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Abstract

Sparse representation has been proven to be a powerful tool for analysis and process-
ing of signals and images. Most of existing methods for sparse representation are based
on the synthesis model. This paper presents a method for dictionary learning and s-
parse representation with the so-called analysis model. Different from the synthesis
sparse model, in this analysis model, the analysis dictionary multiplying the signal can
lead to a sparse outcome. The analysis dictionary learning problem has received less
attention with and only a few algorithms has been proposed recently. What is more,
there have still been few investigations in the context of dictionary learning for nonneg-
ative signal representation. So, in this paper we focus on the nonnegative dictionary
learning for signal representation. We use ℓ1-norm as the sparsity measure to learn an
analysis dictionary from signals in analysis sparse model. In addition, we adopt the
Euclidean distance as the error measure in the formulation. Numerical experiments
on recovery of analysis dictionary show that the proposed analysis dictionary learning
algorithm performs well for nonnegative signal representation.

Keywords: nonnegative dictionary learning, sparse representation, ℓ1-norm, analysis model.

1 Introduction

Situated at the heart of signal and image processing, data models are fundamental for sta-
bilizing the solution, and enabling other tasks, such as signal compression, denoising, sam-
pling, and so on [1]. A model is a set of mathematical relations that the data is believed to
satisfy. Models are central in signal and image processing. How to choose a highly simple
and reliable model is an essential task. Among the many ways, the sparse-based model has
been proved to be important and useful. Most of existing methods for sparse representa-
tion are based on the synthesis sparse model. The signal can be sparsely represented using
transform-domain methods, namely, the sparse representation for signals. This model can
be described as X = WH, or X ≈WH satisfying ∥X−WH∥2 ≤ ε [2]. Here W ∈ Rm×n is
an overcomplete (m < n) dictionary, implying that the dictionary is redundant. X ∈ Rm×N

is the observed signal matrix, which can be represented as a linear combination of atom-
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Interestingly, the synthesis model has a “twin” model that takes an analysis point of 
view [3]. Assume that there is Ω ∈ Rn×m so that Ω can be used to find sparse H so that 
H = ΩX [6]. This analysis model (also called as cosparse model) can be converted as 
a minimization problem of the error function ∥H − ΩX∥F , where the operator F denotes 
the Frobenius norm. Based on a series of experiments, it seems that the cosparse analysis 
model is very successful at accurately reconstructing signals from signals. They offer the 
advantages of low computational complexity and of being universally applicable to a wide 
set of signals. The analysis model relies on a matrix Ω ∈ Rn×m, which we refer to as the 
analysis dictionary. Here “analysis” means the dictionary analyzes the signal to produce 
a sparse result [7]. Different from the synthesis model, the rows of analysis dictionary 
represent analysis atoms. The key point of this analysis model is the expectation that the 
analysis representation vector H = ΩX is sparse with many zeros, so that the computation 
will be easy.

Now we focus on the analysis model mentioned above. Here Ω ∈ Rn×m be a signal 
transformation or an analysis operator. Its rows in this matrix are the row vectors which 
refer to as atoms. To capture various aspects of the information in the signal, we typically 
have (m ≤ n). Since there is a relationship between the synthesis sparse dictionary and 
the analysis sparse dictionary by the equation D = Ω†. Then we can use analysis sparse 
representation to solve synthesis sparse problems. The analysis dictionary learning problem 
has received less attention with only a few algorithms proposed recently [1, 7, 8, 9, 10, 11, 
12, 13]. In practice some particular signals such as spectral data have the limitations of 
nonnegativity. Experiments show that the previously mentioned algorithms, developed for 
general signals, cannot be efficiently applied to such nonnegative signals. But there are still 
few investigations in the context of nonnegative analysis dictionary learning. So we mainly 
focus on analysis sparse representation for nonnegative dictionary learning.

The remainder of this paper is organized as follows. Section II, we first introduce the 
analysis model with the sparsity constraints. In Section III, we describe the problem for-
mulation of the analysis sparse model. Then we use ℓ1 norm as the sparse constraint. The 
detailed algorithm is described in Section IV. In Section V we present experimental results 
for the proposed algorithm. Finally, conclusions are drawn in SectionVI .

2 The Analysis Sparse Model

Generally, the problem of finding the analysis dictionary Ω and the corresponding sparse 
representation H can be modeled by using the minimization of ℓ0-norm. ∥H∥0 counts the 
number of nonzero elements in the matrix of H. While the results by ℓ0-norm can lead H 
to be the sparsest, the algorithm by it is combinatorial optimization and is usually NP-hard. 
Therefore, some convex relaxations of ℓ0, such as ℓ1, have been proposed in the literature 
for the convenience of optimization in practice.
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s of the dictionary. The matrix H ∈ Rn×N is the sparse representation coefficients of the 
signals X [3]. The number of non-zeros ∥H∥0 is very small, and we say that X has a s-
parse representation in W. The name “synthesis” comes from the relation X = WH, with 
the interpretation that the model describes a way to synthesize signal X [3]. The synthe-
sis model has been the focus of many papers; it is safely to say that the synthesis model 
is a mature and stable field [3]. And this model has been heavily investigated in the last 
decade and many remarkable results achieved in almost all signal processing applications, 
the examples in [4][5].
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For the nonnegative matrix, ℓ1-norm is either a way to measure the sparsity of the ma-
trix. In the fields of super resolution and signal enhancement, the effectiveness and versatil-
ity of the ℓ1 method indicate that it has a useful role [15]. The ℓ1-norm of H can be written
as ∥H∥1, which is defined as H. Namely, ∥H∥1 = ∑i j |Hi j|. If H ∈ R+, the ℓ1 norm of H
can simply written as ∥H∥1 ≡ ∑i j Hi j. Compared with ℓ0-norm, ℓ1-norm is easier to solve.
For nonnegative matrix, its ℓ1-norm is derivative and smooth. We can use gradient descent
method to solve the nonnegative ℓ1-norm problem. It is clear that the smaller ∥H∥1 is the
sparser H is. In addition, some authors also impose sparsity constrains by using ℓ2-norm,
because of the particularity of the sparse nonnegative matrix factorization. In this paper,
we adopt ℓ1-norm as the measures of sparsity with analysis model for nonnegative sparse
representation.

3 Problem Formulation

In analysis sparse representation dictionary learning, X, Ω, and H denote the data samples
matrix, the analysis dictionary matrix, and the corresponding coefficient matrix, respective-
ly. m is the size of atoms in the analysis dictionary, n is the number of atoms, and N denotes
the number of signal data samples.

Generally, the analysis sparse problem is formulated as following: given a signal data
matrix X, find two matrices Ω and H satisfying

ΩX = H, (1)

where Ω ∈ Rn×m
+ (n≥ m) and H ∈ Rn×N

+ are all the nonnegative matrices. X can be gener-
ated by

X = Ω†H, (2)

here X ∈ Rm×N , and Ω† is the pseudo inverse of the analysis dictionary Ω. In this way,
we can get observed signal X from the analysis dictionary Ω and the sparse matrix H.
Although elements in Ω and H are all nonnegative, the pseudo inverse of Ω may contain
negative elements. In this case, the observed signal may have negative elements.

The problem of analysis sparse representation can be formulated as the minimization of
an objective function below,

minD(ΩX|H). (3)

The popular choice is the Euclidean (EUC) distance which can be defined as,

minDEUC(ΩX|H) =
1
2
∥ΩX−H∥2

F , (4)

where the operator ∥ ·∥F denotes the Frobenius norm. The coefficient 1
2 is in order to offset

the derivative coefficient. Besides, there are other cost functions IS divergence and KL
divergence, whose expressions are given as follows,

minDIS(ΩX|H) =
ΩX
H
− ln

ΩX
H
−1, (5)

minDKL(ΩX|H) = ΩX ln
ΩX
H
−ΩX+H. (6)

In this paper, we take the popular (EUC) distance as cost function; while in the future
work we could compare these different choices.
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min
Ω,H

f (Ω,H) =
1
2
∥ΩX−H∥2

F +λ∥H∥1,

Subject to Ω≽ 0,H≽ 0,
(7)

where λ ≥ 0 is regularization parameters which can be adjusted for controlling the tradeoff
between the approximation error and the sparsity of the coefficient matrix H. ≽ means all
the elements in the matrices Ω and H are nonnegative.

This cost function is a convex, so that we can employ the alternating descent strategy to
solve the above two convex optimal problems, finding the optimal factor Ω corresponding
to a fixed factor H reduces to a convex optimization problem, and vice versa. Given the
initial matrices Ω(0) and H(0), the sequences Ω(t) and H(t) are computed by the following
formulas,

Ω(t)
i j = Ω(t−1)

i j −η
∂ f (Ω,H)

∂Ωi j
, 1≤ i≤ m,1≤ j ≤ n, (8)

Ht
i j = Ht−1

i j −ξ
∂ f (Ω,H)

∂Hi j
, 1≤ i≤ n,1≤ j ≤ N. (9)

Scalar quantities η and ξ are the step lengths to take along the negative gradients. While
we should set η and ξ carefully when updating Ωi j and Hi j. Setting them as some small
positive constants are totally operable [16].

After several algebraic manipulations, the partial derivatives of the objective function
f (Ω,H) with respect to Ωi j and Hi j can be expressed in matrix vector form:

∂ f (Ω,H)

∂Ω
= ΩXXT −HXT , (10)

∂ f (Ω,H)

∂H
=−ΩX+H+λ . (11)

Since H ∈ R+, the partial derivatives of λ∥H∥1 is λ , namely,

∂ (λ∥H∥1)

∂H
= λ . (12)

Substitute it to above partial derivatives functions, then we can obtain the update rules as
follows,

Ω(t)
i j = Ω(t−1)

i j −ηΩ(t−1)
i j XXT +ηHXT , (13)

Ht
i j = H(t−1)

i j +ξ ΩX−ξ Ht−1
i j −ξ λ . (14)

According to the analysis above, the proposed analysis sparse dictionary learning algo-
rithm is summarized as follows,
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4 The Analysis Model with the ℓ1-norm as the Sparsity Measure

We can introduce additional constraints to circumscribe the solutions set. For instance, the 
smoothness constraint adds for better spectral signatures, sparseness constraint for infor-
mation processing demands, and volume constraint for meeting convex-geometry model. 
To solve the problem above, we can introduce additional constraint to circumscribe the 
solutions set. In this paper, the emphasis is the sparseness of coefficient matrix H, and 
we introduce ℓ1-norm to enforce the sparseness of coefficient matrix H. We will express 
respectively in detail in the next section.

At first, we discuss the cost function of the analysis sparse representation with constraint 
of l1-norm. The cost function imposed constraint can be written as,
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Analysis L1 norm algorithm (A−L1)

Require:m×N matrix X and m < n < N

1) Initialize Ω and H as random nonnegative matrices, t = 1,η ,ξ ;

2) Scale rows of H to a unit ℓ2-norm:∑N
j=1 H2

i j = 1,∀i;

3) Iterate until converge or stop;

Ω(t)
i j ←Ω(t−1)

i j −ηΩ(t−1)
i j XXT +ηHXT , 1≤ i≤ m,1≤ j ≤ n

Any negative valued components in Ωt are set to zeros;
Rescale each rows of Ω(t) to a unit ℓ2-norm: ∑n

i=1 Ω2
i j = 1,∀ j;

H(t)
i j ←H(t−1)

i j +ξ ΩX−ξ H(t−1)
i j −ξ λ , 1≤ i≤ n,1≤ j ≤ N

Any negative valued components in Ht are set to zeros;
Rescale each rows of H(t) to a unit ℓ2-norm: ∑N

j=1 H2
i j = 1,∀i;

5 The Case with Noise

If the observation signal is provided by Y = X + ε . ε corresponds to noise. We want
recovery X from its noisy version Y [17].

Suppose we measure a signal of the form

Yi = Xi + εi, i = 1,2, ...,K, (15)

where εi is the noise vector with a bounded ℓ2-norm, namely, ∥εi∥2 ≤ σ , here σ denotes the
noise level. In most practical situations, the noise is stationary and bounded. We assume
that the noiseless signal X can be modeled by the sparse-land model,

ΩXi = Hi. (16)

Thus we can get the denoised signal X from Ω and H using the former equation X = Ω†H.
Here H is the sparse coefficient. We can estimate H and Ω from the following optimization
problem,

min
Ω,H

f (Ω,H) =
1
2
∥ΩY−H∥2

F +λ∥H∥1. (17)

This implicate that we can solve this problem with the method in Sec. 4.

6 Numerical Experiments

In this section, we made experiments for evaluating the proposed algorithm. From the 
experiments we test whether this algorithm can recover the original nonnegative dictionary.
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Figure 1: Left: The dictionary of size 32 × 16 , corresponding to image patched of size 4
× 4 pixels. Right: The corresponding observed signals.

Figure 2: Left: The ground truth dictionary of size 32 × 16 , corresponding to image 
patched of size 4 × 4 pixels. Right: The learnt analysis dictionary.

We first get the results with the analysis sparse representation with the proposed algorithm. 
What is more, we add noise to the observed signals and get results in the noisy situation. 
In the experiments, all problems were coded in Matlab, and were run in the environment of 
Matlab 7.8 (R2009a).

6.1 Generating Analysis Dictionary and the Signals

In our experiments, we began with generating an analysis dictionary Ω as a ground truth. 
We chose a dictionary of 2d rows and d columns; every row contained only one nonnegative 
element and d − 1 zeros. The dictionary was of size 2d × d, thus it was twice redundant. 
Naturally, elements of the dictionary became nonnegative. Then scaled rows of the dictio-
nary to a unit ℓ2-norm.

Then we generated the observational signals from the nonnegative analysis dictionary. 
This was done by X = Ω†H, where the coefficients H were randomly chosen for each 
component. Fig. 1 shows the nonnegative analysis dictionary Ω for d = 16 and the related 
observational signals.

6.2 Results of Experiments using A − L1 Algorithm

We applied the A − L1 algorithm to the above generated signals. The initialized dictionary 
and corresponding coefficients were composed with random entries that were i.i.d. uni-
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Figure 3: The relative error curve of mean ∥H−ΩX∥2
F .

Figure 4: A histogram of the cosparsities of the 2000 sample signals.

formly distributed and nonnegative. Scalar quantities η and ξ were all set to 0.0001. The 
positive regularization parameter λ was set to 8. The iteration repeated until satisfying the 
stopping criterion. In our experiment the criterion was a fixed number (1000) of iterations. 

The results of these experiments are shown in the following figures. Fig. 2 is the 
learnt dictionary, from which, we can see the recovery status visually. Fig. 3 describes
the relative error ∥H − ΩX∥2

F . The experiment was repeated 10 times and we draw the 
curve with the averaged value of these experiment results. Fig. 4 shows the histogram of 
the sparse coefficient of observational signals. Fig. 5 presents a recovery histogram of the 
sparse coefficient of recovered signals. All these show the effectiveness of the proposed 
algorithm.
Next, the learned dictionary was compared with the ground truth dictionary. By sweep-ing 

through the rows, which represent atoms, of the ground truth and the learned dictionary,
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Figure 5: A histogram of the cosparsities of the 2000 recovered signals.

find the closest row between the two dictionaries. A distance less than 0.01 was considered
as a success of the recovery. Namely, a row w j in the ground truth dictionary Ω is regarded
as successful recovered if

min
i
(1−|ŵT

i w j|)< 0.01, (18)

where ŵi are the atoms of the learnt dictionary. Fig. 6 shows the recovery curve of analysis 
dictionary in noiseless and noisy situations.

6.3 Results of Experiments in noisy

Besides the noiseless situation, we also made experiments in which the uniformly distribut-
ed positive noise of signal-to-noise ratio (SNR) was added to the observed signals in order 
to evaluate the performance and robustness of anti-noise. Signal-to-noise ratio (SNR) is a 
measure used in science and engineering that compares the level of a desired signal to the 
level of background noise. In our experiments, we set the SNR as 80 dB.

All experiments were repeated 10 times, and we use the average value. Fig. 6 shows the 
results of the experiment for noise levels of 80 dB and for the noiseless case using A − L1
Algorithm and compare with ADT Algorithm [6], the recovery of the dictionary can nearly 
reach 80% in noisy situation and 85% in the noiseless situation. We can find that in the 
situation of noiseless the recovery is a little higher than that in a noise of 80 dB. As we see 
from the results, the algorithms can work well compared with the ADT algorithm.

7 Conclusions

In this paper, we proposed an algorithm for learning the nonnegative dictionary in the anal-
ysis model, which is parallel to the synthesis model in its rationale and structure. The 
proposed algorithm utilizes Euclidean distance as the error measure with the ℓ1-norm as 
sparse constraint. Results of numerical experiments demonstrated the ability of our method 
to correctly and effectively learn the nonnegative analysis dictionary. The proposed algo-
rithm is quite simple but very efficient. By the results of comparing with the situation in
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Figure 6: The recovery curves of the analysis dictionary.

80 SNR, we can see the algorithms A− L1 that we proposed can work well in the noisy
situation as well as noiseless situation. However, we require revealing more properties of
the analysis dictionary; and designing more efficient algorithms suitable for general cases.
Further applications remain as our future work.
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