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Abstract

In this paper, first we formulate a consistency-based feature selection problem as combina-
torial optimization problems. Next, for the purpose of increasing the number of instances 
explained by the features, which we call explanatory instances, rather than decreasing the 
number of features themselves in consistency-based feature selection, we introduce an iter-
ative consistency-based feature selection and design the algorithm to compute it. Finally, 
we apply the method to several nucleotide sequences of influenza A viruses and evaluate 
the advantage of the method.

Keywords: Iterative Consistency-Based Feature Selection, Consistency-Based Feature Se-
lection, CWC, LCC, Nucleotide Sequences, Influenza A Viruses.

1 Introduction

It is one of important social problems to characterize influenza viruses to predict next trend 
influenza viruses. Then, it is effective to analyze nucleotide sequences of influenza viruses 
from the viewpoint of bioinformatics or medical informatics.

In general, it is a standard method to analyze nucleotide sequences of influenza viruses 
by using a well-known alignment. As another methods, Makino et al. [9] have introduced a 
trim distance between positions (or sites) in nucleotide sequences based on phylogenetic 
trees reconstructed from nucleotide sequences. Also Shimada et al. [14] have investigated 
the clustering by the trim distance to analyze 2009 pandemic of influenza A (H1N1) 
viruses. Furthermore, Hamada et al. [7] have applied several kernels including an 
agreement sub-tree mapping kernel for phylogenetic trees reconstructed from nucleotide 
sequences for influenza A viruses to 2009 pandemic classification and regional analysis. 
Whereas these researches have suggested some characterization of sites, they have the 
problem to reconstruct phylogenetic trees.

In order to avoid this problem and characterize the relative sites in nucleotide 
sequences of influenza viruses directly, Shimamura and Hirata [15] have regarded the sites 
as features and first applied feature selection [5][6][10] to nucleotide sequences. Then, 
they have analyzed temporal and regional characters of nucleotide sequences of influenza 
viruses by using consistency-based feature selection algorithms [3][8][11][22].
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An LCC (Linear Consistency-Constrained) [18] and a CWC (Combination of Weakest 
Components) [19][20][21], which this paper mainly deals with, are known as fast and accu-
rate consistency-based feature selection algorithms based on a Bayesian risk and a binary 
consistency, respectively, as consistency measures. Both algorithms are greedy backward 
elimination algorithms excluding features. On the other hand, there arises a problem for 
both algorithms that, when increasing the number of instances explained by the features, 
which we call explanatory instances, rather than decreasing the number of features them-
selves, they may eliminate too many inconsistent instances in general.

Concerned with this problem, the consistency-based feature selection essentially con-
tains two directions of optimizations, the minimization of the number of features and the 
maximization of the number of instances explained by the features. Then, in this paper, we 
first formulate it as combinatorial optimization problems.

Next, in order to increase the number of explanatory instances, in this paper, we in-
troduce an iterative consistency-based feature selection, by applying the feature selection 
algorithm to the eliminated instances in a data set iteratively. In other words, we design the 
method to obtain the “disjunction” of feature sets iteratively. This method is possible to be 
more effective for data with many features such as a nucleotide sequence whose number of 
features is its length.

Hence, in this paper, we apply the iterative consistency-based feature selection to nu-
cleotide sequences of influenza A viruses as the previous work [15]. Here, we deal with nu-
cleotide sequences of influenza A viruses for 4 subtypes of H1N2, H2N2, H3N2 and N5N1 
and 8 RNA segments of PB2, PB1, PA, HA, NP, NA, MP and NS. All of the nucleotide 
sequences are provided from NCBI [4]. Then, we observe that the number of explanatory 
instances for 3 subtypes of H1N2, H3N2 and N5N1 and all the 8 RNA segments is al-
ways increasing by iterative consistency-based feature selection of CWC, and that for all 
the 4 subtypes and the RNA segment PA is always increasing by iterative consistency-based 
feature selection of both LCC and CWC.

This paper is organized as follows. In Section 2, we formulate a consistency-based 
feature selection problem as combinatorial optimization problems. In Section 3, we in-
troduce the algorithms LCC and CWC and design the algorithm of iterative consistency-
based feature selection. In Section 4, we give experimental results by applying the iterative 
consistency-based feature selection to nucleotide sequences. Section 5 concludes this paper.

2 Consistency-Based Feature Selection

In this paper, we formulate a consistency-based feature selection by using a matrix on natu-
ral numbers. Then, we regard a feature as the set of the numbers of columns except the last 
column and the last column as the class labels.

We call an m× (n + 1) matrix on N a data set and denote it by D = [vi j]. Also we call 
every row vi = [vi1, . . .  ,vin,vi(n+1)] in D an instance of D and the (n + 1)-th element vi(n+1)
in vi a class label of vi. We denote the set of all the class labels in D by C. In the following, 
we omit the subscript i. Then, we denote that v is an instance of D by v ∈ D and the class 
label of v by vc.

Let F = {1, . . .  ,n}, which we call a total feature set, and v = vi ∈ D an instance. Then, 
we denote [vi1, . . .  ,vin] by vF . For a subset X = { j1, . . .  ,  jk} ⊆  F , which we call a feature 
set, we denote [vi j1 , . . .  ,vi jk ] by vX . For a data set D and a feature set X ⊆ F , we denote the 
data set consisting of the j-th column for every j ∈ X ∪{n + 1}, that is, the collection of
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rows [vX ,vc] for v ∈ D by DX .
In this paper, we deal with two consistency measures, a Bayesian risk [18] and a binary

consistency [19][20][21]. For X ⊆ F , the Bayesian risk BR(X) of X is defined as follows:

BR(X) = 1− ∑
X⊆F

max
y∈C

Pr(DX = [vX ,y]).

On the other hand, the binary consistency BC(X) supports:

BC(X) =
{

0 ∀u,v ∈ D(uX = vX ⇒ uc = vc),
1 otherwise.

Let μ ∈ {BR,BC} be a consistency measure and δ a threshold (0 ≤ δ < 1). Then, we
say that X is consistent with respect to D under μ and δ if μ(X)≤ δ ; inconsistent otherwise.
Note here that δ is not necessary when μ = BC.

Let D be a data set, X ⊆ F a feature set, μ ∈ {BR,BC} a consistency measure and δ a
threshold. Then, we call the set of instances by eliminating all the inconsistent instances of
D for X under μ and δ from D the set of explanatory instances of D for X and denote it
by eμ ,δ (D,X). It is obvious that X is consistent with eμ ,δ (D,X) under μ and δ . Then, we
formulate a consistency-based feature selection problem (CONFS) as follows.

CONFS (cf., [18][19][20][21])
INSTANCE: A data set D, a total feature set F , a consistency measure μ and a
threshold δ .
PROBLEM: Find a feature set X ⊆F such that |X | is minimum when |eμ ,δ (D,X)|
is maximum.

As same as standard feature selection problems, the problem CONFS is intractable, 
because the problem of finding X such that |eμ ,δ (D,X)| is maximum for the same input is 
at least NP-hard (cf., [1][2]).

3 Iterative Consistency-Based Feature Selection Algorithms

In order to solve the problem CONFS heuristically and efficiently, Shin et al. have intro-
duced the algorithms LCC (Linear Consistency-Constrained) [18] and CWC (Combination 
of Weakest Components) [19][20][21] illustrated in Algorithm 1. Here, the procedure sort 
sorts F as {i1, . . .  in} by increasing order of symmetric uncertainty [12], which is a normal-
ized value of mutual information [13] of C and X ⊆ F and denote by SU(C,X). Also the 
procedure denoise removes presumable noise examples from D.

Note that the number of explanatory instances of D is monotonic w.r.t. feature sets, 
that is, |eμ ,δ (D,X)| ≤  |eμ ,δ (D,Y )| for X ⊆ Y ⊆ F . Also it holds that SU(C,X) is maximum 
when |eμ ,δ (D,X)| is maximum and SU(C,X) ≥ ∑i∈X SU(C,{i}).

By using these properties, for the problem CONFS, we can regard that the algorithm
CWC finds a feature set X ⊆ F such that ∑i∈X SU(C,{i}) is maximum and |X | is mini-
mum when |eμ ,δ (D,X)| is maximum. Also we can regard that the algorithm LCC finds
a feature set X ⊆ F such that ∑i∈X SU(C,{i}) is maximum and |X | is minimum when 
|eμ ,δ (D,X)|/|D| ≥ |eμ ,δ (D,F)|/|D|−δ holds.

In this paper, we design the algorithm ITFS in Algorithm 2 for iterative consistency-
based feature selection. Here, FS(D,F) returns the result of the algorithm FS (which is
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procedure LCCδ (D,F)

1

2

/* D: data set, F: total feature set, δ : threshold */
sort F as {i1, . . . in} by increasing order of symmetric uncertainty;
S←{i1, . . . , in};
for j = 1 to n do3

if BR(S\{i j})≤ δ then4

5 S← S\{i j};
output S;6

procedure CWC(D,F)

7

8

9

/* D: data set, F: total feature set */
denoise D;
sort F as {i1, . . . in} by increasing order of symmetric uncertainty;
S←{i1, . . . , in};
for j = 1 to n do10

if BC(S\{i j}) = 0 then11

12 S← S\{i j};
output S;13

Algorithm 1: LCC and CWC.

procedure ITFS(FS,D,F)

1

/* FS: feature selection algorithm, D: data set, F: total feature set */
/* In FS: μ ∈ {BR,BC}: consistency measure, δ : threshold */
X ← /0; Y ← /0;
repeat2

3

4

Y ← FS(D,F); X ← X ∪Y ;
D′ ← eμ ,δ (D,Y );
D← D\D′; F← F \X ;5

6 until D′ = /0 ;
output X ;7

Algorithm 2: ITFS.

either an LCCδ or a CWC in this paper) for a current data set D and a current total feature 
set F . The output of ITFS is a feature set X .

The algorithm ITFS first returns a feature set Y as the result of FS(D,F) and updates 
a feature set X as X ∪Y in the line 3. Then, it finds the set D′ of explanatory instances in 
the line 4. Finally, it updates D as D \ D′ and F as F \ X in the line 5. The algorithm ITFS 
repeats the above procedures until D′ = /0.

4 Experimental Results

In this section, we apply the algorithm ITFS to nucleotide sequences of influenza A viruses 
for 4 subtypes of H1N1, H2N2, H3N2 and N5N1 and 8 RNA segments of PB2, PB1, PA, 
HA, NP, NA, MP and NS, provided from NCBI [4].

Tables 1, 2, 3, 4, 5, 6, 7 and 8 illustrate the results of applying the algorithm ITFS to
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nucleotide sequences of 8 segments for influenza A viruses with the 4 subtypes. Here, we 
set the threshold δ in the algorithm LCC to 0 and we denote LCC0 as a feature selection 
algorithm FS by LCC simply.

In their tables, m is the number of instances and n is the number of total features for 
every segment of nucleotide sequences. Also |e| is the cardinality |eμ ,δ (D,X)| of explana-
tory instances, where μ and δ are determined by FS, and |e|/m is the ratio (%) of |e| for m. 
Furthermore, |X | is the number of selected features by the algorithms FS and ITFS from 
the data sets, where FS is either an LCC or a CWC and |X |/n is the ratio (%) of |X | for n 
Finally, # is the number of iterations in the algorithm ITFS. Note that the value of m for 
H2N2 is much smaller than other segments.

Table 1: The results for the segment of PB2.
subt. FS m n results of FS results of ITFS

|e| |e|/m |X | |X |/n # |e| |e|/m |X | |X |/n
H1N1 LCC 11772 2725 9053 76.90 900 33.03 2 9053 76.90 1133 41.58

CWC 8854 75.21 777 28.51 7 9011 76.55 1019 37.39

H2N2 LCC 189 2341 187 98.94 33 1.41 - - - - -
CWC 187 98.94 33 1.41 -- - - -

H3N2 LCC 11604 2438 8895 76.65 2184 89.58 2 8895 76.65 2329 95.53
CWC 8666 74.68 755 30.97 8 8863 76.38 1060 43.48

H5N1 LCC 2858 2426 2771 96.96 196 8.08 2 2771 96.96 222 9.15
CWC 2762 96.64 189 7.79 5 2765 96.75 233 9.60

Table 2: The results for the segment of PB1.
subt. FS m n results of FS results of ITFS

|e| |e|/m |X | |X |/n # |e| e| |/m |X | |X |/n
H1N1 LCC 11641 2650 8886 76.33 927 34.98 -- - - -

CWC 8673 74.50 792 29.89 10 8865 76.15 1100 41.51

H2N2 LCC 189 2341 183 96.83 41 1.75 2 183 96.83 45 1.92
CWC 182 96.30 41 1.75 - - - - -

H3N2 LCC 11618 3185 8841 76.10 901 28.29 - - - - -
CWC 8646 74.42 768 24.11 6 8822 75.93 1048 32.90

H5N1 LCC 2901 2520 2778 95.76 204 8.10 2 2778 95.76 240 9.52
CWC 2741 94.48 182 7.22 5 2750 94.79 231 9.17
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Table 3: The results for the segment of PA.
subt. FS m n results of FS results of ITFS

|e| |e|/m |X | |X |/n # |e| |e|/m |X | |X |/n
H1N1 LCC 11782 3817 8972 76.15 927 24.29 2 8972 76.15 1035 27.12

CWC 8803 74.72 807 21.14 7 8922 75.73 1012 26.51

H2N2 LCC 186 2233 178 95.70 44 1.97 2 178 95.70 48 2.15
CWC 175 94.09 42 1.88 2 175 94.09 44 1.97

H3N2 LCC 11572 2660 8589 74.22 915 34.40 2 8589 74.22 1132 42.56
CWC 8391 72.51 790 29.70 8 8577 74.12 1066 40.08

H5N1 LCC 2823 2347 2732 96.78 197 8.39 2 2732 96.78 225 9.59
CWC 2714 96.14 185 7.88 2 2716 96.21 201 8.56

Table 4: The results for the segment of HA.
subt. FS m n results of FS results of ITFS

|e| |e|/m |X | |X |/n # |e| e| |/m |X | |X |/n
H1N1 LCC 29114 2358 23333 80.14 1252 53.10 -- - - -

CWC 23140 79.48 1004 42.58 9 23305 80.05 1359 57.63

H2N2 LCC 250 1779 246 98.40 46 2.59 2 246 98.40 48 2.70
CWC 244 97.60 44 2.47 -- - - -

H3N2 LCC 29441 2253 22691 77.07 1121 49.76 -- - - -
CWC 22507 76.45 1007 44.70 7 22649 76.93 1308 58.06

H5N1 LCC 5900 2061 5606 95.02 2061 100.00 -- - - -
CWC 5556 94.17 283 13.73 9 5588 94.71 439 21.30

subt. FS
Table 5: The results for the segment of NP.
m n results of FS results of ITFS

|e| |e|/m |X | |X |/n # |e| |e|/m |X | |X |/n
H1N1 LCC 12345 1636 7872 63.77 805 49.21 -- - - -

CWC 7724 62.57 623 38.08 5 7828 63.41 789 48.23

H2N2 LCC 190 1566 184 96.84 48 3.07 2 184 96.84 50 3.19
CWC 181 95.26 47 3.00 2 181 95.26 49 3.13

H3N2 LCC 12366 1843 7993 64.64 688 37.33 - - - - -
CWC 7874 63.67 602 32.66 6 7972 64.47 749 40.64

H5N1 LCC 2937 1631 2795 95.17 203 12.45 2 2795 95.17 242 14.84
CWC 2767 94.21 185 11.34 9 2785 94.82 287 17.60
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Table 6: The results for the segment of NA.
subt. FS m n results of FS results of ITFS

|e| |e|/m |X | |X |/n # |e| e| |/m |X | |X |/n
H1N1 LCC 23779 1775 17218 72.41 998 56.23 - - - - -

CWC 17108 71.95 865 48.73 5 17196 72.32 1053 59.32

H2N2 LCC 231 1469 231 100.00 42 2.86 - - -- -
CWC -231 100.00 42 2.86 - - - -

H3N2 LCC 17079 1694 12619 73.89 851 50.24 2 12619 73.89 943 55.67
CWC 12474 73.04 764 45.10 5 12596 73.75 942 55.61

H5N1 LCC 4344 1832 4076 93.83 285 15.56 2 4076 93.83 360 19.65
CWC 4026 92.68 255 13.92 7 4052 93.28 387 21.12

Table 7: The results for the segment of MP.
subt. FS m n results of FS results of ITFS

|e| |e|/m |X | |X |/n # |e| e| |/m |X | |X |/n
H1N1 LCC 17407 1223 8537 49.04 621 50.78 -- - - -

CWC 8437 48.47 562 45.95 8 8504 48.85 717 58.63

H2N2 LCC 217 1028 193 88.94 1028 100.00 -- - - -
CWC 185 85.25 46 4.47 3 188 86.64 59 5.74

H3N2 LCC 16648 1123 8361 50.22 538 47.91 - - - - -
CWC 8301 49.86 498 44.35 4 8347 50.14 597 53.16

H5N1 LCC 3273 1138 2919 89.18 552 48.51 - - - - -
CWC 2854 87.20 202 17.75 10 2905 88.76 355 31.20

subt. FS
Table 8: The results for the segment of NS.
m n results of FS results of ITFS

|e| |e|/m |X | |X |/n # |e| |e|/m |X | |X |/n
H1N1 LCC 12684 992 7068 55.72 648 65.32 - - - - -

CWC 6971 54.96 570 57.46 6 7053 55.61 682 68.75

H2N2 LCC 201 891 187 93.03 39 4.38 2 187 93.03 44 4.94
CWC 176 87.56 34 3.82 2 176 87.56 40 4.49

H3N2 LCC 12355 928 6243 50.53 928 100.00 - - - - -
CWC 6172 49.96 530 57.11 6 6233 50.45 628 67.67

H5N1 LCC 3178 1012 2884 90.75 229 22.63 2 2884 90.75 305 30.14
CWC 2830 89.05 201 19.86 8 2878 90.56 327 32.31

We denote ITFS based on the algorithm LCC (resp., CWC) by ITLCC (resp., ITCWC).
Then, Tables 1, 2, 3, 4, 5, 6, 7 and 8 claim the following statements.

1. For every segment, ITCWC can be always applied iteratively to the subtypes of
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H1N1, H3N2 and H5N1 but not to the subtype of H2N2. On the other hand, ITLCC
cannot be always applied iteratively to their subtypes.

2. For every segment and every subtype, the number of iterations in ITLCC is at most
2. However, |e| does not change and just |X | increases even if the number is 2.

3. For ITCWC, the number of iterations is more than 5 and less than 10 for the subtype
of H1N1, more than 4 and less than 8 for the subtype of H3N2 and more than 2 and
less than 10 for the subtype of H5N1. In particular, for the subtype of H5N1, the
number of iterations in ITCWC is more than 5 except the segment of PA (that is 2).

4. For just the segment of PA, ITLCC and ITCWC can be always applied iteratively
to all the subtypes of H1N1, H2N2, H3N2 and H5N1. However, almost number of
iterations is 2 except ITCWC for the subtype of H1N1 (that is 7) and for the subtype
of H3N2 (that is 8).

Concerned with Statement 1, we summarize the results of ITCWC for the 3 subtypes
of H1N1, H3N2 and H5N1 as Table 9. Here, Δ|e| (resp., Δ|X |) denotes the difference of
|e|/m (resp., |X |/n) between ITCWC and CWC.

Table 9: The results of ITCWC for the subtypes of H1N1, H3N2 and H5N1.
subt. seg. CWC ITCWC Δ

|e| |e|/m |X | |X |/n # |e| |e|/m |X | |X |/n Δ|e| Δ|X |
H1N1 PB2 8854 75.21 777 28.51 7 9011 76.55 1019 37.39 1.34 8.88

PB1 8673 74.50 792 29.89 10 8865 76.15 1100 41.51 1.65 11.67
PA 8803 74.72 807 21.14 7 8922 75.73 1012 26.51 1.01 5.37
HA 23140 79.48 1004 42.58 9 23305 80.05 1359 57.63 0.57 15.05
NP 7724 62.57 623 38.08 5 7828 63.41 789 48.23 0.84 10.15
NA 17108 71.95 865 48.73 5 17196 72.32 1053 59.32 0.37 10.59
MP 8437 48.47 562 45.95 8 8504 48.85 717 58.63 0.38 12.68
NS 6971 54.96 570 57.46 6 7053 55.61 682 68.75 0.65 11.29

H3N2 PB2 8666 74.68 755 30.97 8 8863 76.38 1060 43.48 1.70 12.51
PB1 8646 74.42 768 24.11 6 8822 75.93 1048 32.90 1.51 8.79
PA 8391 72.51 790 29.70 8 8577 74.12 1066 40.08 1.61 10.38
HA 22507 76.45 1007 44.70 7 22649 76.93 1308 58.06 0.48 13.36
NP 7874 63.67 602 32.66 6 7972 64.47 749 40.64 0.80 7.98
NA 12474 73.04 764 45.10 5 12596 73.75 942 55.61 0.71 10.51
MP 8301 49.86 498 44.35 4 8347 50.14 597 53.16 0.28 8.81
NS 6172 49.96 530 57.11 6 6233 50.45 628 67.67 0.49 10.56

H5N1 PB2 2762 96.64 189 7.79 5 2765 96.75 233 9.60 0.11 1.81
PB1 2741 94.48 182 7.22 5 2750 94.79 231 9.17 0.31 1.95
PA 2714 96.14 185 7.88 2 2716 96.21 201 8.56 0.07 0.68
HA 5556 94.17 283 13.73 9 5588 94.71 439 21.30 0.54 7.57
NP 2767 94.21 185 11.34 9 2785 94.82 287 17.60 0.61 6.26
NA 4026 92.68 255 13.92 7 4052 93.28 387 21.12 0.60 7.20
MP 2854 87.20 202 17.75 10 2905 88.76 355 31.20 1.56 13.45
NS 2830 89.05 201 19.86 8 2878 90.56 327 32.31 1.51 12.45

Table 9 shows the following statements.

Iterative Consistency-Based Feature Selection
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5. The average values of Δ|e| for H1N1, H3N2 and H5N1 are 0.85, 0.94 and 0.66,
respectively. On the other hand, the average values of Δ|X | for H1N1, H3N2 and
H5N1 are 10.70, 10.36 and 6.42, respectively.

6. Increasing Δ|e| is independent from increasing Δ|X | in general.

7. For the subtype of H3N2, the segment of PB2 has the maximum value of Δ|e| and
Δ|X |. For the subtype of H5N1, the segment of MP has the maximum value of Δ|e|
and Δ|X |. On the other hand, for the subtype of H1N1, the segment PB1 has the
maximum value of Δ|e| but not Δ|X | and the segment HA has the maximum value
of Δ|X | but not Δ|e|. In particular, the segment PB1 has the third maximum value of
Δ|X |, but the segment HA has the sixth maximum value of Δ|e|.

8. Whereas the segments of PB2, PB1 and PA have larger values of Δ|e| for the subtypes
of H1N1 and H3N2, the segments of MP and NS have larger values of Δ|e| for the
subtype of H5N1. In particular, they have larger values of Δ|X | for the subtype of
H5N1.

S. Shimamura, K. Hirata

5 Conclusion

In this paper, we have first formulated the consistency-based feature selection problem as 
combinatorial optimization problems. Next, based on the consistency-based feature se-
lection algorithms of LCC [18] and CWC [19][20][21], we have designed the algorithm 
ITFS as an iterative consistency-based feature selection. Finally, we have applied ITFS to 
nucleotide sequences of influenza A viruses and evaluated the results. Hence, we have ob-
served that the number of explanatory instances for 3 subtypes of H1N2, H3N2 and N5N1 
and all the 8 RNA segments is always increasing by ITCWC, and that for all the 4 
subtypes and the RNA segment PA is always increasing by both ITLCC and ITCWC.

One of the reason that the algorithm ITLCC has not achieved the purpose to avoid 
eliminating too many inconsistent instances stated in Statement 2 in Section 4 is that we fix 
a threshold δ to 0 and not find an appropriate value of δ,  which is a future work. Also, 
since the iterative consistency-based feature selection is based on the algorithms LCC [18] 
and CWC [19][20][21], it is a future work to apply an iterative method to the other 
algorithms.

The consistency-based feature selection problem as combinatorial optimization 
problems is mixed the minimization problem for the number of features to the 
maximization problem for the number of explanatory instances. 
Then, it is a future work to analyze
the exact intractability of computing it, for example, Σ2p-hardness beyond NP-hardness and
non-approximability. It is also a future work to investigate whether or not the dual problem 
is meaningful and, if so, then to design an efficient method.

Also, in this paper, we apply the algorithm ITFS to nucleotide sequences of influenza 
A viruses. Then, it is a future work to apply it to other data set and evaluate the results. 
Furthermore, as stated in the last of Section 4, the framework of iterative feature selection 
is possible to be useful to increase explanatory instances, so it is a future work to analyze 
it.

Recently, Shimamura and Hirata have extended the algorithms CWC and LCC by res-
electing adjacent sets of feature sets [16] and by introducing the fluctuation into increasing 
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