned errors:

L = λclsLcls +λrecLrec +λarLar, (10)

where λcls, λrec, and λar are real-valued coefficients of the errors Lcls, Lrec, and Lar, 
respectively.

4 Results for Semi-Supervised Classification

4.1 Semi-Supervised Classification with Convolutional Neural Networks

The proposed algorithm was evaluated on the MNIST handwritten digit database [23] and 
the cropped version of the Street View House Numbers (SVHN) Dataset [24]. The MNIST 
database is a dataset of 28-by-28 grayscale images of 70,000 handwritten digits, com-
prising 60,000 images for training and 10,000 images for testing. We divided the 60,000 
training images into 50,000 training images and 10,000 validation images. To implement 
semi-supervised learning experiments, we chose Nl images randomly as a labeled subset
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Table 3: Comparison of error rates (%) between the adversarial regularization (AR) and
other published results on the SVHN dataset, with 1000 labels.

Test error (ave. (± std.) %)

Methods Nl = 1000

DGM (2014) [8] 36.02(±0.1)
VAT (2015) [16] 24.63
ADGM (10MC) (2016) [9] 22.86
ALI (2016) [14] 19.14(±0.5)
AAE (2015) [20] 17.70(±0.30)
SDGM (2016) [9] 16.61(±0.24)
Improved-GAN (2016) [13] 8.11(±1.3)

AR (ours) 10.94(±0.27)

Figure 2: Changing the label yyy with the clamped style zzz. The left digits are samples from
the dataset pdata(xxx) for the MNIST database, and the remaining digits are generated with
the style zzz obtained from the leftmost images and the arbitrary label yyy. The left and right
images use hyper-parameters for visualization and the best classification, respectively.

plabeled(xxx), where each class has the same number of labeled images. We removed the label
information from the remaining (50,000−Nl). We trained our deep neural networks using
the training images and chose hyper-parameters according to the accuracy of the validation
images. Then, the final classification error was evaluated on the test images, with the model
configured by the chosen hyper-parameters. The SVHN dataset consists of 32-by-32 RGB
images of digits in home numbers, comprising 604,388 images for training and 26,032 im-
ages for testing. We chose 6,000 validation images randomly from the training images. The
remaining conditions were the same as those of the MNIST database. The architectures of
the autoencoders were in accordance with preceding studies: [25] for the MNIST database
and [11] for the SVHN dataset (see Tables 4 and 5 in Appendix for detail).

We show the classification results of AE [4], AAE [20] and AR on the MNIST database
and SVHN dataset (see Tables 1 and 2). The result of AAE is obtained from the original
paper [20]. We searched the set of hyper-parameters that achieved the best performance on
validation data, and used λcl = 1, λrec = 2000, and λar = 0 for AE; and λcl = 1, λrec = 1,
and λar = 1 for AR (see Appendix in detail).

We visualized the independence of the latent representations ŷyy and ẑzz by changing them [17,
8, 11]. We searched the best hyper-parameters for visualization and used λcl = 1, λrec = 500,
and λar = 100. First, several images were sampled from the dataset pdata(xxx) and their styles

16

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

R. Tachibana, T. Matsubara and K. Uehara



ẑzz were extracted by the encoder q. By using the extracted styles ẑzz and the arbitrary label 
yyy, the decoder p generated artificial images (see Fig. 2). The generated images shared their 
styles, such as penmanship and font type, regardless of the digit types; this suggests that the 
latent representation yyy corresponded to digit type independently of style. The right image 
of Fig. 2 shows the generated images of the hyper-parameters when the model yields the 
best classification result.

5 Discussion

The autoencoder has been studied as an unsupervised dimension reduction, contributing 
a penalty to the semi-supervised classification [4, 5, 6, 7]. Studies on VAE introduced a 
further penalty to the latent representation, based on Kullback-Leibler (KL) divergence, to 
match the posterior distribution q(zzz|xxx) of the latent representation zzz obtained from each in-
put xxx to the prior distribution pprior(zzz) [8, 9, 17]. However, the KL penalty was calculated 
image-by-image (see Eq. (2)), which does not guarantee a match between the distribution 
q(zzz|xxx) over the latent representations and the prior distribution pprior(zzz). In contrast, at-
tributed to the framework of the GAN, the adversarial regularization provides a stricter 
penalty: the adversarial regularization gives the distribution q(yŷy, ẑzz|xxx) a resemblance to the 
prior distribution pprior(yyy,zzz) [10, 11, 12, 13, 14]. It guarantees the independence of the la-
bel yyy and the style zzz, and thus obtains the label information yyy separated from the remaining 
style information zzz. This is one of the reasons why the adversarial regularization contributes 
to the semi-supervised classification. Recall that the hyper-parameters for visualization dif-
fer from those of classification. We consider that the separation of label and style and the 
reconstruction of images function well as regularization. However, they are simply penalty 
terms and are not always objectives compatible with classification.

The discriminator D uses posterior distributions q(yŷy,zẑz|xxx) itself, while the discriminator 
D draws a sample from the prior pprior(yyy,zzz). Thereby, each element ŷk of the posterior 
distribution q(yŷy|xxx) of the label yyy approaches 0 or 1 to mimic the sample from the prior 
distribution pprior(yyy,zzz), resulting in a decrease in the information H[q(yŷy|xxx)]. This kind 
of penalty has been proposed in previous studies [12, 13] and is expected to increase the 
margin between classes and to promote the unambiguous classification. This is another 
reason for the success of the adversarial regularization.

The discriminator D used in this study was a tiny three-layered perceptron, regardless of 
the size of dataset and the architecture of autoencoder, indicating that the computation time 
for the discriminator D and the adversarial regularization is almost negligible compared 
with that of the autoencoder consisting of two deep CNNs. Therefore, the total computa-
tion time is almost the same as or less than that of the existing semi-supervised learning 
algorithms.

As shown in Tables 2 and 3, the autoencoder trained with our proposed regularization 
achieved accuracy comparable with or superior to that of the existing state-of-the-art semi-
supervised algorithms for the benchmark semi-supervised tasks. Unfortunately, Improved-
GAN surpasses our proposed regularization in both tasks. However, approaches based on 
GAN, such as ALI and Improved-GAN, are well known to encounter the issue of mode 
collapse [28, 29]. A dataset used for classification problems has a multimodal distribu-tion 
in the data space because it is a collection of datasets, where each belongs to one of the 
classes. However, GAN is prone to fail to generate artificial data with a multimodal distribu-
tion; more specifically, the generator collapses, generating only a certain mode sample or a
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Table 4: Architecture of Autoencoder for the MNIST database.
encoder q decoder p

28 × 28 grayscale image 60-D latent representation
conv. (c32, k5, s1), BN, ReLU fc (n1024), BN, ReLU
max-pool. (s2) fc (n2048), BN, ReLU
conv. (c64, k5, s1), BN, ReLU up. (s2)
max-pool. (s2) deconv. (c64, k5, s1), BN, ReLU
conv. (c128, k5, s1), BN, ReLU up. (s2)
max-pool. (s2) deconv. (c32, k5, s1), BN, ReLU
fc (n1024), BN, ReLU, dropout(p0.5) up. (s2)
fc (n60), BN, ReLU deconv. (c1, k5, s1), BN, ReLU

small family of very similar samples. While GAN is required to find fine hyper-parameters 
to model a multimodal distribution, this is difficult in the case of semi-supervised learn-
ing because of the limited knowledge of the dataset. Therefore, Improved-GAN’s high 
performance in the semi-supervised classification of MNIST does not guarantee its high 
performance for unknown datasets used in practical tasks. Conversely, our proposed regu-
larization potentially overcomes this issue because it generates images in the manner of AE 
(which is free from mode collapse) and only uses GAN to regularize the latent variables, 
which follow a unimodal distribution (i.e., Gaussian distribution and uniform distribution.) 
Therefore, we consider our method to be more robust than other GAN-based approaches. A 
more detailed comparison will be conducted in future. In addition, the discriminator D used 
in this study was a tiny three-layered perceptron, regardless of the size of dataset and the ar-
chitecture of the autoencoder. This indicates that the computation time for the discriminator 
D and our proposed regularization is almost negligible compared with that of the autoen-
coder consisting of two deep CNNs. Therefore, the total computation time is considerably 
less than that of the semi-supervised learning algorithms based on deep generative models 
(e.g., DGM, ADGM, and SDGM), which require a minimum of three deep CNNs.

6 Conclusion

This paper proposed the adversarial regularization of the joint distribution of latent repre-
sentations of an autoencoder for semi-supervised classification. The adversarial regulariza-
tion provides a penalty that divides the latent representations into the label information and 
the remaining style information. Therefore, the autoencoder trained with the regularization 
achieved an accuracy comparable or superior to the existing state-of-the-art semi-supervised 
algorithms for the benchmark semi-supervised tasks.
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Table 5: Architecture of Autoencoder for the SVHN dataset.
encoder q decoder p

28 × 28 RGB image 60-D latent representation
conv. (c64, k5, s1), BN, lReLU fc (n512×4×4), BN, ReLU
conv. (c128, k4, s2), BN, lReLU deconv. (c256, k4, s1), BN, lReLU
conv. (c256, k4, s1), BN, lReLU deconv. (c128, k4, s2), BN, lReLU
conv. (c512, k4, s2), BN, lReLU deconv. (c64, k4, s1), BN, lReLU
fc (n60) deconv. (c3, k4, s2), BN, lReLU

A Details of Experimental Settings

The appendix provides the details of the experimental settings of our results. The archi-
tectures of the autoencoder used for the MNIST database and SVHN dataset are shown in 
Table 4 and Table 5, respectively. “conv.” and “deconv.” denote convolution and fraction-
ally strided convolution, respectively, outputing c feature maps with a k×k kernel and stride 
of s; “max-pool.” and “up.” denote max-pooling and upscaling, respectively, with a stride 
of s; “fc” denotes matrix multiplication outputting an n-dimensional vector; “BN” denotes 
batch normalization; “ReLU” and “sigmoid” are activation functions; and “lReLU” is the 
leaky ReLU activation function with a slope of 0.01. The autoencoder and discriminator 
were trained using the Adam optimization algorithm [27] with a weight decay of 0.0005, 
where the parameter α was set to α = 0.0001 for the experiments detailed in Section 4.1 
The MNIST database and SVHN dataset had batch sizes of 500 and 100, respectively.

The coefficients λrec and λar of the errors Lrec and Lar, respectively, were grid-seared 
over the range of {. . . , 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, . . .}, where the coefficient λcls was 
set to 1.
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